2434: Descoberto buraco negro massivo com 40.000 milhões de vezes a massa do Sol

LIGO
Conceção artística da colisão de dois buracos negros

Um buraco negro massivo com 40.000 milhões de vezes a massa do Sol foi detectado no coração da galáxia elíptica Holmberg 15A, localizada a cerca de 700 milhões de anos-luz do nosso planeta.

O objecto, baptizado de Holm 15A *, é um dos maiores buracos negros até então conhecido, sendo também o maior entre os buracos negros descobertos após o rastreamento das estrelas à sua volta, escreve o portal Science Alert.

Com a descoberta, cujos resultados foram publicados em julho passado no portal arXiv.org, os autores corrigiram cálculos de outros astrofísicos que estimavam com base em observações indirectas a presença de um buraco negro com uma massa 310 maior do que a do Sol também na galáxia Holmberg 15A.

“Usamos modelos axisimétricos Schwarzschild baseados em órbitas para analisar a cinemática estelar de Holm 15A a partir de novas observações espectrais de alta resolução e campo amplo”, escreveram os cientistas no artigo, detalhando que os novos dados foram obtidos graças ao instrumento MUSE, instalado no telescópio Very Large Telescope), localizado no Chile. “Este é o buraco negro mais massivo [já descoberto] com detecção dinâmica directa no Universo local”, acrescentam.

De acordo com o mesmo modelo, o buraco negro está numa zona de fusão de galáxias do tipo primitivo. Contudo, os cientistas esperam levar a cabo novas investigações para terminar com precisão a forma com o corpo massivo se formou.

ZAP //

Por ZAP
12 Agosto, 2019

 

2417: Descobertas galáxias que podem dar pistas sobre matéria escura do Universo

ESO
A matéria escura em torno de uma das galáxias do enxame de galáxias Abell 3827 não se move com esta, possivelmente implicando que estão a ocorrer interações de natureza desconhecida entre a matéria escura

Astrónomos identificaram 39 galáxias antigas e ‘super-massivas’, uma descoberta que pode dar novas pistas sobre a evolução dos buracos negros de grande massa e a distribuição da matéria escura no Universo, divulgou hoje a Universidade de Tóquio, no Japão.

Os astrónomos da Universidade de Tóquio, que usaram nas observações o radiotelescópio ALMA e o telescópio VLT, ambos no Chile, defendem que a abundância de tais galáxias desafia os modelos actuais do Universo.

As galáxias ter-se-ão formado nos primeiros dois mil milhões de anos do Universo (que terá 13,7 mil milhões de anos de acordo com a teoria do Big Bang). Os resultados foram publicados esta quarta-feira na revista Nature.

“Esta descoberta contraria os modelos actuais para aquele período da evolução cósmica e vai ajudar a acrescentar alguns detalhes que faltavam até agora“, afirmou o investigador Tao Wang, citado em comunicado pela Universidade de Tóquio.

De acordo com a investigação, a existência e a forma como evoluíram as galáxias ‘super-massivas’ antigas permite saber mais sobre a evolução dos buracos negros ‘super-massivos’ (regiões do Universo de grande massa de onde nem a luz escapa), uma vez que quanto mais massa tem uma galáxia mais massa tem o buraco negro no centro dessa galáxia.

Por outro lado, segundo os autores do estudo, as galáxias com maior massa estão ligadas à distribuição da matéria escura, a que não é visível e que constitui a maior parte do Universo.

“Tal [facto] desempenha um papel na modulação da estrutura e distribuição das galáxias. Os investigadores vão precisar de actualizar as suas teorias”, sustentou o astrónomo Kotaro Kohno.

Dada a distância a que se encontra este tipo de galáxias, a luz por elas emitida chega muito ténue à Terra, não sendo visível com telescópios ópticos.

A equipa de astrónomos japoneses espera aprofundar os seus estudos sobre as 39 galáxias, nomeadamente sobre a sua população de estrelas e a sua composição química, com o potente telescópio espacial James Webb, com lançamento previsto para 2021, após sucessivos adiamentos.

ZAP // Lusa

Por Lusa
7 Agosto, 2019

 

Descoberto um disco circum-planetário, “formador de luas”, em torno de jovem planeta

CIÊNCIA

Imagem ALMA da poeira em PDS 70, um sistema localizado a aproximadamente 370 anos-luz da Terra. Duas manchas ténues na região interior do disco estão associadas com planetas recém-formados. Uma dessas concentrações de poeira é um disco circum-planetário, o primeiro já detectado em torno de uma estrela distante.
Crédito: ALMA (ESO/NAOJ/NRAO); A. Isella

Recorrendo ao ALMA (Atacama Large Millimeter/submillimeter Array), os astrónomos fizeram as primeiras observações de um disco circum-planetário, a cintura planetária de poeira e gás que os astrónomos fortemente teorizam controlar a formação de planetas e que dá origem a todo um sistema de luas, como o encontrado em redor de Júpiter.

Este jovem sistema estelar, PDS 70, está localizado a aproximadamente 370 anos-luz da Terra. Recentemente, os astrónomos confirmaram a presença de dois planetas massivos, semelhantes a Júpiter, em órbita da estrela. Esta descoberta foi feita com o VLT (Very Large Telescope) do ESO, que detectou o brilho quente naturalmente emitido pelo hidrogénio gasoso que se acumula nos planetas.

As novas observações do ALMA, ao invés, mostram as fracas ondas de rádio emitidas pelas partículas minúsculas (com cerca de um-décimo de milímetro) de poeira em redor da estrela.

Os dados do ALMA, combinados com as observações anteriores do VLT no óptico e no infravermelho, fornecem evidências convincentes de que um disco empoeirado capaz de formar múltiplas luas rodeia o planeta mais exterior conhecido do sistema.

“Pela primeira vez, podemos ver conclusivamente os sinais reveladores de um disco circum-planetário, que ajuda a suportar muitas das actuais teorias de formação planetária,” disse Andrea Isella, astrónomo da Universidade Rice em Houston, no estado norte-americano do Texas, autor principal de um artigo publicado na revista The Astrophysical Journal Letters.

“Ao compararmos as nossas observações com imagens infravermelhas e ópticas de alta-resolução, podemos ver que uma concentração de minúsculas partículas de poeira, de outro modo enigmática, é um disco planetário de poeira, o primeiro do seu género já observado conclusivamente,” disse. De acordo com os investigadores, esta é a primeira vez que um planeta é visto nestas três bandas distintas de luz (visível, infravermelho e rádio).

Ao contrário dos gelados anéis de Saturno, que provavelmente se formaram pela colisão de cometas e corpos rochosos há relativamente pouco tempo na história do nosso Sistema Solar, o disco circum-planetário é o remanescente do processo de formação do planeta.

Os dados do ALMA também revelaram duas diferenças distintas entre os dois planetas recém-descobertos. O mais próximo dos dois, PDS 70 b, que está mais ou menos à mesma distância da sua estrela do que Úrano do Sol, tem uma massa de poeira atrás dele, lembrando uma cauda. “O que isto é, e o que significa para este sistema planetário, ainda não é conhecido,” disse Isella. “A única coisa conclusiva que podemos dizer é que está longe o suficiente do planeta para ser uma característica independente.”

O segundo planeta, PDS 70 c, reside no mesmo local que um nó claro de poeira visto nos dados do ALMA. Dado que este planeta brilha tão intensamente nas bandas do infravermelho e do hidrogénio, os astrónomos podem dizer de maneira convincente que um planeta totalmente formado já está em órbita e que o gás próximo continua a ser sugado para a superfície do planeta, terminando o seu surto de crescimento adolescente.

Este planeta exterior está localizado a mais ou menos 5,3 mil milhões de quilómetros da estrela hospedeira, aproximadamente à mesma distância que Neptuno está do Sol. Os astrónomos estimam que este planeta tenha entre 1 e 10 vezes a massa de Júpiter. “Se o planeta estiver do lado mais massivo dessa estimativa, é bem possível que existam luas do tamanho de um planeta formando-se em redor,” observou Isella.

Os dados do ALMA também acrescentam outro elemento importante a estas observações.

Os estudos ópticos de sistemas planetários são notoriamente complexos. Dado que a estrela é muito mais brilhante do que os planetas, é difícil filtrar o brilho, tal como tentar avistar um pirilampo ao lado de um holofote. No entanto, as observações do ALMA não têm essa limitação, já que as estrelas emitem comparativamente pouca luz em comprimentos de onda milimétricos e submilimétricos.

“Isto significa que podemos voltar a este sistema a diferentes períodos e mapear com mais facilidade a órbita dos planetas e a concentração de poeira no sistema,” concluiu Isella. “Isto dar-nos-á uma visão única das propriedades orbitais dos sistemas solares nos seus primeiros estágios de desenvolvimento.”

Astronomia On-line
16 de Julho de 2019

[vasaioqrcode]

 

2114: Raro asteróide duplo foi fotografado enquanto passava perto da Terra

CIÊNCIA

ESO / M. Kornmesser

O Very Large Telescope (VLT), localizado no Chile, conseguiu captar fotografias detalhadas do asteróide 1999 KW4, que passou perto da Terra este fim de semana a uma velocidade de 70 mil quilómetros por hora.

“Estes dados, combinados com todos os outros obtidos pelos vários telescópios da campanha IAWN, serão essenciais para avaliar estratégias eficazes de deflexão [de asteróide], na eventualidade de encontrarmos um asteróide em rota de colisão com a Terra”, disse o astrónomo Olivier Hainaut do Observatório Europeu do Sul (ESO), que publicou as primeiras fotografias do corpo celeste.

Nas últimas décadas, vários cientistas de todo o mundo têm estudado de forma activa os asteróides que orbitam perto da Terra, tentando catalogar quais destes corpos celestes é que são perigoso para a Terra. Segundo as estimativas actuais da NASA, o número de pequenos objectos na cintura principal de asteróides pode atingir um milhão. Destes, conhecemos apenas alguns milhares.

No passado fim de semanas, as astrónomos aproveitaram uma oportunidade única para enriquecer o catálogo destes corpos, observando um raro asteróide duplo que se aproximou da Terra. O corpo passou a 5,2 milhões de quilómetros do nosso planeta, ou seja, a uma distância 13 vezes maior do que a distância da Terra à Lua.

O 1999 KW4 pertence ao grupo dos asteróides Aton, um grupo próximo da Terra que orbita perto do Sol. Estes asteróides atravessam a órbita da Terra quando estão à distância máxima do Sol. Por este motivo, o corpo foi classificado como potencialmente perigoso.

Este grupo de asteróide chama à atenção dos especialistas por várias razões, mas sobretudo porque tem um diâmetro de cerca de 1,3 quilómetros e a sua própria “lua” de 350 metros. Além disso, possuiu formas e órbitas extraordinárias.

Em comunicado, o ESO frisa que as novas imagens e os novos dados científicos recolhidos pelo VLT e por vários outros telescópios podem ajustar a definir as características do corpo celeste. De acordo com os cientistas, o 1999 KW4 é semelhante com um outro asteróide mais perigoso, o Didim, que está também na “mira” dos cientistas.

Os cientistas esperam que os dados agora recolhidos possam ajudar a esclarecer a probabilidade real de, no futuro, se conseguir alterar a trajectória de um asteróide.

