3968: Investigadores descobrem origem e massa máxima de buracos negros observados por detectores de ondas gravitacionais

CIÊNCIA/ASTRONOMIA

Diagrama esquemático do percurso evolutivo de buraco negro binário para GW170729. Uma estrela com menos de 80 massas solares evolui e desenvolve-se numa super-nova de colapso de núcleo. A estrela não sofre instabilidade de par, de modo que não há uma ejecção significativa de massa por pulsação. Depois da estrela formar um núcleo massivo de ferro, colapsa sob a sua própria gravidade e forma um buraco negro abaixo das 38 massas solares. Uma estrela entre 80 e 140 massas solares evolui e transforma-se numa super-nova por instabilidade de par pulsante. Depois da estrela formar um núcleo massivo de carbono-oxigénio, o núcleo sofre uma criação catastrófica de pares electrão-positrão. Isto estimula uma forte pulsação e ejecção parcial dos materiais estelares. Os materiais ejectados formam a nuvem que envolve a estrela. Depois, a estrela continua a evoluir forma um núcleo massivo de ferro, que colapsa de maneira semelhante a uma super-nova comum de colapso de núcleo, mas com um buraco negro com massa final entre 38 e 52 massas solares. Estes dois caminhos podem explicar a origem das massas dos buracos negros binários detectados no evento de ondas gravitacionais GW170729.
Crédito: Shing-Chi Leung et al./Instituto Kavli para Física e Matemática do Universo

Através de simulações de uma estrela moribunda, uma equipa de físicos teóricos descobriu a origem evolutiva e a massa máxima de buracos negros que são descobertos graças à detecção de ondas gravitacionais.

A excitante descoberta de ondas gravitacionais com o LIGO (Laser Interferometer Gravitational-wave Observatory) e com o Virgo mostrou a presença de buracos negros em sistemas binários íntimos.

As massas dos buracos negros observados foram medidas antes da fusão e resultaram numa massa muito maior do que o esperado anteriormente, cerca de 10 vezes a massa do Sol (massa solar). Num destes eventos, GW170729, a massa observada de um buraco negro, antes da fusão, é na realidade tão grande quanto 50 massas solares. Mas não está claro que tipo de estrela pode formar um buraco negro tão massivo, ou qual a massa máxima para um buraco negro observado pelos detectores de ondas gravitacionais.

Para responder a esta pergunta, uma equipa de investigação do Instituto Kavli para Física e Matemática do Universo estudou o estágio final da evolução de estrelas muito massivas, em particular com 80 a 130 massas solares, em sistemas binários íntimos. O seu achado está ilustrado nos desenhos (a-e) e nos gráficos.

Em sistemas binários íntimos, inicialmente estrelas com 80 a 130 massas solares perdem o seu invólucro rico em hidrogénio e tornam-se estrelas de hélio com 40 a 65 massas solares. Quando as estrelas com massa inicial entre 80 e 130 vezes a do Sol formam núcleos ricos em oxigénio, as estrelas sofrem pulsação dinâmica, porque a temperatura no interior estelar torna-se alta o suficiente para que os fotões sejam convertidos em pares electrão-positrão. Esta “criação de pares” torna o núcleo instável e acelera a contracção para o colapso (ilustração b).

Na estrela super-comprimida, o oxigénio é queimado explosivamente. Isto desencadeia um salto de colapso e em seguida uma rápida expansão da estrela. Uma parte da camada estelar externa é expelida, enquanto a parte mais interna arrefece e colapsa novamente (ilustração c). A pulsação (colapso e expansão) repete-se até que o oxigénio se esgote (ilustração d). Este processo é chamado “instabilidade de par pulsante” (PPI – “pulsational pair-instability”). A estrela forma um núcleo de ferro e colapsa finalmente para um buraco negro, o que desencadeia a explosão de super-nova (ilustração e), chamada super-nova-PPI (PPSISN).

Ao calcularem várias destas pulsações e ejecções associadas de massa até ao colapso da estrela e formação do buraco negro, a equipa descobriu que a massa máxima de um buraco negro formado a partir de uma super-nova-PPI (super-nova por instabilidade de par pulsante) é de 52 massas solares.

