1426: O interior dos buracos negros cresce (quase) para sempre

Josh Valenzuela / Universidade do Novo México

Os buracos negros são sugadores exímios, e nem a luz consegue escapar. Mas por que razão continuam a expandir-se? Agora, um dos maiores físicos do mundo apresentou uma nova explicação.

Leonard Susskind propôs uma solução para um importante enigma sobre os buracos negros. Apesar de estas esferas misteriosas parecerem ter um tamanho constante quando vistas de fora, os seus interiores continuam a crescer em volume.

Numa série de artigos (que podem ser consultados no arXiv.org) e palestras recentes, o professor da Universidade de Stanford propôs que os buracos negros crescem em volume porque aumentam em complexidade – uma ideia que, apesar de não comprovada, está a alimentar um novo pensamento sobre a natureza da gravidade dentro dos buracos negros.

Os buracos negros são regiões esféricas de extrema gravidade que engolem tudo. Foram descobertos pela primeira vez há um século como soluções para as equações da teoria geral da relatividade de Albert Einstein.

A teoria de Einstein iguala a força da gravidade com curvas no espaço-tempo, o tecido quadrimensional do universo, mas a gravidade é tão forte nos buracos negros que o tecido espaço-tempo curva-se e direcção ao seu ponto de ruptura – a “singularidade” no centro do buraco negro.

Assim, segundo a teoria, o colapso gravitacional interno nunca tem fim. Mesmo que, de fora, o buraco negro pareça ter um tamanho constante, o volume interior fica maior conforme o espaço se estende em direcção ao ponto central. Na prática, o buraco negro é uma espécie de funil que se estende para dentro de todas as três direcções espaciais, explica a Quanta Magazine.

Mas, em termos quânticos, a que corresponde o volume crescente do interior de um buraco negro? “O que está, afinal, a crescer? Este deveria ter sido um dos principais enigmas da física dos buracos negros”, disse Susskind.

Para o físico, o que está a mudar é a “complexidade” do buraco negro, ou seja, uma espécie de medida do número de cálculos que seriam necessários para recuperar o estado quântico inicial do buraco negro, no momento em que ele se formou.

Após a sua formação, como as partículas dentro do buraco interagem umas com as outras, as informações sobre o seu estado inicial ficam cada vez mais baralhadas e, consequentemente, a sua complexidade cresce continuamente.

Usando modelos que representam buracos negros através de hologramas, Susskind e a sua equipa mostraram que a complexidade e o volume dos buracos negros crescem na mesma proporção, sustentando a ideia de que um deles pode estar por trás do outro.

O físico israelita Jacob Bekenstein calculou que os buracos negros armazenam a quantidade máxima possível de informação dada a sua área de superfície. Por contraposição, Susskind sugere que a informação e a área de superfície também crescem em complexidade ao ritmo mais rápido possível permitido pelas leis da Física.

Aron Wall, um teórico em Stanford, considera esta proposta, “apesar de emocionante, muito especulativa”. “Pode não estar correta“, afirma, adiantando que o próximo desafio passa por esclarecer de que forma a complexidade das interacções quânticas pode dar origem ao volume espacial.

LM, ZAP //

Por LM
18 Dezembro, 2018

 

1423: Sonda da NASA captura a primeira fotografia da atmosfera do Sol

Johns Hopkins University Applied Physics Laboratory
Parker Solar Probe

Semanas depois de a sonda solar Parker da NASA ter completado a viagem mais próxima do Sol de toda a história, os dados desse voo começam a chegar à Terra, revelando a primeira fotografia da atmosfera do Sol.

A sonda fez o seu primeiro sobrevoo ao Sol entre 31 de Outubro e 11 de Novembro, dias em que atravessou a alta velocidade a parte mais externa da atmosfera solar, conhecida como a coroa solar. Através do seu dispositivo WISPR, a sonda Parker fotografou a partir do interior essa camada gasosa carregada de partículas de vento solar.

A agência espacial norte-americana revelou a fotografia no passado dia 12.

A fotografia acima publicada foi capturada no passado dia 8 de Novembro, e mostra uma espécie de “serpentina”, uma estrutura de material solar que geral cobre as áreas de maior actividade. a sua estrutura aparece claramente, evidenciando de forma clara pelo menos dois raios visíveis. Tal como nota a NASA, estes são dados nunca antes vistos.

Quando registou esta imagem, a Parker estava a aproximadamente 27,2 milhões de quilómetros da superfície do Sol. O objecto brilhante que aparece na parte central é Júpiter – o maior planeta do Sistema Solar – já os pontos escuros são resultados de uma correcção no fundo da fotografia.