ZAP // SputnikNews

Por ZAP
4 Junho, 2019



[vasaioqrcode]

1780: Instrumento GRAVITY abre novos caminhos na obtenção de imagens de exoplanetas

O instrumento GRAVITY montado no VLTI (Interferómetro do Very Large Telescope) do ESO obteve a sua primeira observação directa de um exoplaneta, utilizando interferometria óptica. Este método revelou uma atmosfera exoplanetária complexa com nuvens de ferro e silicatos no seio de uma tempestade que engloba todo o planeta. Esta técnica apresenta possibilidades únicas para caracterizar muitos dos exoplanetas que se conhecem actualmente. Esta imagem artística mostra o exoplaneta observado, HR 8799e.
Crédito: ESO/L. Calçada

O instrumento GRAVITY montado no VLTI (Interferómetro do Very Large Telescope) do ESO obteve a sua primeira observação directa de um exoplaneta, utilizando interferometria óptica. Este método revelou uma atmosfera exoplanetária complexa com nuvens de ferro e silicatos no seio de uma tempestade que engloba todo o planeta. Esta técnica apresenta possibilidades únicas para caracterizar muitos dos exoplanetas que se conhecem actualmente.

Este resultado foi anunciado numa carta à revista Astronomy & Astrophysics pela Colaboração GRAVITY, na qual foram apresentadas observações do exoplaneta HR 8799e usando interferometria óptica. Este exoplaneta foi descoberto em 2010 em órbita de uma estrela jovem de sequência principal, HR 8799, situada a cerca de 129 anos-luz de distância da Terra na constelação de Pégaso.

Os resultados, que revelam novas características de HR 8799e, necessitaram de um instrumento de muito alta resolução e sensibilidade. O GRAVITY pode usar os quatro Telescópios Principais do VLT do ESO em uníssono como se de um único telescópio enorme se tratassem, utilizando uma técnica conhecida por interferometria. Este super-telescópio — o VLTI — recolhe e separa de forma precisa a radiação emitida pela atmosfera de HR 8799e e a radiação emitida pela sua estrela progenitora.

HR 8799e é um exoplaneta do tipo “super-Júpiter”, um mundo diferente de qualquer um dos planetas existentes no Sistema Solar, já que é mais massivo e muito mais jovem do que qualquer dos planetas que orbita o nosso Sol. Com apenas 30 milhões de anos, este exoplaneta bebé é suficientemente jovem para dar aos astrónomos pistas sobre a formação de planetas e sistemas planetários. O exoplaneta é completamente inóspito — a energia que restou da sua formação e um forte efeito de estufa fazem com que HR 8799e apresente uma temperatura de cerca de 1000º C à sua superfície.

Esta é a primeira vez que interferometria óptica é utilizada para revelar detalhes sobre um exoplaneta e a nova técnica deu-nos um espectro extremamente detalhado com uma qualidade sem precedentes — dez vezes mais detalhado do que observações anteriores. As medições levadas a cabo pela equipa revelaram a composição da atmosfera de HR 8799e — a qual contém algumas surpresas.

“A nossa análise mostrou que HR 8799e tem uma atmosfera que contém muito mais monóxido de carbono do que metano — algo que não se espera do equilíbrio químico,” explica o líder da equipa Sylvestre Lacour, investigador do CNRS no Observatório de Paris – PSL e no Instituto Max Planck de Física Extraterrestre. “A melhor maneira de explicar este resultado surpreendente é com elevados ventos verticais no seio da atmosfera, os quais impedem o monóxido de carbono de reagir com o hidrogénio para formar metano.”

A equipa descobriu que a atmosfera contém igualmente nuvens de poeira de ferro e silicatos. Quando combinado com o excesso de monóxido de carbono, este facto sugere-nos que a atmosfera de HR 8799e esteja a sofrer os efeitos de uma enorme e violenta tempestade.

“As nossas observações sugerem uma bola de gás iluminada do interior, com raios de luz quente em movimento nas nuvens escuras tempestuosas,” explica Lacour. “A convecção faz movimentar as nuvens de partículas de ferro e silicatos, que se desagregam provocando chuva no interior. Este cenário mostra-nos uma atmosfera dinâmica num exoplaneta gigante acabado de formar, onde ocorrem processos físicos e químicos altamente complexos.”

Este resultado junta-se ao já impressionante conjunto de descobertas feitas com o auxílio do GRAVITY, as quais incluem a observação do ano passado de gás a espiralar com uma velocidade de 30% da velocidade da luz na região logo a seguir ao horizonte de eventos do buraco negro super-massivo que se situa no Centro Galáctico. Este novo resultado acrescenta mais uma maneira de observar exoplanetas ao já extenso arsenal de métodos disponíveis aos telescópios e instrumentos do ESO — abrindo caminho a muitas outras descobertas impressionantes.

Astronomia On-line
29 de Março de 2019

[vasaioqrcode]

 

1763: Formação estelar e poeira de estrelas antigas

Imagem do ALMA e do Telescópio Espacial Hubble da galáxia distante MACS0416_Y1. A distribuição da poeira e do oxigénio gasoso traçada pelo ALMA tem tons avermelhados e esverdeados, respectivamente, enquanto a distribuição das estrelas captada pelo Hubble está a azul.
Crédito: ALMA (ESO/NAOJ/NRAO), Telescópio Espacial Hubble da NASA/ESA, Tamura et al.

Investigadores detectaram um sinal de rádio de poeira interestelar abundante em MACS0416_Y1, uma galáxia a 13,2 mil milhões de anos-luz de distância na direcção da constelação de Erídano. Os modelos-padrão não conseguem explicar tanta poeira numa galáxia tão jovem, forçando-nos a reconsiderar a história da formação estelar. Os cientistas agora pensam que MACS0416_Y1 sofreu uma formação estelar escalonada, com dois períodos intensos 300 milhões e 600 milhões de anos após o Big Bang, e com uma fase calma entre eles.

As estrelas são os principais intervenientes no Universo, mas são apoiadas pelas mãos invisíveis dos bastidores: a poeira estelar e o gás. As nuvens cósmicas de poeira e gás são os locais de formação estelar e magistrais contadores da história cósmica.

“A poeira e os elementos relativamente pesados, como oxigénio, são disseminados pela morte das estrelas,” disse Yoichi Tamura, professor associado da Universidade de Nagoya e autor principal do artigo científico. “Portanto, uma detecção de poeira em determinado momento indica que um número de estrelas já se formou e morreu bem antes desse ponto.”

Usando o ALMA (Atacama Large Millimeter/submillimeter Array), Tamura e a sua equipa observaram a galáxia distante MACS0416_Y1. Dada a velocidade finita da luz, as ondas de rádio que observamos hoje nesta galáxia tiveram que viajar durante 13,2 mil milhões de anos para chegar até nós. Por outras palavras, fornecem uma imagem do aspecto da galáxia há 13,2 mil milhões de anos, apenas 600 milhões de anos após o Big Bang.

Os astrónomos detectaram um sinal fraco, mas revelador, de emissões de rádio de partículas de poeira em MACS0416_Y1. O Telescópio Espacial Hubble, o Telescópio Espacial Spitzer e o VLT (Very Large Telescope) do ESO observaram a luz das estrelas da galáxia; e da sua cor estimam que a idade estelar seja de 4 milhões de anos.

“Não é fácil,” realça Tamura. “A poeira é demasiado abundante para ter sido formada em 4 milhões de anos. É surpreendente, mas precisamos de ter os pés assentes na terra. As estrelas mais antigas podem estar escondidas na galáxia, ou podem já ter morrido e desaparecido.”

“Já foram propostas várias ideias para superar esta crise orçamentária de poeira,” disse Ken Mawatari, investigador da Universidade de Tóquio. “No entanto, nenhuma é conclusiva. Fizemos um novo modelo que não precisa de suposições extremas divergentes do conhecimento da vida das estrelas no Universo de hoje. O modelo explica bem tanto a cor da galáxia como a quantidade de poeira.” Neste modelo, o primeiro surto de formação estelar começou aos 300 milhões de anos e durou 100 milhões de anos. Depois, a formação estelar acalmou durante algum tempo e recomeçou aos 600 milhões de anos. Os investigadores pensam que o ALMA observou esta galáxia no início da sua segunda geração de formação estelar.

“A poeira é um material crucial para planetas como a Terra,” explica Tamura. “O nosso resultado é um passo importante para entender o início da história do Universo e a origem da poeira.”

Astronomia On-line
26 de Março de 2019

[vasaioqrcode]

 

1262: ALMA E MUSE DETECTAM FONTE GALÁCTICA

Imagem composta do enxame de galáxias Abell 2597 onde podemos ver uma corrente de gás a jorrar como uma fonte, alimentada pelo buraco negro supermassivo situado na galáxia central. Os dados ALMA estão representados a amarelo e mostram gás frio. Os dados obtidos com o instrumento MUSE montado no VLT do ESO estão a vermelho e mostram gás de hidrogénio quente na mesma região. A cor azul-violeta corresponde ao gás quente ionizado extenso observado pelo Observatório de raios X Chandra.
Os dados ALMA mostram o material a cair no buraco negro e os dados MUSE mostram material a jorrar deste objeto.
Crédito: ALMA (ESO/NAOJ/NRAO), Tremblay et al.; NRAO/AUI/NSF, B. Saxton; NASA/Chandra; ESO/VLT

Observações levadas a cabo pelo ALMA e dados obtidos pelo espectrógrafo MUSE montado no VLT do ESO revelaram uma enorme fonte de gás molecular alimentada por um buraco negro situado no coração da galáxia mais brilhante do enxame Abell 2597 — o ciclo galáctico completo de entrada e saída de material que alimenta esta vasta fonte cósmica nunca tinha sido antes observado num único sistema.

A uns meros mil milhões de anos-luz de distância da Terra, num enxame de galáxias próximo chamado Abell 2597, situa-se uma enorme fonte galáctica. Uma equipa de investigadores observou um buraco negro massivo localizado no coração de uma galáxia distante a lançar uma enorme quantidade de gás molecular frio para o espaço, o qual cai seguidamente no buraco negro tal qual um dilúvio intergaláctico. A entrada e saída de material de uma tal fonte cósmica tão vasta nunca tinha sido antes observada ao mesmo tempo, estando a ocorrer nos 100.000 anos-luz mais internos da galáxia mais brilhante do enxame Abell 2597.

“Este é possivelmente o primeiro sistema no qual encontramos evidências claras tanto de entrada de gás molecular no buraco negro como de saída ou lançamento através de jactos que o buraco negro possui,” explica Grant Tremblay do Centro Harvard-Smithsonian para Astrofísica e antigo bolseiro do ESO, que liderou este estudo. “O buraco negro super-massivo situado no centro desta galáxia gigante actua como uma bomba mecânica instalada na fonte.”

Tremblay e a sua equipa usaram o ALMA (Atacama Large Millimeter/submillimeter Array) para determinar a posição e seguir o movimento de moléculas de monóxido de carbono no seio da nebulosa. Descobriu-se que estas moléculas frias, com temperaturas tão baixas como menos 250-260º C caem em direcção ao buraco negro. A equipa usou também dados do instrumento MUSE montado no VLT do ESO (Very Large Telescope) para encontrar gás mais quente — e que está a ser lançado pelo buraco negro sob a forma de jactos.

“O aspecto único deste trabalho é que se trata de uma análise muito detalhada da fonte usando dados tanto do ALMA como do MUSE,” explica Tremblay. “Estas duas infra-estruturas, quando combinadas, tornam-se incrivelmente poderosas.”

Estes dois conjuntos de dados dão-nos uma imagem completa do processo: o gás frio cai em direcção ao buraco negro, “acendendo” o buraco negro e fazendo com que este lance jactos de plasma incandescente muito rápidos para o espaço. Estes jactos saem, portanto, do buraco negro sob a forma de uma extraordinária fonte galáctica. Sem possibilidade de escapar da forma gravitacional galáctica, o plasma arrefece, abranda e eventualmente volta a cair no buraco negro, onde o ciclo recomeça.