As estrelas inicialmente mais massivas do que 130 massas solares (que formam estrelas de hélio com mais de 65 massas solares) passam por uma “super-nova por instabilidade de par” devido à queima explosiva de oxigénio, que interrompe completamente a estrela sem nenhum remanescente de buraco negro. As estrelas acima das 300 massas solares colapsam e podem formar um buraco negro mais massivo do que aproximadamente 150 massas solares.

Os resultados acima preveem a existência de uma “lacuna de massa” na massa do buraco negro entre 52 e aproximadamente 150 massas solares. Os resultados significam que o buraco negro com 50 massas solares em GW170729 é provavelmente o remanescente de uma super-nova por instabilidade de par pulsacional.

O resultado também prevê que um meio circum-estelar massivo seja formado pela perda de massa pulsacional, de modo que a explosão de super-nova associada com a formação do buraco negro induzirá a colisão do material ejectado com o material circum-estelar para se tornar uma super-nova super-luminosa. Os futuros sinais de ondas gravitacionais vão fornecer uma base sobre a qual estas previsões teóricas podem ser testadas.

Astronomia On-line
7 de Julho de 2020

 

 

3929: Objecto-mistério. Cientistas podem ter descoberto a mais pesada estrela de neutrões (ou o mais leve buraco negro)

CIÊNCIA/ASTROFÍSICA

N. Fischer, S. Ossokine, H. Pfeiffer, A. Buonanno (Max Planck Institute for Gravitational Physics), Simulating eXtreme Spacetimes (SXS) Collaboration

Uma equipa de astrofísicos dos observatórios de ondas gravitacionais LIGO e Virgo detectaram um objecto-mistério: pode ser a mais pesada estrela de neutrões ou o mais leve buraco negro já encontrado.

A maioria das super-novas, quando explodem, deixa para trás um buraco negro ou produz uma estrela de neutrões. Essa dualidade depende da massa original da estrela e é vista na população de objectos que produz.

A estrela de neutrões mais pesada não passa de 2,5 vezes a massa do Sol. O buraco negro mais leve observado é cinco vezes a nossa estrela. No meio dessa faixa está a chamada “diferença de massa”, que intriga os cientistas há décadas.

Agora, pesquisadores dos observatórios de ondas gravitacionais LIGO e Virgo anunciaram que encontraram um objecto com uma massa intermediária.

O objecto-mistério foi estimado em 2,6 massas solares e fez parte de uma colisão detectada em 14 de Agosto de 2019 (GW190814) com um buraco negro 23 vezes a massa do Sol.

Este evento é recorde por duas razões: é a emissão de ondas gravitacionais com a razão de massa mais extrema (9:1), e o próprio objecto é a estrela de neutrões mais pesada conhecida ou o mais leve buraco negro já detectado.

“É um desafio para os modelos teóricos actuais formar pares de objectos compactos mesclados com uma proporção de massa tão grande na qual o parceiro de baixa massa reside na diferença de massa. Essa descoberta implica que estes eventos ocorrem com muito mais frequência do que o previsto, tornando-o um objecto de baixa massa realmente intrigante”, disse o co-autor Vicky Kalogera, professor da Northwestern University, em comunicado.

“O objecto misterioso pode ser uma estrela de neutrões a fundir-se com um buraco negro, uma possibilidade emocionante esperada teoricamente, mas ainda não confirmada observacionalmente. No entanto, 2,6 vezes a massa do nosso Sol excede as previsões modernas para a massa máxima de estrelas de neutrões e pode ser o buraco negro mais leve já detectado”.

Após a detecção do LIGO e do Virgo, um alerta foi enviado à comunidade astronómica. Dezenas de telescópios no solo e no Espaço procuraram o evento, mas não foi detectado nenhum evento transitório. Até agora, apenas um evento foi confirmado com telescópios ópticos, a primeira colisão de estrelas de neutrões GW170817, que criou um objecto que se encontrava no limite da diferença de massa. Este novo evento foi seis vezes maior do que o GW170817, tornando muito mais difícil encontrá-lo.

“Este é o primeiro vislumbre do que poderia ser uma população totalmente nova de objectos binários compactos”, disse Charlie Hoy, membro da LIGO Scientific Collaboration e estudante de pós-graduação na Cardiff University. “O que é realmente emocionante é que isto é apenas o começo. À medida que os detectores se tornam cada vez mais sensíveis, observaremos ainda mais estes sinais e conseguiremos identificar as populações de estrelas de neutrões e buracos negros no universo”.