A missão desta sonda, que fará a sua segunda passagem à voltado Sol em abril do próximo ano, durará até 2025. Nos próximos anos, a sonda deve completar 24 órbitas em torno do Sol aproximando-se a cerca de 3,8 milhões de quilómetros da sua superfície.

A NASA espera ajudar a resolver alguns mistérios sobre a atmosfera da nossa estrela, como o facto da sua atmosfera externa aquecer cerca de 300 vezes mais do que a sua superfície e o vento solar atingir velocidades tão elevadas.

A sonda da missão Parker Solar Probe foi o primeiro engenho feito pelo Homem a entrar na atmosfera do Sol, atingindo o recorde da maior aproximação ao astro. A Parker foi lançada no dia 13 de Agosto a partir de Cabo Canaveral, no estado norte-americano Florida.

ZAP // RT / Sputnik News

Por ZAP
17 Dezembro, 2018

 

1418: Catástrofe cósmica pode ter aniquilado tubarões pré-históricos gigantes

Mary Parrish / Wikimedia

A explosão de estrelas há 2,6 milhões de anos pode ter contribuído para a extinção em massa que varreu os oceanos pré-históricos da Terra, eliminando criaturas como o tubarão gigante conhecido como Megalodon.

Partículas cósmicas destas super-novas cobriram a superfície do planeta Terra de tal forma que podem ter causado cancro em grandes criaturas marinhas. Entre as fatalidades aparentes, encontrava-se o Megalodon – um tubarão do tamanho de um autocarro dos dias de hoje.

A teoria foi apresentada por Adrian Melott, um físico da Universidade do Kansas, nos EUA. “Não há nenhuma boa explicação para a extinção da megafauna marinha”, disse, citado pelo The Independent. “Esta pode ser uma. É essa mudança de paradigma – sabemos que algo aconteceu e, quando aconteceu, podemos pela primeira vez aprofundar e procurar as coisas de uma maneira definitiva”.

Para chegar a esta hipótese, Melott baseou-se no seu conhecimento sobre super-novas históricas e evidências do impacto que tiveram na Terra. Os antigos depósitos no leito do mar de isótopos de ferro – formas radioactivas de ferro – forneceram uma pista crucial.

As conclusões foram publicadas na revista Astrobiology a 12 de Dezembro. Melott afirmou que não havia outra forma de estes materiais chegarem à Terra, excepto devido a explosões de super-nova.

Mais apoio veio da estrutura do universo circundante. A Terra fica perto de algo chamado “Bolha Local” – uma enorme região de gás quente e denso que os astrónomos pensam que resultou de uma série de explosões de super-novas – a explosão de estrelas que atingiram o fim da sua vida. Devido à estrutura desta bolha, é possível que a Terra tenha sido banhada por raios cósmicos.

Durante este tempo, partículas chamadas “múons” teriam caído em grande número na superfície do planeta. Muóns – partículas elementares semelhantes a electrões muito pesados – penetram profundamente as criaturas vivas, incluindo humanos, e são responsáveis por cerca de um quinto da dose de radiação que recebemos.

Geralmente, isto não seria um grande problema. Porém, ao aumentar a exposição aos múons, os investigadores consideram que a radiação poderia ter levado a um aumento das taxas de mutação e cancro. Os maiores animais podem ter sido especialmente susceptíveis, uma vez que seriam atingidos por uma maior dose de radiação.

“Estimamos que a taxa de cancro aumentaria em cerca de 50% para algo do tamanho de um ser humano – e quanto maior, pior seria”, disse Melott. Isto poderia explicar porque é que o Megalodon, bem como um terço de outras grandes criaturas do mar, não conseguiu sobreviver na época seguinte da história do planeta, o Plistoceno.

Os eventos de extinção em massa estão ligados a mudanças climáticas drásticas. Embora raios cósmicos que bombardeiam a atmosfera também possam estar ligados a um clima em mudança, os autores admitem que esta é “uma afirmação controversa”.

ZAP // Phys

Por ZAP
15 Dezembro, 2018

 

1417: Câmara da NASA revela tempestades gigantes em Júpiter

As imagens estão a ser captadas pela JunoCam

Foto NASA / SWRI / MSSS / GERALD EICHSTÄDT / SEÁN DORAN

Foto NASA / SWRI / MSSS / GERALD EICHSTÄDT / SEÁN DORAN

Detalhe de uma das tempestades de Júpiter
Foto Image copyrightMARSEC

A missão Juno da agência espacial norte americana NASA está a revelar novas imagens de ciclones em Júpiter, que estão a contribuir para aumentar o conhecimento cientifico sobre a composição e a formação do planeta que orbita a cada 53 dias.