Esta observação sem precedentes pode dar-nos muita informação sobre o ciclo de vida das galáxias. A equipa pressupõe que este processo pode ser, não apenas bastante comum, como também essencial para percebermos a formação galáctica. Apesar da entrada e saída de gás molecular frio terem sido já previamente detectadas, esta é a primeira vez que ambas são detectadas num só sistema, tratando-se por isso da primeira evidência de que ambas fazem parte do mesmo processo vasto.

Abell 2597 situa-se na constelação de Aquário e o seu nome provém da sua inclusão no catálogo de enxames de galáxias ricos de Abell. Este catálogo inclui ainda enxames como o enxame da Fornalha, o enxame de Hércules e o enxame de Pandora.

Astronomia On-line
9 de Novembro de 2018

[vasaioqrcode]

 

1244: Há um monstruoso buraco negro “escondido” no centro da Via Láctea

ESO/Consórcio Gravity/L. Calçada
O estudo confirma o que já se supunha há muito: há um buraco negro super-massivo escondido no centro da Via Láctea

Com o auxílio do GRAVITY, o instrumento extremamente sensível do ESO, uma equipa internacional de cientistas confirmou, como se supunha há muito tempo, que um buraco negro super-massivo se esconde no centro da Via Láctea.

Novas observações mostram nodos de gás a deslocarem-se a velocidades de cerca de 30% da velocidade da luz, numa órbita circular logo a seguir ao horizonte de eventos do buraco negro, o que corresponde à primeira vez que se observa matéria a orbitar próximo do ponto de não retorno. Estas são também as observações mais detalhadas obtidas até à data de matéria a orbitar tão perto de um buraco negro.

Com o auxílio do instrumento GRAVITY montado no Interferómetro do VLT (Very Large Telescope) do ESO, cientistas de um consórcio de instituições europeias, incluindo o ESO, observaram clarões de radiação infravermelha a ser emitidos pelo disco de acreção que rodeia Sagitário A*, o objecto massivo situado no coração da Via Láctea.

Os clarões observados fornecem-nos uma confirmação, há muito tempo esperada, de que o objecto que se esconde no centro da nossa Galáxia é, como se tem assumido, um buraco negro super-massivo. Os clarões têm origem no material que está a orbitar perto do horizonte de eventos do buraco negro — o que faz destas observações as mais detalhadas obtidas até à data de matéria a orbitar tão próximo de um buraco negro.

Apesar da matéria que compõe o disco de acreção — o cinturão de gás que rodeia Sagitário A* e que se desloca a velocidades relativistas — orbitar o buraco negro de forma segura, qualquer material que se aproxime demasiado é puxado para além do horizonte de eventos. O ponto mais próximo de um buraco negro onde a matéria pode orbitar sem ser puxada de forma definitiva para o seu interior é chamada a órbita estável mais interior e foi nesta zona que tiveram origem os clarões observados.

“É incrível poder realmente testemunhar material a orbitar um buraco negro a uma velocidade de 30% da velocidade da luz,” refere Oliver Pfuhl, um cientista no Instituto Max Planck de Física Extraterrestre (MPE). “A extrema sensibilidade do GRAVITY permitiu-nos observar os processos de acreção em tempo real com um detalhe sem precedentes.”

O GRAVITY

Estas medições foram apenas possíveis graças a uma colaboração internacional e a instrumentação de vanguarda. O instrumento GRAVITY, que tornou possível este trabalho, combina a luz recolhida por quatro telescópios do VLT do ESO, criando assim um super-telescópio virtual de 130 metros de diâmetro, o qual foi utilizado para investigar a natureza de Sagitário A*.

Em Julho deste ano, com o auxílio do GRAVITY e do SINFONI, outro instrumento montado no VLT, a mesma equipa de investigadores fez medições precisas na altura da passagem da estrela S2 pelo campo gravitacional extremo existente perto de Sagitário A* e revelou, pela primeira vez, os efeitos previstos pela teoria da relatividade geral de Einstein em meios tão extremos. Durante a passagem de S2 foi igualmente observada forte emissão infravermelha.

“Estávamos a monitorizar de perto S2 e claro que, ao mesmo tempo, estávamos também atentos a Sagitário A*,” explicou Pfuhl. “Durante as observações, tivemos a sorte de reparar em três clarões brilhantes emitidos perto da zona do buraco negro — foi uma coincidência fantástica!”

Esta radiação emitida por electrões altamente energéticos situados muito perto do buraco negro, foi vista como três clarões brilhantes muito proeminentes e ajustava perfeitamente previsões teóricas para pontos quentes a orbitar perto de um buraco negro de 4 milhões de massas solares. Pensa-se que estes clarões têm origem nas interacções magnéticas do gás muito quente que orbita próximo de Sagitário A*.

Reinhard Genzel, do MPE em Garching, na Alemanha, e que liderou o estudo explica: “Este sempre foi um dos nossos projectos de sonho, mas não ousávamos imaginar que poderia tornar-se possível tão cedo.”

Relativamente à suposição de longa data de que Sagitário A* seria um buraco negro super-massivo, Genzel conclui que “este resultado é uma confirmação retumbante do paradigma do buraco negro super-massivo.”

Os resultados foram publicados na passada quinta-feira, dia 31 de Outubro, na revista científica Astronomy & Astrophysics.

ZAP // CCVAlg

Por CCVAlg
5 Novembro, 2018

[vasaioqrcode]

 

1203: O Pirata dos Céus do Sul

Com o auxílio do instrumento FORS2, montado no Very Large Telescope do ESO, os astrónomos observaram a região de formação estelar activa NGC 2467 — por vezes referida como Nebulosa da Caveira e Ossos. A imagem foi obtida no âmbito do Programa Jóias Cósmicas do ESO, o qual tira partido das raras ocasiões em que as condições de observação não são adequadas para capturar dados científicos. Nestas alturas, em vez de permanecerem inactivos, os telescópios do ESO são usados para obter imagens do céu austral visualmente atraentes.

Esta imagem da região de formação estelar activa NGC 2467, por vezes referida como Nebulosa da Caveira e Ossos, tem tanto de sinistro como de bonito. A imagem de poeira, gás e estrelas jovens brilhantes ligadas gravitacionalmente em forma de uma caveira sorridente foi obtida pelo instrumento FORS montado no Very Large Telescope do ESO (VLT). Apesar dos telescópios do ESO serem normalmente usados para capturar dados científicos, às vezes observam também imagens como esta — bonitas por si mesmas.

É fácil perceber o motivo da alcunha Caveira e Ossos dada a este objecto, uma vez que esta formação jovem e brilhante assemelha-se bastante a uma caveira, da qual apenas se vê a boca aberta nesta imagem. A NGC 2467 situa-se na constelação da Popa.

Esta colecção nebulosa de enxames estelares é o lugar de nascimento de muitas estrelas, onde um excesso de hidrogénio gasoso fornece matéria prima para a formação estelar. Não se trata, de facto, de uma única nebulosa e os seus enxames estelares constituintes deslocam-se a velocidades diferentes. Apenas um alinhamento fortuito ao longo da linha de visão faz com que as estrelas e o gás se pareçam com uma cara humanoide quando vistos a partir da Terra. Esta imagem luminosa pode não dar aos astrónomos nenhuma informação nova, no entanto fornece-nos um visão do céu austral, resplandecente de maravilhas invisíveis ao olho humano.

A Popa faz parte das três constelações do céu austral com nomes náuticos que costumavam formar uma única constelação enorme, a constelação do Navio Argo, da história mítica de Jasão e os Argonautas. Esta constelação foi dividida em três partes: a Quilha, a Vela e a Popa. Apesar de ser um herói mítico, Jasão rouba o tosão de ouro, por isso esta nebulosa encontra-se não apenas no meio de um vasto navio celeste, mas também entre ladrões — um local mais que apropriado para esta “caveira pirata”.

Esta imagem foi obtida no âmbito do programa Jóias Cósmicas do ESO, uma iniciativa de divulgação científica, que visa obter imagens de objectos interessantes, intrigantes ou visualmente atractivos, utilizando os telescópios do ESO, para efeitos de educação e divulgação científica. O programa utiliza tempo de telescópio que não pode ser usado em observações científicas. Todos os dados obtidos podem ter igualmente interesse científico e são por isso postos à disposição dos astrónomos através do arquivo científico do ESO.

ESO – European Southern Observatory
24 de Outubro de 2018
eso1834pt — Foto de Imprensa

[vasaioqrcode]

 

1200: DUAS ESTRELAS TÃO PRÓXIMAS QUE QUASE SE TOCAM ENCONTRADAS DENTRO DE UMA NEBULOSA PLANETÁRIA

Imagem obtida pelo Telescópio Espacial Hubble da nebulosa planetária M3-1, a estrela central do que é na realidade um sistema binário com um dos períodos orbitais mais pequenos conhecidos.
Crédito: David Jones/Daniel López – IAC

Uma equipa internacional de astrónomos, liderada pelo investigador David Jones do Instituto de Astrofísica das Canárias e da Universidade de La Laguna, descobriu um sistema binário com um período orbital de pouco mais de três horas. A descoberta, que envolveu vários anos de campanhas de observação, não é apenas surpreendente devido ao período orbital extremamente pequeno, mas também porque, devido à proximidade de uma estrela com a outra, o sistema poderá resultar numa explosão de nova antes que a nebulosa de curta duração se dissipe. Os resultados do estudo foram publicados na prestigiada revista científica Monthly Notices of the Royal Astronomical Society.

As nebulosas planetárias são as conchas brilhantes de gás e poeira expelidas por estrelas parecidas com o Sol no final das suas vidas. “Em muitos casos, vemos que libertação é impulsionada pela interacção entre a estrela progenitora e uma companheira próxima, e isso leva à vasta gama de formas e estruturas elaboradas que vemos nas nebulosas,” explica Jones. O estudo focou-se na nebulosa planetária M3-1, uma firme candidata a ter sido o produto de um sistema binário devido aos seus espectaculares jactos, que são tipicamente formados pela interacção de duas estrelas. De acordo com Brent Miszalski, investigador do telescópio SALT na África do Sul e co-autor do trabalho, “sabíamos que tinha que conter um binário, por isso decidimos estudar o sistema para tentar entender a relação entre as estrelas e a nebulosa que formaram.”

As observações rapidamente confirmaram as suspeitas dos investigadores. “Quando começámos a observar, ficou imediatamente claro que era, de facto, um binário. Além disso, o brilho do sistema mudava muito depressa e isso podia significar um período orbital bastante curto,” realça Henri Boffin, investigador do ESO na Alemanha. De facto, o estudo revelou que a separação entre as estrelas é de aproximadamente 160.000 quilómetros, ou menos de metade da distância entre a Terra e a Lua.

Depois de várias campanhas de observação no Chile com o VLT (Very Large Telescope) do ESO e com o NTT (New Technology Telescope), os cientistas obtiveram dados suficientes para calcular as propriedades do sistema binário, como a massa, temperatura e tamanho de ambas as estrelas. “Para nossa surpresa, descobrimos que as duas estrelas eram muito grandes e que como estão tão próximas uma da outra, é muito provável que comecem a interagir novamente daqui a apenas alguns milhares de anos, talvez resultando numa nova,” acrescenta Paulina Sowicka, estudante de doutoramento no Centro Astronómico Nicolau Copérnico, Polónia.