A verdadeira natureza do objecto permanecerá ambígua, mas espera-se que descobertas de eventos semelhantes forneçam algum conhecimento retroactivo sobre este.

Este estudo foi publicado este mês na revista científica The Astrophysical Journal Letters.

ZAP //

Por ZAP
29 Junho, 2020

 

 

3591: Um sinal como nenhum antes

CIÊNCIA/ASTRONOMIA

Fusão de um buraco negro binário onde os dois objectos têm massas muito diferentes – 8 e 30 vezes a massa do Sol.
Crédito: N. Fischer, H. Pfeiffer, A. Buonanno (Instituto Max Planck para Física Gravitacional), projecto SXS (Simulating eXtreme Spacetimes)

As expectativas da comunidade de pesquisa de ondas gravitacionais foram cumpridas: as descobertas de ondas gravitacionais são agora parte do seu trabalho diário, pois identificaram na última campanha de observação, O3, novos candidatos a ondas gravitacionais cerca de uma vez por semana. Mas agora os investigadores publicaram um sinal notável, diferente de todos os observados anteriormente: GW190412 é a primeira observação da fusão de um buraco negro binário onde os dois objectos têm massas muito diferentes, de 8 e 30 vezes a massa do Sol. Isto não só permitiu medições mais precisas das propriedades astrofísicas do sistema, como também permitiu que os cientistas do LIGO/Virgo verificassem uma previsão até agora não testada da teoria da relatividade geral de Einstein.

“Pela primeira vez ‘ouvimos’ em GW190412 o zumbido inconfundível de ondas gravitacionais de uma harmonia mais alta, semelhante a sons de instrumentos musicais,” explica Frank Ohme, líder do Grupo de investigação “Observações de Fusões Binárias e Relatividade Numérica” do Instituto Max Planck para Física Gravitacional (Instituto Albert Einstein) em Hannover. “Em sistemas com massas desiguais como GW190412 – a nossa primeira observação deste tipo – estes tons no sinal das ondas gravitacionais são muito mais altos do que nos das nossas observações normais. É por isso que não os conseguíamos ouvir antes, mas com GW190412, finalmente podemos.” Esta observação confirma mais uma vez a teoria da relatividade geral de Einstein, que prevê a existência destes tons mais agudos, ou seja, ondas gravitacionais com duas ou três vezes a frequência fundamental observada até agora.

“Os buracos negros no coração de GW190412 têm 8 e 30 vezes a massa do nosso Sol, respectivamente. Este é o primeiro buraco negro binário que observámos cuja diferença de massa entre os dois objectos é tão grande!” diz Roberto Cotesta, estudante de doutoramento na divisão “Relatividade Astrofísica e Cosmológica” do Instituto Albert Einstein (IAE) em Potsdam, Alemanha. “Esta grande diferença de massas significa que podemos medir com mais precisão várias propriedades do sistema: a sua distância até nós, o ângulo de observação e a rapidez com que o buraco negro mais pesado gira sobre si próprio.”

Um sinal como nenhum antes

GW190412 foi observado pelo detector LIGO e pelo detector Virgo no dia 12 de Abril de 2019, no início da terceira campanha de observação (O3) dos instrumentos. As análises revelam que a fusão ocorreu a uma distância de 1,9 a 2,9 mil milhões de anos-luz da Terra. O novo sistema de massa desigual é uma descoberta única, pois todos os binários observados anteriormente pelos detectores LIGO e Virgo tinham massas aproximadamente iguais.

As massas desiguais estão “imprimidas” no sinal observado da onda gravitacional, que por sua vez permite que os cientistas meçam com mais precisão certas propriedades astrofísicas do sistema. A presença de uma harmonia mais aguda torna possível quebrar uma ambiguidade entre a distância do sistema e o ângulo a que observamos o seu plano orbital; portanto, estas propriedades podem ser medidas com maior precisão do que em sistemas de massas idênticas sem harmonias mais agudas.