As imagens estão a ser captadas pela JunoCam, câmara enviada na missão Juno com o objectivo de obter as melhores imagens das regiões polares de Júpiter.

“Quando passámos pela primeira vez para lá dos pólos, soubemos que estávamos a ver um território em Júpiter que nunca tínhamos visto antes”, explica a professora Candice Hansen, do Instituto da Ciência Planetário, no Arizona, responsável pelo projecto JunoCam, citada pela BBC. “O que não esperávamos era que pudéssemos ver ciclones em forma de polígonos, enormes tempestades – o dobro do tamanho do Texas”, acrescenta.

Diário de Notícias
13 Dezembro 2018 — 18:51

 

1415: ALMA fornece visão sem precedentes do nascimento de planetas

imagens de alta resolução, pelo ALMA, de discos protoplanetários próximos, resultados da campanha DSHARP.
Crédito: ALMA (ESO/NAOJ/NRAO), S. Andrews et al.; N. Lira

Os astrónomos já catalogaram quase 4000 exoplanetas em órbita de estrelas distantes. Embora já tenhamos aprendido muito sobre esses mundos recém-descobertos, ainda há muito que não sabemos sobre os passos da formação planetária e as “receitas” cósmicas precisas que produzem a ampla gama de corpos planetários já descobertos, incluindo os chamados Júpiteres quentes, os mundos rochosos massivos, os planetas anões gelados e – esperamos algum dia em breve – análogos distantes da Terra.

Para ajudar a responder a estas e a outras questões intrigantes sobre o nascimento dos planetas, uma equipa de astrónomos usou o ALMA (Atacama Large Millimeter/submillimeter Array) para realizar uma das mais profundas investigações sobre discos protoplanetários, as cinturas de poeira formadoras de planetas em redor de estrelas jovens.

“Este programa em específico é importante porque debruça-se sobre um dos objectivos científicos fundamentais do ALMA, que é entender o processo de formação planetária e, de estudos anteriores com amostras demasiado pequenas ou objectos individuais, salta para um contexto completamente novo, permitindo análises estatísticas,” explica Stuartt Corder, director adjunto do ALMA; “Será que estes tipos de estruturas são comuns ou raros? Essa abordagem mais estatística permite que os investigadores respondam a questões muito mais fundamentais para o processo de formação planetária.”

Conhecido como DSHARP (Disk Substructures at High Angular Resolution Project), este grande programa do ALMA produziu imagens impressionantes e de alta resolução de 20 discos protoplanetários próximos e deu aos astrónomos novas informações sobre a variedade de características que contêm e sobre a velocidade com que os planetas podem emergir.

Os resultados deste levantamento foram apresentados numa série de dez artigos científicos aceites para publicação na revista The Astrophysical Journal Letters.

De acordo com os cientistas, a interpretação mais convincente destas observações é que os planetas grandes, provavelmente parecidos em tamanho e composição com Neptuno ou Saturno, formam-se rapidamente, muito mais depressa do que a teoria actual indicaria. Também tendem a formar-se nos limites externos dos seus sistemas, a distâncias tremendas das suas estrelas hospedeiras.

Esta formação precoce também poderá ajudar a explicar como os mundos rochosos, do tamanho da Terra, são capazes de evoluir e crescer, sobrevivendo à sua suposta adolescência auto-destrutiva.

“O objectivo desta campanha de observação era encontrar semelhanças e diferenças nos discos protoplanetários. A visão extraordinariamente nítida do ALMA revelou estruturas inéditas e padrões inesperadamente complexos,” comenta Sean Andrews, astrónomo do Centro Harvard-Smithsonian para Astrofísica e líder da campanha de observação do ALMA juntamente com Andrea Isella da Universidade Rice, Laura Pérez da Universidade do Chile e Cornelis Dullemond da Universidade de Heidelberg. “Estamos a ver detalhes distintos em torno de uma grande variedade de estrelas jovens de várias massas. A interpretação mais convincente destas características altamente diversificadas e de pequena escala é que existem planetas invisíveis a interagir com o material do disco.”

Os modelos principais para a formação de planetas sustentam que estes nascem através da acumulação gradual de poeira e gás no interior de um disco protoplanetário, começando com grãos de poeira que coalescem para formar rochas cada vez maiores, até que surgem asteróides, planetesimais e planetas. Este processo hierárquico deve levar muitos milhões de anos, sugerindo que o seu impacto nos discos protoplanetários seria mais predominante em sistemas mais antigos e maduros. A evidência crescente, no entanto, indica que nem sempre é o caso.