O resultado contradiz as teorias actuais da evolução estelar binária que preveem que, ao formar a nebulosa planetária, as duas estrelas devem demorar um bom tempo antes de começar a interagem novamente. Quando o fizessem, a nebulosa deveria já ter-se dissipado e não ser mais visível. No entanto, uma explosão de nova em 2007, conhecida como Nova Vul 2007, foi encontrada dentro de outra nebulosa planetária, colocando os modelos em questão. “No caso de M3-1, encontrámos um candidato que talvez possa passar por uma evolução similar. Tendo em conta que as estrelas estão quase a tocar-se, não devem demorar muito para interagir novamente e, talvez, produzir outra nova dentro de uma nebulosa planetária,” conclui Jones.

Astronomia On-line
26 de Outubro de 2018

[view-posts]

[vasaioqrcode]

 

1165: DESCOBERTO O MAIOR PROTO-ENXAME DE GALÁXIAS

Com o auxílio do instrumento VIMOS, montado no VLT (Very Large Telescope) do ESO, uma equipa internacional de astrónomos descobriu uma estrutura colossal no Universo primordial. O proto-super-enxame de galáxias — ao qual se chamou Hyperion — foi descoberto por meio de novas medições, às quais se juntaram análises complexas de dados de arquivo. Trata-se da maior e mais massiva estrutura alguma vez encontrada num tempo tão remoto e a uma distância tão grande — cerca de 2 mil milhões de anos após o Big Bang.
Crédito: ESO/L. Calçada & Olga Cucciati et al.

Com o auxílio do instrumento VIMOS, montado no VLT (Very Large Telescope) do ESO, uma equipa internacional de astrónomos descobriu uma estrutura colossal no Universo primordial. O proto-super-enxame de galáxias — ao qual se chamou Hyperion — foi descoberto por meio de novas medições, às quais se juntaram análises complexas de dados de arquivo. Trata-se da maior e mais massiva estrutura alguma vez encontrada num tempo tão remoto e a uma distância tão grande — cerca de 2 mil milhões de anos após o Big Bang.

Uma equipa de astrónomos, liderada por Olga Cucciati do Istituto Nazionale di Astrofísica (INAF), Bologna, em Itália, utilizou o instrumento VIMOS montado no VLT do ESO para identificar um gigantesco proto-super-enxame de galáxias a formar-se no Universo primordial — apenas 2,3 mil milhões de anos após o Big Bang. Esta estrutura, à qual os astrónomos deram o nome de Hyperion, trata-se da maior e mais massiva estrutura encontrada tão cedo na formação do Universo (o nome Hyperion foi escolhido com base num titã da mitologia grega, devido ao enorme tamanho e massa do proto-super-enxame. A inspiração para esta nomenclatura mitológica vem de um proto-enxame anteriormente descoberto no interior de Hyperion, ao qual se chamou Colosso. Às regiões individuais de alta densidade no Hyperion foram dados nomes mitológicos tais como Teia, Eos, Selene e Hélios). Calcula-se que a enorme massa do proto-super-enxame seja mais de um milhar de biliões de vezes a do Sol. Esta massa colossal é semelhante à das maiores estruturas observadas no Universo actual, no entanto a descoberta de um tal objecto tão massivo no Universo primordial foi surpreendente.

“Trata-se da primeira vez que uma estrutura tão grande foi identificada a um desvio para o vermelho tão elevado, correspondente a um pouco mais de 2 mil milhões de anos após o Big Bang,” explicou Olga Cucciati, primeira autora do artigo científico que descreve estes resultados. “Normalmente este tipo de estruturas são conhecidas, mas a desvios para o vermelho mais baixos, o que corresponde a uma altura em que o Universo teve muito mais tempo para se desenvolver e construir algo tão grande. Foi uma surpresa encontrar uma estrutura tão evoluída quando o Universo era ainda relativamente jovem!”

Situado no campo COSMOS na constelação do Sextante, Hyperion foi identificado ao analisar uma enorme quantidade de dados obtidos durante o Rastreio Ultra-profundo do VIMOS, liderado por Olivier Le Fèvre (Aix-Marseille Université, CNRS, CNES). Este rastreio fornece-nos um mapa tridimensional sem precedentes da distribuição de mais de 10.000 galáxias no Universo longínquo.

A equipa descobriu que Hyperion possui uma estrutura muito complexa, que contém pelo menos sete regiões de alta densidade ligadas por filamentos de galáxias e que o seu tamanho é comparável ao de super-enxames próximos, apesar da estrutura ser muito diferente.

“Os super-enxames mais próximos da Terra tendem a apresentar uma distribuição de massas muito mais concentrada, com estruturas bem definidas,” explica Brian Lemaux, astrónomo na Universidade da Califórnia, Davis, e LAM, e membro da equipa responsável por esta descoberta. “Mas em Hyperion, a massa encontra-se distribuída de forma muito mais uniforme numa série de nodos ligados, povoados por associações pouco agregadas de galáxias.”

Esta diferença deve-se muito provavelmente ao facto dos super-enxames próximos terem tido milhares de milhões de anos para juntar a matéria em regiões mais densas por efeito da gravidade — um processo que actua há muito menos tempo no jovem Hyperion.

Dado o enorme tamanho que apresenta já tão cedo na história do Universo, espera-se que Hyperion se desenvolva em algo semelhante às imensas estruturas do Universo local, tais como os super-enxames que compõem a Grande Muralha Sloan ou o Super-enxame de Virgem, que contém a nossa própria Galáxia, a Via Láctea. “Compreender Hyperion e ver como se compara a estruturas semelhantes recentes pode dar-nos pistas sobre como é que o Universo se desenvolveu no passado e como evoluirá no futuro, dando-nos ainda a oportunidade de desafiar alguns modelos de formação de super-enxames,” conclui Cucciati. “A descoberta deste titã cósmico ajuda-nos a descobrir a história destas estruturas de larga escala.”

Astronomia On-line
19 de Outubro de 2018

[view-posts]

[vasaioqrcode]

1093: UM UNIVERSO RESPLANDECENTE

Observações profundas levadas a cabo pelo espectrógrafo MUSE montado no VLT (Very Large Telescope) do ESO revelaram enormes reservatórios cósmicos de hidrogénio atómico em torno de galáxias distantes. A extrema sensibilidade do MUSE permitiu a observação directa de nuvens ténues de hidrogénio brilhantes que emitem radiação de Lyman-alfa no Universo primordial – mostrando assim que quase todo o céu nocturno brilha de forma invisível.
Crédito: ESA/Hubble & NASA, ESO/ Lutz Wisotzki et al.

Observações profundas levadas a cabo pelo espectrógrafo MUSE montado no VLT (Very Large Telescope) do ESO revelaram enormes reservatórios cósmicos de hidrogénio atómico em torno de galáxias distantes. A extrema sensibilidade do MUSE permitiu a observação directa de nuvens ténues de hidrogénio brilhantes que emitem radiação de Lyman-alfa no Universo primordial – mostrando assim que quase todo o céu nocturno brilha de forma invisível.

Com o auxílio do instrumento MUSE montado no VLT (Very Large Telescope) do ESO, uma equipa internacional de astrónomos descobriu uma quantidade inesperada de emissão de Lyman-alfa na região do Campo Ultra-Profundo Hubble (Hubble Ultra Deep Field – HUDF). A emissão descoberta cobre quase todo o campo, o que leva a equipa a extrapolar que quase todo o céu estará a brilhar de forma invisível devido a radiação de Lyman-alfa emitida no Universo primordial.

Os astrónomos há muito que se habituaram a que o céu seja completamente diferente consoante os diferentes comprimentos de onda em que é observado, no entanto a extensão da emissão de Lyman-alfa observada é ainda assim surpreendente. “Descobrir que todo o céu brilha em radiação de Lyman-alfa emitida por nuvens de hidrogénio distantes foi realmente uma surpresa extraordinária,” diz Kasper Borello Schmidt, um membro da equipa de astrónomos responsável pela descoberta.

“Trata-se de uma descoberta extraordinária!” acrescenta Themiya Nanayakkara, também membro da equipa. “Da próxima vez que olhar para o céu nocturno sem Lua e vir as estrelas, imagine o brilho invisível do hidrogénio, os primeiros blocos constituintes do Universo, a iluminar todo o céu nocturno.”

A região do HUDF que a equipa observou é uma área do céu bastante normal situada na constelação da Fornalha, que se tornou famosa quando foi mapeada pelo Telescópio Espacial Hubble da NASA/ESA em 2004. O telescópio utilizou mais de 270 horas de precioso tempo de observação para explorar esta região do espaço, de modo mais profundo do que o que tinha sido feito até à data.

As observações do HUDF revelaram milhares de galáxias espalhadas por toda uma zona escura do céu, dando-nos assim uma visão bastante real da escala do Universo. Agora, as capacidades extraordinárias do MUSE permitiram observações ainda mais profundas. A detecção de emissão de Lyman-alfa no HUDF é importante pois trata-se da primeira vez que os astrónomos conseguiram ver esta radiação ténue emitida pelos envelopes gasosos das galáxias mais primordiais. Esta imagem composta mostra a radiação de Lyman-alfa a azul, sobreposta à icónica imagem do HUDF.

O instrumento MUSE, usado para fazer estas observações, é um espectrógrafo de campo integral de vanguarda instalado no Telescópio Principal n.º 4 do VLT, no Observatório do Paranal do ESO. Quando observa o céu, o MUSE vê a distribuição dos comprimentos de onda da radiação em cada pixel do seu detector. Observar o espectro total da radiação emitida por objectos astronómicos fornece-nos pistas importantes sobre os processos astrofísicos que ocorrem no Universo.

“Com estas observações MUSE, ficamos com uma ideia completamente nova dos ‘casulos’ de gás difuso que rodeiam as galáxias do Universo primordial,” comenta Philipp Richter, outro membro da equipa.

A equipa internacional de astrónomos que fez estas observações tentou identificar os processos que fazem com que estas nuvens de hidrogénio distantes emitam em Lyman-alfa, no entanto a causa precisa permanece um mistério. Apesar disso, como se pensa que este ténue brilho seja omnipresente no céu nocturno, espera-se que investigação futura possa descobrir a sua origem.

“Esperamos ter no futuro medições ainda mais sensíveis,” conclui Lutz Wisotzki, líder da equipa. “Queremos descobrir como é que estes vastos reservatórios cósmicos de hidrogénio atómico se encontram distribuídos no espaço.”

Astronomia On-line
2 de Outubro de 2018

[vasaioqrcode]

 

1003: ESO — Uma jóia galáctica

Com o auxílio do instrumento FORS2, montado no Very Large Telescope do ESO, observou-se a galáxia em espiral NGC 3981 em toda a sua glória. Esta imagem foi obtida no âmbito do Programa Jóias Cósmicas do ESO, o qual tira partido das ocasiões raras em que as condições de observação não são adequadas para a obtenção de dados científicos.

Nessas alturas, em vez dos telescópios ficarem parados, o Programa Jóias Cósmicas do ESO utiliza-os para capturar imagens visualmente deslumbrantes dos céus austrais.

A nota de imprensa, imagens e vídeos estão disponíveis em:
https://www.eso.org/public/portugal/news/eso1830/

Atenciosamente,
Departamento de Educação e Divulgação do ESO
12 de Setembro de 2018

[vasaioqrcode]

See also Blogs Eclypse and Lab Fotográfico

863: ELEGÂNCIA ELÍPTICA

Esta imagem profunda da região do céu em torno da galáxia elíptica NGC 5018 mostra-nos uma visão privilegiada das ténues correntes de gás e estrelas deste objeto. Estas estruturas delicadas são marcas de interacções galácticas e fornecem-nos pistas vitais sobre a estrutura e dinâmica das galáxias do tipo precoce.
Crédito: ESO/Spavone et al.