“Durante as campanhas O1 e O2, observámos a ponta do icebergue da população binária composta por buracos negros de massa estelar,” diz Alessandra Buonanno, directora da divisão “Relatividade Astrofísica e Cosmológica” do IAE em Potsdam e professora na Universidade de Maryland em College Park, EUA. “Graças à sensibilidade aprimorada, GW190412 começou a revelar-nos uma população mais diversa, caracterizada por uma assimetria de massa até um factor de 4 e buracos negros que giram a cerca de 40% do valor máximo possível permitido pela relatividade geral,” acrescentou.

Os investigadores do Instituto Albert Einstein contribuíram para a detecção e análise de GW190412. Forneceram modelos precisos das ondas gravitacionais dos buracos negros coalescentes que incluíram, pela primeira vez, a precessão das rotações dos buracos negros e os momentos multípolos para lá do quadrupolo dominante. Estas características impressas na forma da onda foram cruciais para extrair informações únicas sobre as propriedades da fonte e realizar os nossos testes da relatividade geral. As redes de computadores de alto desempenho “Minerva” e “Hypatia” no IAE em Potsdam e “Holodeck” no IAE em Hannover contribuíram significativamente para a análise do sinal.

Testando a teoria de Einstein

Os cientistas do LIGO/Virgo também usaram GW190412 para procurar desvios dos sinais que a teoria da relatividade geral de Einstein prevê. Embora o sinal tenha propriedades diferentes de todos os outros encontrados até agora, os investigadores não conseguiram encontrar um desvio significativo das previsões relativísticas gerais.

Esta descoberta é a segunda relatada da terceira campanha de observação (O3) da rede internacional de detectores de ondas gravitacionais. Os cientistas dos três grandes detectores fizeram várias actualizações tecnológicas nos instrumentos.

“Durante a O3, foi usada luz ‘espremida’ para aumentar a sensibilidade do LIGO e do Virgo. Esta técnica de ajustar cuidadosamente as propriedades da mecânica quântica da luz laser foi explorada no detector alemão-britânico GEO600,” explica Karsten Danzmann, director do IAE em Hannover e director do Instituto para Física Gravitacional da Universidade de Leibniz em Hannover. “O Instituto Albert Einstein está a liderar os esforços mundiais para maximizar o grau de compressão, que já melhorou a sensibilidade do detector GEO600 por um factor de dois. Os nossos avanços nesta tecnologia vão beneficiar todos os futuros detectores de ondas gravitacionais.”

2 concluídos, 54 na lista de tarefas

A rede de detectores emitiu alertas para 56 possíveis eventos (candidatos) de ondas gravitacionais durante a campanha O3 (de 1 de Abril de 2019 a 27 de Março de 2020, com uma interrupção para actualizações e comissionamento em Outubro de 2019). Destes 56, um outro sinal confirmado, GW190425, já foi publicado. Os cientistas do LIGO e do Virgo estão a examinar todos os restantes 54 candidatos e publicarão todos aqueles para os quais as análises detalhadas de acompanhamento confirmem a sua origem astrofísica.

A observação de GW190412 significa que sistemas similares provavelmente não são tão raros quanto o previsto por alguns modelos. Portanto, com observações adicionais de ondas gravitacionais e catálogos de eventos cada vez maiores no futuro, são esperados mais destes sinais. Cada um deles poderá ajudar os astrónomos a melhor entender como os buracos negros e os seus sistemas binários são formados, e a lançar uma nova luz sobre a física fundamental do espaço-tempo.

Astronomia On-line
24 de Abril de 2020

 

 

3495: Novas descobertas de ondas gravitacionais

CIÊNCIA/ASTRONOMIA

Simulação numérica da primeira fusão de buracos negros binários observada pelo detector Advanced LIGO no dia 14 de Setembro de 2015.
Crédito: S. Ossokine, A. Buonanno (Instituto Max Planck para Física Gravitacional), projecto Simulating eXtreme Spacetimes, W. Benger (Airborne Hydro Mapping GmbH)

Investigadores do Instituto Max Planck para Física Gravitacional (Instituto Albert Einstein) em Hannover, juntamente com colegas internacionais, publicaram o seu segundo Catálogo Aberto de Ondas Gravitacionais (2-OGC). Usaram métodos de investigação aprimorados para aprofundar os dados publicamente disponíveis da primeira e da segunda campanha de observações. Além de confirmarem as dez fusões conhecidas buracos negros binários e de uma fusão de estrelas de neutrões binárias, também identificaram quatro candidatos promissores à fusão de buracos negros, que passaram despercebidos nas análises iniciais do LIGO/Virgo. Estes resultados demonstram o valor das investigações dos dados públicos do LIGO/Virgo por grupos independentes das colaborações LIGO/Virgo. A equipa de investigação também disponibilizou o seu catálogo completo, além da análise detalhada de mais de uma dúzia possíveis fusões de buracos negros binários.