Um brilhante conjunto de galáxias povoa esta imagem obtida pelo Telescópio de Rastreio do VLT do ESO, um telescópio de vanguarda de 2,6 metros concebido para mapear o céu no visível. As características da multitude de galáxias que enche esta imagem permitem aos astrónomos revelar os detalhes mais delicados da estrutura galáctica.

Apesar do VLT (Very Large Telescope) do ESO poder observar objectos astronómicos muito ténues com grande detalhe, quando os astrónomos querem compreender o processo de formação da grande variedade de galáxias que existem, recorrem a um tipo de telescópio diferente com um campo de visão muito maior. O Telescópio de Rastreio do VLT (VST) é o telescópio perfeito, uma vez que foi concebido para explorar a enorme vastidão dos céus nocturnos chilenos, fornecendo aos astrónomos rastreios astronómicos detalhados do hemisfério sul.

Com o auxílio das grandes capacidades do VST, uma equipa internacional de astrónomos levou a cabo o rastreio VEGAS (VST Early-type GAlaxy Survey, Rastreio de Galáxias Precoces com o VST), com o objectivo de investigar uma colecção de galáxias elípticas no hemisfério sul. Utilizando a OmegaCAM, o detector muito sensível situado no coração do VST, a equipa liderada por Marilena Spavone do Observatório Astronómico de Capodimonte em Nápoles, Itália, capturou imagens de uma grande variedade deste tipo de galáxias em diferentes meios.

Uma destas galáxias é NGC 5018, a galáxia de um branco leitoso que se encontra próximo do centro da imagem. Este objeto situa-se na constelação de Virgem e à primeira vista pode não parecer mais do que uma mancha difusa. No entanto, após uma inspecção mais cuidada, podemos ver uma corrente ténue de estrelas e gás — uma cauda de maré — a estender-se em direcção ao exterior desta galáxia elíptica. Estruturas galácticas delicadas, tais como caudas de maré e correntes estelares, são marcas de interacções galácticas, fornecendo-nos pistas vitais sobre a estrutura e dinâmica das galáxias.

Para além de muitas galáxias elípticas, e de algumas espirais, podemos ver também, em primeiro plano nesta imagem notável de 400 milhões de pixeis, uma variedade de estrelas coloridas brilhantes que pertencem à nossa Via Láctea. Estas intrusas estelares, tais como HD 114746 de cor azul viva que se vê próximo do centro da imagem, não foram observadas intencionalmente, encontrando-se simplesmente entre a Terra e as galáxias distantes alvos deste estudo. Menos proeminentes, mas igualmente fascinantes, são os rastros ténues deixados pelos asteróides do nosso Sistema Solar. Mesmo por baixo de NGC 5018 podemos ver, estendendo-se ao longo da imagem, um traço fraco deixado pelo asteróide 2001 TJ21 (110423) e capturado ao longo de observações sucessivas. Mais para a direita, outro asteróide – 2000 WU69 (98603) — deixou também o seu rastro na imagem.

Apesar do objectivo dos astrónomos ter sido investigar as estruturas delicadas de galáxias distantes situadas a milhões de anos-luz de distância da Terra, no processo acabaram também por capturar imagens de estrelas próximas situadas a apenas centenas de anos-luz de distância e até rastros ténues de asteróides que se encontram a uns meros minutos-luz no nosso próprio Sistema Solar. Mesmo quando estudamos as regiões mais afastadas do cosmos, a sensibilidade dos telescópios do ESO e os límpidos céus nocturnos chilenos juntam-se para nos oferecer observações fascinantes de objectos muito mais próximos de casa.

Astronomia On-line
10 de Agosto de 2018

[vasaioqrcode]

836: A SUPER-NOVA DE KEPLER NÃO DEIXOU SOBREVIVENTES

O remanescente da Super-nova de Kepler.
Crédito: raios-X – NASA/CXC/NCSU/M. Burkey et al; ótico – DSS

Um novo estudo no qual participa o IAC (Instituto de Astrofísica das Canárias) argumenta que a explosão que Johannes Kepler observou em 1604 foi provocada pela fusão de dois resíduos estelares.

A super-nova de Kepler, da qual actualmente só permanece o remanescente de super-nova, teve lugar na direcção da constelação de Ofiúco, no plano da Via Láctea, a 16.300 anos-luz do Sol. Uma equipa internacional, liderada pela investigadora Pilar Ruiz Lapuente (Instituto de Ciências do Cosmos da Universidade de Barcelona), na qual participa o investigador do IAC Jonay González Hernández, tentou encontrar a possível estrela sobrevivente do sistema binário no qual a explosão teve lugar.

Nestes sistemas, quando pelo menos uma das estrelas (a que tem a massa mais elevada) chega ao fim da sua vida e se torna numa anã branca, a outra começa a transferir matéria até um certo limite de massa (equivalente a 1,44 massas solares, o chamado “limite de Chandrasekhar”). Este processo leva à ignição central do carbono na anã branca, produzindo uma explosão que pode multiplicar 100.000 vezes o seu brilho original. Este fenómeno, breve e violento, é conhecido como super-nova. Às vezes, como na super-nova de Kepler (SN 1604), observada e identificada pelo astrónomo alemão Johannes Kepler em 1604, podem ser observadas a olho nu da Terra.

A super-nova de Kepler surgiu da explosão de uma anã branca num sistema binário. Portanto, nesta investigação científica publicada na revista The Astrophysical Journal, os astrónomos procuravam a possível companheira sobrevivente da anã branca, que supostamente transferiu massa até ao nível da explosão da anã branca. O impacto desta explosão teria aumentado a luminosidade e velocidade da companheira desaparecida. Poderia até ter modificado a sua composição química. De modo que a equipa procurou estrelas com alguma anomalia que lhes permitisse identificar uma delas como a companheira da anã branca que explodiu há 414 anos.

“Estávamos à procura – explica Pilar Ruiz Lapuente, investigadora do Instituto de Física Fundamental do Conselho Superior de Investigações Científicas (Madrid) e do Instituto de Ciências do Cosmos da Universidade de Barcelona – de uma estrela peculiar como possível companheira da progenitora da super-nova de Kepler e, para isso, caracterizámos todas as estrelas em redor do centro do remanescente de SN 1604. Mas não encontrámos nenhuma com as características esperadas, de modo que tudo indica que a explosão foi provocada pelo mecanismo de fusão da anã branca com outra ou com o núcleo da já evoluída companheira.”

Para realizar esta investigação, foram usadas imagens obtidas com o Telescópio Espacial Hubble. “O objectivo era determinar os movimentos próprios de um grupo de 32 estrelas em redor do centro do remanescente de super-nova que ainda existe hoje,” comenta Luigi Bedin, investigador do Observatório Astronómico de Pádua (Instituto Nacional para Astrofísica, Itália) e co-autor do artigo. Também usaram dados obtidos com o instrumento FLAMES, instalado no VLT (Very Large Telescope) de 8,2 metros. Os cientistas caracterizaram as estrelas, a fim de determinar a sua distância e a sua velocidade radial em relação ao Sol. “As estrelas do campo da super-nova de Kepler são estrelas muito fracas, apenas acessíveis a partir do hemisfério sul com um telescópio de grande abertura como os telescópios do VLT,” comenta John Pritchard, investigador do ESO e outro dos co-autores deste estudo.

“Existe um mecanismo alternativo para produzir a explosão. Consiste na fusão de duas anãs brancas, ou a anã branca com o núcleo de carbono e oxigénio da estrela companheira, num estágio final da sua evolução, ambos os casos dando origem a uma super-nova,” explica Jonay González Hernández, investigador do IAC e co-autor da publicação. “No campo da super-nova de Kepler não vemos qualquer estrela que mostre anomalias. No entanto, – acrescenta – encontrámos evidências de que a explosão foi provocada pela fusão de duas anãs brancas ou uma anã branca com o núcleo da estrela companheira, possivelmente excedendo o “limite de Chandrasekhar”.

A super-nova de Kepler é uma das cinco super-novas “históricas” do tipo termonuclear. As outras quatro são a super-nova de Tycho Brahe, documentada pelo astrónomo dinamarquês em 1572 e que também foi antes investigada por esta equipa; SN 1006, também estudada pela equipa em 2012, SN 185 (que poderá ser a origem do remanescente RCW86); e a recentemente descoberta SNIa G1.9+03, que ocorreu na nossa Galáxia por volta de 1900 e era apenas visível no hemisfério sul.

Astronomia On-line
3 de Agosto de 2018

[vasaioqrcode]

[SlideDeck2 id=1476]

[powr-hit-counter id=3eb9ab0d_1533296095102]

779: Imagens extremamente nítidas obtidas com a nova óptica adaptativa do VLT

eso1824pt — Foto de Imprensa

O Very Large Telescope do ESO (VLT) obteve a primeira luz com um novo modo de óptica adaptativa chamado Tomografia Laser e capturou imagens de teste extremamente nítidas do planeta Neptuno, de enxames estelares e doutros objectos celestes. O instrumento pioneiro MUSE em Modo de Campo Estreito, a trabalhar com o módulo de óptica adaptativa GALACSI, pode agora usar esta nova tecnologia para corrigir a turbulência da atmosfera a diferentes altitudes. Podemos agora obter imagens a partir do solo nos comprimentos de onda do visível mais nítidas do que as obtidas pelo Telescópio Espacial Hubble da NASA/ESA. A combinação de uma excelente nitidez de imagem com as capacidades espectroscópicas do MUSE permite aos astrónomos estudar as propriedades dos objectos astronómicos com muito mais detalhe do que o que era possível até agora.

O instrumento MUSE (Multi Unit Spectroscopic Explorer) montado no Very Large Telescope do ESO (VLT) trabalha com uma unidade de óptica adaptativa chamada GALACSI. Esta unidade faz uso da Infraestrutura de 4 Estrelas Guia Laser, um subsistema da Infraestrutura de Óptica Adaptativa. Esta infraestrutura fornece óptica adaptativa aos instrumentos do Telescópio Principal nº4 do VLT. O MUSE foi o primeiro instrumento a tirar partido desta instalação e tem agora dois modos de óptica adaptativa — o Modo de Campo Largo e o Modo de Campo Estreito [1].

O Modo de Campo Largo do MUSE juntamente com o GALACSI em modo de solo corrige os efeitos da turbulência atmosférica até 1 km por cima do telescópio, para um campo de visão relativamente alargado. O novo Modo de Campo Estreito que usa Tomografia Laser, no entanto, corrige a turbulência atmosférica que ocorre por cima do telescópio a todas as altitudes, dando assim origem a imagens muito mais nítidas, embora numa região do céu mais pequena [2].

Com esta nova capacidade, o telescópio de 8 metros atinge o limite teórico de nitidez de imagem, não estando assim limitado à distorção atmosférica, algo muito difícil de conseguir no óptico, mas que fornece imagens comparáveis, em termos de nitidez, às que são obtidas com o Telescópio Espacial Hubble da NASA/ESA. Esta nova tecnologia permitirá aos astrónomos estudar com um detalhe sem precedentes objectos celestes tais como buracos negros super-massivos no centro de galáxias distantes, jactos emitidos por estrelas jovens, enxames globulares, super-novas, planetas e seus satélites no Sistema Solar, entre outros.

A óptica adaptativa é uma técnica que compensa os efeitos de distorção da atmosfera terrestre, o chamado seeing astronómico, fenómeno que representa um enorme problema para todos os telescópios colocados no solo. A mesma turbulência atmosférica que faz cintilar as estrelas quando observadas a olho nu, dá origem a imagens pouco nítidas do Universo, obtidas por telescópios grandes. A luz das estrelas e galáxias fica distorcida ao passar através da camada protectora da nossa atmosfera e por isso os astrónomos têm que utilizar tecnologias inovadoras para melhorar de forma artificial a qualidade destas imagens.

Para isso, quatro raios laser brilhantes foram fixados ao Telescópio Principal nº4 do VLT, projectando no céu uma intensa luz alaranjada de 30 cm de diâmetro, que estimula os átomos de sódio que se encontram na atmosfera superior. São deste modo criadas Estrelas Guia Laser artificiais, cuja luz é usada pelos sistemas de óptica adaptativa para determinar a turbulência existente na atmosfera e calcular as correcções necessárias, mil vezes por segundo, que são fornecidas ao espelho secundário fino e deformável do telescópio, o qual altera constantemente a sua forma, corrigindo assim estes efeitos de distorção da luz.

O MUSE não é o único instrumento que tira partido da Infraestrutura de Óptica Adaptativa. Outro sistema de óptica adaptativa, o GRAAL, está já em operação com a câmara infravermelha HAWK-I. Seguir-se-á, dentro de alguns anos, um novo instrumento, o ERIS. Em conjunto, estes grandes desenvolvimentos em óptica adaptativa estão a melhorar a já de si muito poderosa frota de telescópios do ESO, trazendo até nós um Universo cada vez mais nítido.

Este novo modo constitui igualmente um importante passo em frente para o Extremely Large Telescope do ESO (ELT), o qual necessitará de Tomografia Laser para atingir os seus objectivos científicos. Estes resultados do Telescópio Principal nº4 do VLT com a Infraestrutura de Óptica Adaptativa ajudarão os engenheiros e cientistas do ELT a implementar tecnologias de óptica adaptativa semelhantes no telescópio de 39 metros.

Notas

[1] O MUSE e o GALACSI em Modo de Campo Largo fornecem uma correcção para um campo de largura de 1 minuto de arco, com 0,2” por 0,2” pixels de tamanho. Este novo Modo de Campo Estreito do GALACSI cobre um campo muito mais pequeno, de 7,5 segundos de arco, mas com pixels muito menores, 0,025” por 0,025”, o que permite explorar completamente a resolução máxima.

[2] A turbulência atmosférica varia com a altitude; alguma camadas causam mais degradação aos raios luminosos das estrelas do que outras. A complexa técnica de óptica adaptativa por Tomografia Laser pretende corrigir principalmente a turbulência nestas camadas atmosféricas. É seleccionado um conjunto de camadas pré-definidas para o Modo de Campo Estreito do MUSE/GALACSI, a 0 km (camada no solo, que é sempre um contribuinte importante) a 3 km, a 9 km e a 14 km de altitude. O algoritmo de correcção é seguidamente optimizado para estas camadas, permitindo aos astrónomos atingir uma qualidade de imagem quase tão boa como a obtida com uma estrela guia natural e conseguindo assim atingir o limite teórico do telescópio.

Informações adicionais

O ESO é a mais importante organização europeia intergovernamental para a investigação em astronomia e é de longe o observatório astronómico mais produtivo do mundo. O ESO tem 15 Estados Membros: Alemanha, Áustria, Bélgica, Dinamarca, Espanha, Finlândia, França, Holanda, Itália, Polónia, Portugal, Reino Unido, República Checa, Suécia e Suíça, para além do país de acolhimento, o Chile, e a Austrália, um parceiro estratégico. O ESO destaca-se por levar a cabo um programa de trabalhos ambicioso, focado na concepção, construção e operação de observatórios astronómicos terrestres de ponta, que possibilitam aos astrónomos importantes descobertas científicas. O ESO também tem um papel importante na promoção e organização de cooperação na investigação astronómica. O ESO mantém em funcionamento três observatórios de ponta no Chile: La Silla, Paranal e Chajnantor. No Paranal, o ESO opera  o Very Large Telescope e o Interferómetro do Very Large Telescope, o observatório astronómico óptico mais avançado do mundo, para além de dois telescópios de rastreio: o VISTA, que trabalha no infravermelho, e o VLT Survey Telescope, concebido exclusivamente para mapear os céus no visível. O ESO é também um parceiro principal em duas infraestruturas situadas no Chajnantor, o APEX e o ALMA, o maior projecto astronómico que existe actualmente. E no Cerro Armazones, próximo do Paranal, o ESO está a construir o Extremely Large Telescope (ELT) de 39 metros, que será “o maior olho do mundo virado para o céu”.

Links

Contactos

Margarida Serote
Instituto de Astrofísica e Ciências do Espaço
Portugal
Telm.: 964951692
Email: eson-portugal@eso.org

Joël Vernet
ESO MUSE and GALACSI Project Scientist
Garching bei München, Germany
Tel.: +49 89 3200 6579
Email: jvernet@eso.org

Roland Bacon
MUSE Principal Investigator / Lyon Centre for Astrophysics Research (CRAL)
France
Telm.: +33 6 08 09 14 27
Email: rmb@obs.univ-lyon1.fr

Calum Turner
ESO Public Information Officer
Garching bei München, Germany
Tel.: +49 89 3200 6655
Telm.: +49 151 1537 3591
Email: pio@eso.org

Connect with ESO on social media

Este texto é a tradução da Nota de Imprensa do ESO eso1824, cortesia do ESON, uma rede de pessoas nos Países Membros do ESO, que servem como pontos de contacto local com os meios de comunicação social, em ligação com os desenvolvimentos do ESO. A representante do nodo português é Margarida Serote.

ESO -. European Southern Observatory
18 de Julho de 2018

[vasaioqrcode]

[SlideDeck2 id=1476]

[powr-hit-counter id=a28f7e38_1531995768948]

See also Blog

772: Uma paisagem celeste colorida

Novas observações obtidas com o Very Large Telescope do ESO mostram o enxame estelar RCW 38 em todo o seu esplendor. Esta imagem foi obtida durante os testes da câmara HAWK-I a trabalhar com o sistema de óptica adaptativa GRAAL e mostra o RCW 38 e as suas nuvens circundantes de gás resplandecente com incrível detalhe, assim como os tentáculos negros de poeira a passar através do núcleo brilhante deste jovem conjunto de estrelas.

Esta imagem mostra o enxame estelar RCW 38, obtido pela câmara infravermelha HAWK-I montada no Very Large Telescope do ESO (VLT), no Chile. Ao observar no infravermelho, o HAWK-I consegue examinar enxames estelares envoltos em poeira, tais como o RCW 38, dando-nos uma vista sem paralelo das estrelas que se estão a formar no seu interior. Este enxame contém centenas de estrelas massivas, quentes e jovens, e situa-se a cerca de 5500 anos-luz de distância na direcção da constelação da Vela.

A região central do RCW 38 aparece-nos na imagem com um tom azul brilhante, numa área povoada por uma enorme quantidade de estrelas muito jovens e protoestrelas ainda no processo de formação. A radiação intensa emitida por estas estrelas recém nascidas faz com que o gás circundante brilhe intensamente, em contraste com as correntes de poeira cósmica mais fria que serpenteiam através da região, brilhando ligeiramente em tons escuros de vermelho e laranja. O contraste cria esta bela cena — um quadro de arte celeste.

Imagens anteriores desta região obtidas nos comprimentos de onda do visível mostram-se bastante diferentes — as imagens no visível parecem mais vazias de estrelas devido ao facto do gás e poeira bloquearem a nossa visão do enxame. Observações no infravermelho, por outro lado, permitem-nos ver para além da poeira que obscurece as imagens no visível, mostrando-nos o coração deste enxame estelar.

O HAWK-I está instalado no Telescópio Principal 4 (Yepun) do VLT e opera no infravermelho próximo. Os seus objectivos científicos são muitos, incluindo a obtenção de imagens de galáxias e grandes nebulosas próximas, assim como de estrelas individuais e exoplanetas. O GRAAL é um módulo de óptica adaptativa que ajuda o HAWK-I a produzir estas imagens extraordinárias. O GRAAL utiliza quatro raios laser que são projectados no céu, criando estrelas artificiais de referência que são utilizadas para corrigir os efeitos da turbulência atmosférica, o que torna as imagens muito mais nítidas.

Esta imagem foi capturada no âmbito de uma série de observações de teste — um processo conhecido por verificação científica — do HAWK-I e do GRAAL. Estes testes fazem parte integrante do comissionamento de um novo instrumento no VLT e incluem um conjunto de observações científicas típicas que verificam e demonstram as capacidades do novo instrumento.

Informações adicionais

A Investigadora Principal da proposta de observação que levou à captura desta imagem extraordinária foi Koraljka Muzic (CENTRA, Universidade de Lisboa, Portugal). Os seus colaboradores foram Joana Ascenso (CENTRA, Universidade do Porto, Portugal), Amelia Bayo (Universidade de Valparaiso, Chile), Arjan Bik (Universidade de Estocolmo, Suécia), Hervé Bouy (Laboratoire d’Astrophysique de Bordeaux, França), Lucas Cieza (Universidade Diego Portales, Chile), Vincent Geers (UKATC, RU), Ray Jayawardhana (York University, Canadá), Karla Peña Ramírez (Universidade de Antofagasta, Chile), Rainer Schoedel (Instituto de Astrofísica de Andalucía, Espanha) e Aleks Scholz (University of St Andrews, RU).

A Verificação Científica do HAWK-I a trabalhar com o módulo de óptica adaptativa GRAAL foi descrita num artigo intitulado HAWK-I GRAAL Science Verification, que foi publicado na revista trimestral do ESO The Messenger.

A equipa de verificação científica era composta por Bruno Leibundgut, Pascale Hibon, Harald Kuntschner, Cyrielle Opitom, Jerome Paufique, Monika Petr-Gotzens, Ralf Siebenmorgen, Elena Valenti e Anita Zanella, investigadores do ESO.

O ESO é a mais importante organização europeia intergovernamental para a investigação em astronomia e é de longe o observatório astronómico mais produtivo do mundo. O ESO tem 15 Estados Membros: Alemanha, Áustria, Bélgica, Dinamarca, Espanha, Finlândia, França, Holanda, Itália, Polónia, Portugal, Reino Unido, República Checa, Suécia e Suíça, para além do país de acolhimento, o Chile, e a Austrália, um parceiro estratégico. O ESO destaca-se por levar a cabo um programa de trabalhos ambicioso, focado na concepção, construção e operação de observatórios astronómicos terrestres de ponta, que possibilitam aos astrónomos importantes descobertas científicas. O ESO também tem um papel importante na promoção e organização de cooperação na investigação astronómica. O ESO mantém em funcionamento três observatórios de ponta no Chile: La Silla, Paranal e Chajnantor. No Paranal, o ESO opera  o Very Large Telescope e o Interferómetro do Very Large Telescope, o observatório astronómico óptico mais avançado do mundo, para além de dois telescópios de rastreio: o VISTA, que trabalha no infravermelho, e o VLT Survey Telescope, concebido exclusivamente para mapear os céus no visível. O ESO é também um parceiro principal em duas infraestruturas situadas no Chajnantor, o APEX e o ALMA, o maior projecto astronómico que existe actualmente. E no Cerro Armazones, próximo do Paranal, o ESO está a construir o Extremely Large Telescope (ELT) de 39 metros, que será “o maior olho do mundo virado para o céu”.