“Nós incorporamos os métodos mais avançados,” diz Alexander Nitz, cientista da equipa do Instituto Max Planck para Física Gravitacional (Instituto Albert Einstein) em Hannover, que liderou a equipa de investigação internacional. “As nossas melhorias permitem descobrir fusões mais fracas de buracos negros binários: os quatro sinais adicionais mostram que isto funciona!”

Os resultados foram publicados a semana passada na revista The Astrophysical Journal.

Novas descobertas em dados antigos

A equipa internacional de pesquisa analisou os dados de ondas gravitacionais disponíveis ao público, obtidos pelos detectores Advanced LIGO e Advanced Virgo na sua primeira (de Setembro de 2015 a Janeiro de 2016) e na sua segunda (de Novembro de 2016 a Agosto de 2017) campanha de observações. Estes foram previamente analisados pela colaboração LIGO e Virgo. Foram encontradas dez fusões de buracos negros binários e uma fusão de estrelas de neutrões binárias. Outra análise independente já havia encontrado várias fusões adicionais de buracos negros.

O trabalho liderado por Nitz confirma 14 destes eventos e encontra mais uma possível fusão de buracos negros binários não avistada pelas análises anteriores. A ser real, GW151205 veio de uma fusão bastante distante de dois buracos negros massivos com mais ou menos 70 e 40 vezes a massa do Sol, respectivamente.

O truque não foi apenas uma maneira aprimorada de classificar potenciais sinais de ondas gravitacionais, mas também ter como alvo as propriedades que os buracos negros binários devem ter. “Temos uma ideia do que é a típica massa de um buraco negro binário a partir dos sinais que já foram detectados,” explica Collin Capano, investigador sénior do Instituto Albert Einstein em Hannover e co-autor da publicação. “A nossa sensibilidade a buracos negros binários melhorou 50% a 60% usando estas informações para ajustar a nossa pesquisa e procurar os sinais mais prováveis.”

Nenhuma nova fusão de estrelas de neutrões binárias

A equipa não encontrou novos candidatos a fusões de estrelas de neutrões binárias nos dados das duas campanhas de observação do LIGO/Virgo. Dado que apenas foram identificadas duas fusões de estrelas de neutrões binárias, graças às suas ondas gravitacionais, e a população subjacente não é bem conhecida, uma pesquisa direccionado ainda não é possível.

Os 15 sinais relatados agora são apenas uma pequena parte de um maior catálogo online. A equipa publicou o seu catálogo completo de eventos, incluindo candidatos estatisticamente menos significativos e os resultados detalhados das suas análises. “Esperamos que estes dados permitam que outros cientistas realizem futuramente investigações profundas, fornecendo uma melhor compreensão da população de buracos negros binários, bem como do ruído de fundo,” diz Sumit Kumar, investigador sénior do Instituto Albert Einstein e co-autor da publicação.

Astronomia On-line
17 de Março de 2020

 

 

1936: LIGO e Virgo detectam novas colisões

Impressão de artista da colisão de duas estrelas de neutrões.
Crédito: NASA/Swift/Dana Berry

No dia 25 de Abril de 2019, o LIGO (Laser Interferometer Gravitational-Wave Observatory) da NSF (National Science Foundation) e o detector europeu Virgo registaram ondas gravitacionais do que parece ser um choque entre duas estrelas de neutrões – os remanescentes densos de estrelas massivas que tinham explodido anteriormente. Um dia mais tarde, 26 de Abril, a rede LIGO-Virgo identificou outra fonte candidata com uma reviravolta potencialmente interessante: pode, de facto, ter resultado da colisão entre uma estrela de neutrões e um buraco negro, um evento nunca antes visto.