Links

Contactos

Margarida Serote
Instituto de Astrofísica e Ciências do Espaço
Portugal
Telm.: 964951692
Email: eson-portugal@eso.org

Koraljka Muzic
CENTRA, Faculdade de Ciências, Universidade de Lisboa
Campo Grande, C8, Lisboa, Portugal
Tel.: 21 750 0000, ext. 28522
Email: kmuzic@sim.ul.pt

Joana Ascenso
CENTRA, Instituto Superior Técnico, Univ. de Lisboa e
Dep. de Engenharia Física, Faculdade de Engenharia, Univ. do Porto, Portugal
Tel.: 220413124
Email: jascenso@fe.up.pt

Calum Turner
ESO Assistant Public Information Officer
Garching bei München, Germany
Tel.: +49 89 3200 6670
Email: pio@eso.org

Connect with ESO on social media

Este texto é a tradução da Nota de Imprensa do ESO eso1823, cortesia do ESON, uma rede de pessoas nos Países Membros do ESO, que servem como pontos de contacto local com os meios de comunicação social, em ligação com os desenvolvimentos do ESO. A representante do nodo português é Margarida Serote.

eso1823pt — Foto de Imprensa
11 de Julho de 2018

[vasaioqrcode]

[SlideDeck2 id=1476]

[powr-hit-counter id=b2cf1548_1531830443048]

See also Blog

758: INVESTIGADORES DESCOBREM MATERIAL ORGÂNICO NAS GALÁXIAS ANTENA

Imagem obtida pelo Hubble das Galáxias Antena.
Crédito: ESA/Hubble & NASA

Após a realização de uma análise espectroscópica com o instrumento MUSE, no VLT (Very Large Telescope), no ESO (Chile), uma equipa liderada pela astrofísica Ana Monreal Ibero do IAC (Instituto de Astrofísicas das Canárias) provou a existência de bandas interestelares difusas nas Galáxias Antena, a 70 milhões de anos-luz da Terra. Desta forma, mostrou que há provavelmente material orgânico noutras galáxias para lá da nossa vizinhança galáctica.

O espectro electromagnético de um objecto celeste (galáxia, estrela, etc.) resulta da quebra da luz emitida nas suas cores constituintes. As características desse espectro – por exemplo, as cores dominantes ou ausentes – dizem-nos mais sobre as propriedades do objecto, como a sua velocidade em relação a nós e a sua composição química. “Além disso, e pelo mesmo preço – explica Ana Monreal – esta análise dá-nos informações sobre o material que a luz atravessa no caminho até nós e, em particular, sobre o meio interestelar. As bandas interestelares difusas são bandas escuras que aparecem nos espectros de objectos astronómicos associados com este meio e cuja origem é ainda hoje um mistério. Não podem ser explicadas pela presença de moléculas simples conhecidas e suspeita-se que sejam provocadas por material provavelmente orgânico.

A maioria dos estudos relacionados com as bandas interestelares difusas tem sido confinada a objectos na Via Láctea, uma vez que são características espectrais relativamente fracas. Existem algumas detecções de bandas interestelares difusas fora da nossa Galáxia, principalmente nas Nuvens de Magalhães, que são membros do Grupo Local de Galáxias, mas muito raramente têm sido detectadas bem para lá dos limites do Grupo Local. No entanto, quando olhamos para longe da Via Láctea, é de interesse observar como se comportam em condições interestelares altamente energéticas, como aquelas encontradas numa galáxia “starburst” (com formação estelar explosiva), onde as estrelas se formam a um ritmo muito maior do que na Via Láctea.

Estas observações para lá das galáxias que nos rodeiam podem fornecer pistas adicionais sobre a possível natureza das moléculas que provocam bandas interestelares difusas, mas também podem fornecer ferramentas para os astrónomos caracterizarem o meio interestelar ao qual pertencem.

“No nosso trabalho, explorámos o potencial da utilização de espectrógrafos de campo integral, como o HARMONI (um instrumento desenhado para o futuro telescópio de 39 metros, o E-ELT), em cuja construção o IAC participa,” esclarece Ana Monreal. E acrescenta: “Para isso, usámos o que constitui, hoje, o ‘crème de la crème’ deste tipo de instrumento, o MUSE no VLT, para obter dados do mais próximo sistema de galáxias espirais em fusão: as Galáxias Antena.”

O MUSE obtém um grande número de espectros de uma área relativamente grande do céu a partir de uma única exposição. “Com base na adição do sinal de espectros vizinhos e cuidadosamente modelando e separando a emissão devida às estrelas e ao gás ionizado no sistema, conseguimos detectar o sinal de duas das mais bem conhecidas bandas interestelares difusas e, de facto, as duas primeiras a serem identificadas, ao longo de mais de 200 e 100 linhas de visão independentes, respectivamente,” explica Monreal.

Este estudo também compara as detecções obtidas pelo grupo com outras propriedades e componentes do meio interestelar neste sistema, em particular: a atenuação (directamente relacionada com a quantidade de poeira) e a distribuição do hidrogénio atómico, do gás molecular e de algumas bandas na emissão infravermelha que também parecem estar associadas com compostos orgânicos.

Astronomia On-line
13 de Julho de 2018

[vasaioqrcode]

[SlideDeck2 id=1476]

[powr-hit-counter id=9d3d1ca1_1531473323772]

See also Blog

VLT VÊ ‘OUMUAMUA A ACELERAR

Esta imagem artística mostra o primeiro objecto interestelar descoberto no Sistema Solar, ‘Oumuamua. Observações obtidas com o VLT (Very Large Telescope) do ESO e o Telescópio Espacial Hubble da NASA/ESA, entre outros, mostraram que este objecto se está a deslocar para fora do Sistema Solar mais depressa do que o previsto. Os investigadores pensam que a libertação de material da sua superfície devido ao aquecimento solar é responsável por este comportamento. Esta desgaseificação pode ser vista nesta imagem artística representada sob a forma de uma nuvem subtil que está a ser ejectada do lado do objecto que está virado para o Sol. Uma vez que a desgaseificação é típica dos cometas, a equipa pensa que a anterior classificação de ‘Oumuamua de asteróide interestelar tem que ser alterada. Crédito: ESA/Hubble, NASA, ESO, M. Kornmesser

‘Oumuamua, o primeiro objecto interestelar descoberto no Sistema Solar, está a afastar-se do Sol mais depressa do que o esperado. Este comportamento anómalo foi detectado por uma colaboração internacional astronómica que inclui o VLT (Very Large Telescope) do ESO, no Chile. Os novos resultados sugerem que ‘Oumuamua é muito provavelmente um cometa interestelar e não um asteróide. A descoberta vai ser publicada na revista Nature.

‘Oumuamua — o primeiro objecto interestelar descoberto no seio do nosso Sistema Solar — tem sido sujeito a um intenso escrutínio desde a sua descoberta em Outubro de 2017. Agora, ao combinar dados do VLT do ESO e de outros observatórios, uma equipa internacional de astrónomos descobriu que o objecto se está a deslocar mais depressa do que o previsto. O ganho medido em velocidade é pequeno e ‘Oumuamua ainda está a desacelerar devido à atracção do Sol — mas não tão rapidamente como o previsto pela mecânica celeste.

A equipa liderada por Marco Micheli (ESA) explorou diversos cenários para explicar a velocidade mais elevada que este visitante interestelar peculiar apresenta. Pensa-se que o mais provável é que ‘Oumuamua esteja a perder material da sua superfície devido ao aquecimento solar, algo conhecido por desgaseificação, e que seja este empurrão dado pelo material ejectado que dá origem ao impulso, pequeno mas constante, que está a fazer com que ‘Oumuamua se esteja a afastar do Sistema Solar mais depressa do que o esperado — no dia 1 de Junho de 2018 o objecto deslocava-se a uma velocidade de aproximadamente 114 mil quilómetros por hora.

Tal desgaseificação é um comportamento típico dos cometas, contradizendo por isso a classificação anterior de ‘Oumuamua de asteróide interestelar. “Pensamos que este objecto se trata afinal de um estranho cometa minúsculo,” comenta Marco Micheli. “Através dos dados vemos que o seu ‘empurrão extra’ está a ficar mais fraco à medida que o objecto se afasta do Sol, o que é típico dos cometas.”

Normalmente, quando os cometas são aquecidos pelo Sol, ejectam poeira e gases que formam uma nuvem de material, a chamada coma, à sua volta, para além de uma cauda bastante característica. No entanto, a equipa de investigação não conseguiu detectar nenhuma evidência visual de desgaseificação.

“Não observámos nem poeira, nem coma e nem cauda, o que é invulgar,” explica a co-autora do trabalho Karen Meech, da Universidade do Hawaii, EUA. Meech liderou a equipa, que fez a descoberta inicial, na caracterização de ‘Oumuamua em 2017. “Pensamos que ‘Oumuamua possa estar a libertar grãos de poeira invulgarmente irregulares e grandes.”

A equipa especulou que talvez os pequenos grãos de poeira que se encontram geralmente à superfície da maioria dos cometas tenham sido erodidos durante a viagem de ‘Oumuamua pelo espaço interestelar, restando apenas os grãos maiores. Apesar de uma nuvem composta por estas partículas maiores não ser suficientemente brilhante para poder ser detectada, a sua presença poderia explicar a variação inesperada na velocidade de ‘Oumuamua.

Para além do mistério da desgaseificação hipotética de ‘Oumuamua, temos ainda o mistério da sua origem interestelar. O intuito destas novas observações era determinar com exactidão o seu trajecto, o que teria provavelmente permitido obter o percurso do objecto até ao seu sistema estelar progenitor. Os novos resultados significam, no entanto, que será muito mais difícil obter esta informação.

“A verdadeira natureza deste nómada interestelar enigmático poderá permanecer um mistério,” concluiu o membro da equipa Olivier Hainaut, astrónomo no ESO. “O recentemente descoberto aumento de velocidade de ‘Oumuamua torna mais difícil descobrir qual o caminho que o objecto tomou desde da sua estrela progenitora até nós.”

Astronomia On-line
29 de Junho de 2018

[vasaioqrcode]

[SlideDeck2 id=1476]

[powr-hit-counter id=19f200a6_1530264376246]

 

687: Estrelas massivas podem obrigar-nos a rever toda a história do Universo

ESO/IDA/Danish 1.5 m/R. Gendler, C. C. Thöne, C. Féron, and J.-E. Ovaldsen
A assustadora Nebulosa de Tarântula, ou NGC 2070, uma das galáxias mais próximas de nós

Para entender os padrões que deram forma às galáxias, é necessário estudar estrelas. Ao estudá-las, astrónomos e cientistas conseguem analisar as suas massas, nascimentos e mortes para melhor compreender a história do universo.

O Observatório Europeu do Sul acaba de anunciar que um grupo de astrónomos descobriu que tanto as galáxias do universo primordial como uma galáxia próxima contêm uma proporção de estrelas massivas muito maior do que as encontrada em galáxias até então.

“Encontrámos cerca de 30% mais estrelas com massas maiores que trinta vezes a massa do Sol. Encontramos também 70% mais de estrelas com mais de 60 massas solares”, explicou Fabian Schneider, da Universidade de Oxford, na Inglaterra.

“Os nossos resultados desafiam a ideia anterior que previa um limite de 150 massas solares para a maior massa de nascimento e as conclusões até sugerem que estrelas podem ter massas iniciais de 300 massas solares!”.

As descobertas, realizadas por dois grupos de astrónomos independentes, foram publicadas em dois artigos científicos nas revistas científicas Science em Janeiro e na Nature em Junho, e podem mudar completamente as ideias actuais sobre a forma como as galáxias evoluíram.