“O Universo está a dizer-nos para ficarmos atentos,” diz Patrick Brady, porta-voz da Colaboração Científica LIGO e professor de física na Universidade de Wisconsin-Milwaukee. “Estamos especialmente curiosos sobre o candidato de dia 26 de Abril. Infelizmente, o sinal é bastante fraco. É como ouvir alguém a sussurrar uma palavra num café movimentado; pode ser difícil distinguir a palavra ou até mesmo ter certeza se, de facto, sussurrou. Vai levar algum tempo para chegar a uma conclusão sobre este candidato.”

“O LIGO da NSF, em colaboração com o Virgo, abriu o Universo para futuras gerações de cientistas,” diz France Córdova, directora da NSF. “Uma vez mais, testemunhámos o notável fenómeno de uma fusão de estrelas de neutrões, seguida de perto por outra possível fusão de estrelas colapsadas. Com estas novos achados, vemos as colaborações LIGO-Virgo a atingir o seu potencial de produzir regularmente descobertas que antes eram impossíveis. Os dados dessas descobertas, e de outras que certamente se seguirão, vão ajudar a comunidade científica a revolucionar a nossa compreensão do Universo invisível.”

As descobertas vêm apenas algumas semanas depois do LIGO e do Virgo terem voltado às operações. Os detectores gémeos do LIGO – um em Washington e outro no estado norte-americano do Louisiana -, juntamente com o Virgo, localizado no EGO (European Gravitational Observatory) na Itália, retomaram as operações no 1 de Abril, depois de passarem por uma série de actualizações a fim de aumentar as suas sensibilidades às ondas gravitacionais – ondulações no espaço e no tempo. Cada detector agora examina volumes maiores do Universo do que antes, procurando eventos extremos como colisões gigantescas entre buracos negros e estrelas de neutrões.

“A união de forças humanas e instrumentos com as colaborações LIGO e Virgo foi, mais uma vez, a receita para um mês científico incomparável, e a actual campanha de observação incluirá mais 11 meses,” diz Giovanni Prodi, coordenador de análise de dados do Virgo, da Universidade de Trento e do INFN (Istituto Nazionale di Fisica Nucleare) na Itália. “O detector Virgo trabalha com a maior estabilidade, cobrindo o céu 90% do tempo com dados úteis. Isso ajuda-nos a apontar para as fontes, quando a rede está em pleno funcionamento e às vezes quando apenas um dos detectores LIGO está a operar. Temos muito trabalho de investigação inovadora pela frente.”

Além dos dois novos candidatos que envolvem estrelas de neutrões, a rede LIGO-Virgo, nesta última rodada, detectou três prováveis fusões de buracos negros. No total, a rede detectou, desde que fez história com a primeira detecção directa de ondas gravitacionais em 2015, evidências de duas fusões de estrelas de neutrões, 13 fusões de buracos negros e uma possível fusão entre uma estrela de neutrões e um buraco negro.

Quando dois buracos negro colidem, distorcem o tecido do espaço e do tempo, produzindo ondas gravitacionais. Quando duas estrelas de neutrões colidem, não só libertam ondas gravitacionais, mas também luz. Isto significa que os telescópios sensíveis às ondas de luz, em todo o espectro electromagnético, podem testemunhar estes poderosos impactos juntamente com o LIGO e com o Virgo. Um desses eventos ocorreu em Agosto de 2017: O LIGO e o Virgo inicialmente identificaram uma fusão de estrelas de neutrões em ondas gravitacionais e, nos dias e meses que se seguiram, cerca de 70 telescópios no solo e no espaço testemunharam o rescaldo explosivo em ondas de luz, desde raios-gama, a luz visível, a ondas de rádio.

No caso das duas candidatas recentes a estrelas de neutrões, os telescópios de todo o mundo correram mais uma vez para rastrear as fontes e captar a luz que se espera que surja dessas fusões. Centenas de astrónomos avidamente apontaram telescópios para zonas do céu suspeitas de abrigar as fontes do sinal. No entanto, desta vez, nenhuma das fontes foi identificada.

“A busca por contrapartes explosivas do sinal de ondas gravitacionais é complexa devido à quantidade de céu que tem que ser estudado e devido às rápidas mudanças esperadas no brilho,” diz Brady. “O número de fusões de estrelas de neutrões, encontradas com o LIGO e com o Virgo, trará mais oportunidades para procurar as explosões ao longo do próximo ano.”

Estima-se que a fusão de estrelas de neutrões de dia 25 de Abril, denominada S190425z, tenha ocorrido a cerca de 500 milhões de anos-luz da Terra. Apenas uma das instalações gémeas do LIGO detectou o seu sinal juntamente com o Virgo (o LIGO em Livingston testemunhou o evento, mas o LIGO de Hanford estava offline). Como apenas dois dos três detectores registaram o sinal, as estimativas da localização no céu a partir do qual teve origem não são precisas, fazendo com que os astrónomos tivessem que rastrear quase um-quarto do céu em busca da fonte.

Estima-se que a possível colisão entre uma estrela de neutrões e um buraco negro, de dia 26 de Abril (referida como S190426c), tenha tido lugar a cerca de 1,2 mil milhões de anos-luz de distância. Foi visto pelas três instalações do LIGO-Virgo, que ajudaram a restringir melhor a sua posição para regiões que cobrem mais ou menos 1100 quadrados, ou cerca de 3% do total do céu.

“A mais recente campanha de observação do LIGO-Virgo está a provar ser a mais excitante até agora,” diz David H. Reitze, do Caltech, director executivo do LIGO. “Já estamos a ver indícios da primeira observação de um buraco negro a engolir uma estrela de neutrões. Se se confirmar, será uma aposta ganha para o LIGO e Virgo – em três anos, teremos observado todos os tipos de colisões para buracos negros e estrelas de neutrões. Mas nós aprendemos que afirmações de detecções requerem uma quantidade enorme de trabalho meticuloso – verificação e reverificação -, de modo que vamos ver onde os dados nos levam.”

Astronomia On-line
7 de Maio de 2019

[vasaioqrcode]

 

1390: Ligo e Virgo anunciam quatro novas detecções

O LIGO e o Virgo detectaram uma nova população de buracos negros com massas maiores do que as já observadas apenas com estudos em raios-X (roxo). Este gráfico mostra as massas de todas 10 fusões de buracos negros binários já detectadas confiavelmente pelo LIGO/Virgo (azul). Também mostra estrelas de neutrões com massas conhecidas (amarelo) e a massas dos componentes da fusão de estrelas de neutrões GW170817 (laranja).
Crédito: LIGO/Virgo/Universidade Northwestern/Frank Elavsky

No passado sábado, dia 1 de Dezembro, os cientistas que participaram no workshop de Física e Astronomia de Ondas Gravitacionais em College Park, no estado norte-americano de Maryland, apresentaram novos resultados dos detectores de ondas gravitacionais LIGO (Laser Interferometer Gravitational-Wave Observatory) da NSF (National Science Foundation) e do europeu Virgo, no que toca às suas pesquisas por objectos cósmicos coalescentes, como pares de buracos negros e pares de estrelas de neutrões. As colaborações LIGO e Virgo detectaram confiavelmente ondas gravitacionais de um total de 10 fusões binárias de buracos negros de massa estelar e uma fusão de estrelas de neutrões, que são os remanescentes esféricos e densos de explosões estelares. Seis dos eventos de fusão de buracos negros já tinham sido divulgados, sendo que quatro são novos.

Entre 12 de Setembro de 2015 e 19 de Janeiro de 2016, durante a primeira campanha de observação do LIGO desde que sofreu actualizações num programa de nome Advanced LIGO, foram detectadas ondas gravitacionais de 3 fusões de buracos negros binários. A segunda campanha de observação, que durou de 30 de Novembro de 2016 a 25 de Agosto de 2017, resultou numa fusão de estrelas de neutrões binárias e sete novas fusões binárias de buracos negros, incluindo quatro novos eventos de ondas gravitacionais agora divulgados. Os novos eventos são conhecidos como GW170729, GW170809, GW170818 e GW170823, em referência às datas em que foram detectados.

Todos os eventos estão incluídos num novo catálogo, também lançado no sábado, com alguns dos eventos quebrando recordes. Por exemplo, o novo evento GW170729, detectado na segunda campanha de observação no dia 29 de Julho de 2017, é a mais massiva e distante fonte de ondas gravitacionais já observada. Nesta coalescência, que ocorreu há mais ou menos 5 mil milhões de anos, uma energia equivalente a quase cinco massas solares foi convertida em radiação gravitacional.