Uma das equipas de investigação foi liderada por Schneider, que usou o Very Large Telescope do ESO para observar quase 1.000 estrelas em 30 Doradus, conhecida como a Nebulosa da Tarântula – uma região formadora de estrelas na Grande Nuvem de Magalhães, uma pequena galáxia satélite para a nossa Via Láctea

A outra equipa, liderada pelo astrónomo Zhi-Yu Zhang da Universidade de Edimburgo, recorreu ao ALMA, Atacama Large Millimeter/submillimeter Array, para investigar a proporção de estrelas massivas em 4 galáxias distintas e cheias de poeira. 

“Estas descobertas levam-nos a questionar a nossa compreensão da história cósmica”, concluiu Rob Ivison, astrónomo da Universidade de Edimburgo.

ZAP // Hype Science / SciNews

Por HS
24 Junho, 2018

[vasaioqrcode]

[SlideDeck2 id=1476]

[powr-hit-counter id=f7126031_1529850554196]

681: VLT TESTA TEORIA DA RELATIVIDADE GERAL DE EINSTEIN FORA DA VIA LÁCTEA

Imagem da galáxia próxima ESO 325-G004 criada a partir de dados recolhidos pelo Telescópio Espacial Hubble da NASA/ESA e pelo instrumento MUSE montado no VLT do ESO. O MUSE mediu a velocidade das estrelas em ESO 325-G004, o que resultou no mapa de dispersão de velocidades que está sobreposto à imagem do Telescópio Espacial Hubble. O conhecimento da velocidade das estrelas permitiu aos astrónomos inferir a massa de ESO 325-G004. A imagem inserida mostra o anel de Einstein que resulta da distorção da luz emitida por uma fonte mais distante devido à intervenção da lente ESO 325-G004, o qual se torna visível após subtracção da luz emitida pela galáxia lente.
Crédito: ESO, ESA/Hubble, NASA

Com o auxílio do instrumento MUSE montado no VLT (Very Large Telescope) do ESO, no Chile, e do Telescópio Espacial Hubble da NASA/ESA, os astrónomos fizeram o teste mais preciso, executado até à data, da teoria da relatividade geral de Einstein fora da Via Láctea. A galáxia próxima ESO 325-G004 actua como uma forte lente gravitacional, distorcendo a radiação emitida por uma galáxia distante situada por trás dela e dando origem a um anel de Einstein em torno do seu centro. Ao comparar a massa de ESO 325-G004 com a curvatura do espaço em sua volta, os astrónomos descobriram que a gravidade a estas escalas astronómicas se comporta como previsto pela relatividade geral, eliminando assim algumas teorias de gravidade alternativas.

Com o auxílio do instrumento MUSE montado no VLT do ESO, uma equipa liderada por Thomas Collett, da Universidade de Portsmouth no Reino Unido, calculou a massa de ESO 325-G004 ao medir o movimento das estrelas no seio desta galáxia elíptica próxima.

Collett explica: “Usámos dados obtidos pelo VLT do ESO, no Chile, para medir quão rapidamente as estrelas se estavam a mover em ESO 325-G004, o que nos permitiu inferir a quantidade de massa que deve existir na galáxia para manter estas estrelas em órbita.”

Por outro lado, a equipa conseguiu também medir outro aspecto da gravidade. Com o Telescópio Espacial Hubble da NASA/ESA, observou-se um anel de Einstein, um fenómeno que resulta da luz de uma galáxia distante estar a ser distorcida por ESO 325-G004. A observação deste anel permitiu aos astrónomos medir como é que a luz, e consequentemente o espaço-tempo, está a ser distorcida pela enorme massa de ESO 325-G004.

A teoria da relatividade geral de Einstein prevê que os objectos deformem o espaço-tempo à sua volta, fazendo com que a luz que passa por ele seja desviada e dando origem a um fenómeno conhecido por lente gravitacional. Este efeito apenas se torna evidente para objectos muito massivos. São conhecidas algumas centenas de lentes gravitacionais fortes, mas muitas estão demasiado distantes para se medir com precisão as suas massas. No entanto, a galáxia ESO 325-G004 constitui uma das lentes mais próximas de nós, situada a apenas 450 milhões de anos-luz de distância da Terra.

Collett continua: “Com dados obtidos pelo MUSE determinámos a massa da galáxia situada em primeiro plano e com o Hubble medimos a quantidade de efeito de lente gravitacional observado. Seguidamente comparámos estas duas maneiras de medir a força da gravidade — e o resultado foi exactamente o previsto pela relatividade geral, com uma incerteza de apenas 9%. Trata-se do teste mais preciso feito à relatividade geral, fora da Via Láctea, realizado até à data. E usámos apenas uma galáxia!”

A relatividade geral foi testada com muita precisão às escalas do Sistema Solar e alguns trabalhos observaram estrelas no centro da Via Láctea, mas até à data não tinha havido testes precisos para escalas astronómicas maiores. Testar o longo alcance das propriedades da gravidade é vital para validar o atual modelo cosmológico.

Esta descoberta pode ter implicações importantes para os modelos de gravidade alternativos à relatividade geral. Estas teorias alternativas prevêem que os efeitos da gravidade na curvatura do espaço-tempo são “dependentes da escala”, o que significa que a gravidade se deveria comportar de maneira diferente a escalas astronómicas do que se comporta às escalas mais pequenas do Sistema Solar. Collett e a sua equipa descobriram que este não é muito provavelmente o caso, a menos que estas diferenças ocorram apenas a escalas maiores que 6000 anos-luz.

“O Universo é um lugar espantoso, dando-nos acesso a estas lentes gravitacionais que podemos usar como laboratórios,” acrescenta o membro da equipa Bob Nichol da Universidade de Portsmouth. “É extremamente satisfatório usar os melhores telescópios do mundo para desafiar Einstein e descobrir que afinal ele tinha razão.”

Astronomia On-line
22 de Junho de 2018

[vasaioqrcode]

[SlideDeck2 id=1476]

[powr-hit-counter id=3b18dd33_1529668594968]

629: ALMA E VLT DESCOBREM DEMASIADAS ESTRELAS MASSIVAS EM GALÁXIAS COM FORMAÇÃO ESTELAR EXPLOSIVA, TANTO PRÓXIMAS COMO LONGÍNQUAS

Esta imagem artística mostra uma galáxia poeirenta no Universo distante que está a formar estrelas a uma taxa muito mais elevada do que a da nossa Via Láctea. Novos dados obtidos com o ALMA permitiram aos cientistas observar para além do véu de poeira e ver algo anteriormente inacessível – que estas galáxias com formação estelar explosiva possuem um excesso de estrelas massivas quando comparadas com galáxias mais calmas.
Crédito: ESO/M. Kornmesser

Com o auxílio do ALMA e do VLT, os astrónomos descobriram que, tanto galáxias com formação estelar explosiva do Universo primordial, como uma região de formação estelar situada numa galáxia próxima, contêm uma proporção de estrelas massivas muito maior do que a encontrada em galáxias mais calmas. Esta descoberta desafia as actuais teorias de evolução galáctica, alterando o nosso conhecimento da história da formação estelar cósmica e da formação contínua de elementos químicos.

No intuito de estudar o Universo longínquo, uma equipa de cientistas liderada pelo astrónomo Zhi-Yu Zhang, da Universidade de Edimburgo, utilizou o ALMA (Atacama Large Millimeter/submillimeter Array) para investigar a proporção de estrelas massivas em quatro galáxias distantes ricas em gás com formação estelar explosiva.

As galáxias com formação estelar explosiva são galáxias que estão a sofrer um episódio de formação estelar muito intensa. A taxa à qual se formam novas estrelas pode bem ser superior a 100 vezes a taxa de formação estelar da nossa galáxia, a Via Láctea. Neste tipo de galáxias, as estrelas massivas produzem radiação ionizante, fluxos estelares e explosões de supernova, fenómenos que influenciam de forma bastante significativa a evolução química e dinâmica do meio que as rodeia. O estudo da distribuição de massa das estrelas nestas galáxias ajuda-nos a compreender melhor não só sobre a sua própria evolução, mas também a evolução do Universo, de modo geral.

Observamos estas galáxias quando o Universo era muito mais jovem do que actualmente, o que significa que, muito provavelmente, estes objectos bebés ainda não sofreram muitos episódios de formação estelar anteriores. Se não fosse este o caso, os resultados poderiam estar comprometidos.

Zhang e a sua equipa desenvolveram uma nova técnica — semelhante à datação por carbono radioactivo (também conhecida por datação por carbono-14) — para medir as abundâncias de diferentes tipos de monóxido de carbono em quatro galáxias muito distantes envoltas em poeira e com formação estelar explosiva. A equipa observou a razão entre dois tipos de monóxido de carbono que contêm diferentes isótopos.

“Os isótopos de carbono e de oxigénio têm origens diferentes”, explica Zhang. “O 18O é mais produzido em estrelas massivas e o 13C é mais produzido em estrelas de massa pequena ou intermédia.” Graças à nova técnica, a equipa foi capaz de observar para além da poeira destas galáxias e determinar pela primeira vez a massa das suas estrelas.

A massa de uma estrela é o factor mais importante para determinar a sua evolução. As estrelas massivas brilham intensamente e têm vidas curtas, enquanto que as estrelas menos massivas, como o Sol, brilham de forma mais modesta durante milhares de milhões de anos. Assim, ao sabermos as proporções de estrelas com massas diferentes que se formam nas galáxias, podemos compreender melhor a formação e evolução das galáxias ao longo da história do Universo, o que, por sua vez, nos dá informações valiosas sobre os elementos químicos disponíveis para formar novas estrelas e planetas e, por fim, o número de “sementes” de buracos negros que podem coalescer para formar os buracos negros super-massivos que vemos no centro de muitas galáxias.

A co-autora do trabalho, Donatella Romano do INAF-Observatório de Astrofísica e Ciências do Espaço em Bolonha, explica o que a equipa descobriu: “A razão de 18O para 13C medida foi cerca de 10 vezes maior nestas galáxias com formação estelar explosiva existentes no Universo primordial do que em galáxias como a Via Láctea, o que significa que existe uma proporção muito maior de estrelas massivas no interior destas galáxias.”

Estes resultados obtidos com o ALMA são corroborados por outra descoberta no Universo local. Com o auxílio do VLT (Very Large Telescope) do ESO e com o intuito de investigar a distribuição geral de idades estelares e massas iniciais, uma equipa liderada por Fabian Schneider, da Universidade de Oxford, obteve medições espectroscópicas de 800 estrelas situadas na enorme região de formação estelar 30 Doradus, na Grande Nuvem de Magalhães.

Schneider explica: “Descobrimos cerca de 30% mais estrelas com massas superiores a 30 vezes a do Sol do que o esperado e cerca de 70% mais do que as esperadas com massas superiores a 60 massas solares. Os nossos resultados desafiam o limite anteriormente previsto de 150 massas solares para a massa inicial máxima das estrelas e sugerem ainda que as estrelas se podem formar com massas superiores a 300 massas solares!”

Rob Ivison, co-autor do novo artigo científico baseado nos dados ALMA, conclui: “Os nossos resultados levam-nos a questionar a nossa compreensão da história cósmica. Os astrónomos que constroem modelos do Universo têm que voltar ao ponto de partida e usar modelos ainda mais sofisticados.”

Astronomia On-line
8 de Junho de 2018

[vasaioqrcode]

[SlideDeck2 id=1476]

[powr-hit-counter id=5ce13d69_1528453589449]