GW170814 foi a primeira fusão binária de buracos negros medida pela rede de três detectores e permitiu os primeiros testes de polarização de ondas gravitacionais (análoga à polarização da luz).

O evento GW170817, detectado três dias após GW170814, representa a primeira vez que foram observadas ondas gravitacionais a partir da fusão de um sistema composto por duas estrelas de neutrões. Além do mais, esta colisão foi vista tanto em ondas gravitacionais como no espectro electromagnético, marcando um excitante novo capítulo na astronomia multi-mensageira, em que os objectos cósmicos são observados simultaneamente em diferentes tipos de radiação.

Um dos novos eventos, GW170818, que foi detectado pela rede global formada pelos observatórios LIGO e Virgo, foi localizado no céu com muita precisão. A posição dos buracos negros binários, localizados a 2,5 mil milhões de anos-luz da Terra, foi identificada no céu com uma precisão de 39 graus quadrados. Isto torna-o na mais bem localizada fonte de ondas gravitacionais após a fusão das estrelas de neutrões do evento GW170817.

Albert Lazzarini do Caltech e vice-director do Laboratório LIGO, diz: “a divulgação de mais quatro fusões binárias de buracos negros diz-nos mais sobre a natureza da população destes sistemas binários e restringe melhor a taxa de ocorrência para estes tipos de eventos.”

“Em apenas um ano, o LIGO e o Virgo, trabalhando juntos, têm avançado dramaticamente a ciência das ondas gravitacionais e a taxa de descoberta sugere que os achados mais espectaculares ainda estão por vir,” comenta Denise Caldwell, directora da Divisão de Física da NSF. “Os feitos do LIGO da NSF e dos seus parceiros internacionais são uma fonte de orgulho para a agência e esperamos avanços ainda significativos quando a sensibilidade do LIGO ficar maior no próximo ano.”

“A próxima campanha de observações, que terá início na primavera de 2019, deverá render muitos mais candidatos a ondas gravitacionais e a ciência que a comunidade pode realizar vai crescer de acordo,” comenta David Shoemaker, porta-voz da Colaboração Científico do LIGO e investigador sénior do Instituto Kavli para Astrofísica e Pesquisa Espacial do MIT. “É um momento incrivelmente emocionante.”

“É gratificante ver as novas capacidades que se tornam disponíveis através da adição do Advanced Virgo à rede global,” comenta Jo van den Brand de Nikhef (Instituto Nacional Holandês de Física Subatómica) e da Universidade VU de Amesterdão, porta-voz da colaboração Virgo. “A nossa precisão altamente melhorada vai permitir que os astrónomos encontrem rapidamente outros mensageiros cósmicos emitidos pelas fontes de ondas gravitacionais.” Esta capacidade de apontamento da rede LIGO-Virgo é possível graças à exploração dos atrasos de tempo da chegada do sinal nos diferentes locais e dos chamados padrões de antena dos interferómetros.

“O novo catálogo é mais uma prova da exemplar colaboração internacional da comunidade de ondas gravitacionais e um trunfo para as próximas campanhas de observação e actualizações,” acrescenta Stavros Katsanevas, director do EGO.

Os artigos científicos que descrevem estas novas descobertas, colocados inicialmente no repositório arXiv de pré-publicações electrónicas, apresentam informações detalhadas na forma de um catálogo de todas as detecções de ondas gravitacionais e eventos candidatos das duas campanhas de observação, bem como descrevem as características da população de fusões de buracos negros. Mais notavelmente, descobriram que quase todos os buracos negros formados a partir de estrelas têm uma massa inferior a 45 vezes a do Sol. Graças ao processamento mais avançado de dados e a uma melhor calibração dos instrumentos, a precisão dos parâmetros astrofísicos dos eventos anunciados anteriormente aumentou consideravelmente.

Laura Cadonati, vice-porta-voz da Colaboração Científica LIGO, diz: “Estas novas descobertas só foram possíveis graças ao trabalho incansável e cuidadosamente coordenado dos comissários dos detectores em todos os três observatórios e aos cientistas em todo o mundo responsáveis pela qualidade e limpeza dos dados, que procuram sinais ocultos, e à estimativa dos parâmetros para cada candidato – cada uma especialidade científica que requer enorme conhecimento e experiência.”

Astronomia On-line
7 de Dezembro de 2018

[vasaioqrcode]