As primeiras observações de discos protoplanetários jovens, pelo ALMA, alguns com apenas um milhão de anos, revelam estruturas surpreendentes, incluindo anéis e lacunas proeminentes, que parecem ser as marcas dos planetas. Os astrónomos inicialmente estavam cautelosos ao atribuir estas características às acções dos planetas, já que outros processos naturais podiam também estar em jogo.

“Foi surpreendente ver possíveis assinaturas de formação planetária nas primeiras imagens de alta resolução de discos jovens. Era importante descobrir se eram anomalias ou se estas assinaturas eram comuns nos discos,” acrescenta Jane Huang, estudante no Centro Harvard-Smithsonian para Astrofísica e membro da equipa de investigação.

No entanto, dado que o conjunto de amostras era muito pequeno, era impossível tirar conclusões abrangentes. Os astrónomos podiam estar a observar sistemas atípicos. Foram necessárias mais observações de uma variedade de discos protoplanetários para determinar a causa mais provável das características que estavam a ver.

A campanha DSHARP foi projectada para fazer precisamente isso, estudando a distribuição a relativamente pequena escala das partículas de poeira em torno de 20 discos protoplanetários próximos. Estas partículas de poeira brilham naturalmente em comprimentos de onda milimétricos, permitindo que o ALMA mapeie com precisão a distribuição de densidade de partículas pequenas e sólidas em redor de estrelas jovens.

Dependendo da distância da estrela à Terra, o ALMA foi capaz de distinguir características tão pequenas quanto algumas Unidades Astronómicas (1 UA é a distância média entre a Terra e o Sol – cerca de 150 milhões de quilómetros, uma escala útil para medir distâncias à escala de sistemas estelares). Usando estas observações, os cientistas conseguiram visualizar uma população inteira de discos protoplanetários e estudar as suas características à escala de Unidades Astronómicas.

Os investigadores descobriram que muitas subestruturas – divisões concêntricas, anéis estreitos – são comuns a quase todos os discos, enquanto padrões espirais de grande escala e características semelhantes a arcos também estão presentes em alguns dos casos. Além disso, os discos e lacunas estão presentes numa ampla gama de distâncias das suas estrelas hospedeiras, desde algumas UA até mais de 100 UA, mais do que três vezes a distância de Neptuno ao Sol.

Estas características, que podem ser indícios de planetas grandes, podem explicar como os planetas rochosos semelhantes à Terra são capazes de se formar e crescer. Durante décadas, os astrónomos depararam-se com um grande obstáculo na teoria da formação planetária: assim que os planetesimais crescem até um certo tamanho – cerca de um quilómetro em diâmetro – a dinâmica de um disco protoplanetário regular os induziria a cair para a sua estrela hospedeira, nunca obtendo a massa necessária para formar planetas como Marte, Vénus e a Terra.

Os anéis densos de poeira que vemos agora com o ALMA produziriam um refúgio seguro para os mundos rochosos amadurecerem completamente. As suas densidades mais altas e a concentração de partículas de poeira criariam perturbações no disco, formando zonas onde os planetesimais teriam mais tempo para se tornarem em planetas plenamente desenvolvidos.

“Quando o ALMA realmente revelou as suas capacidades com a sua icónica imagem de HL Tau, tivemos que nos perguntar se era um ‘outlier’, já que o disco era comparativamente massivo e jovem,” realça Laura Perez da Universidade do Chile e membro da equipa de pesquisa. “Estas últimas observações mostram que, embora impressionante, HL Tau está longe de ser invulgar e pode até representar a evolução normal de planetas em redor de estrelas jovens.”

Astronomia On-line
14 de Dezembro de 2018

 

1414: Recém-chegada Osiris-Rex já descobriu água no asteróide Bennu

Este mosaico do asteróide Bennu é composto por 12 imagens da Polycam recolhidas no dia 2 de Dezembro pela sonda OSIRIS-REx a 24 km.
Crédito: NASA/Goddard/Universidade do Arizona

Dados recentemente analisados da missão OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer) da NASA revelaram água em argilas que compõem o seu alvo científico, o asteróide Bennu.

Durante a fase de aproximação da missão, entre meados de Agosto e o início de Dezembro, a sonda viajou 2,2 milhões de quilómetros na sua jornada da Terra para alcançar uma posição a 19 km de Bennu no dia 3 de Dezembro. Durante esse tempo, a equipa de cientistas na Terra apontou três dos instrumentos da nave para Bennu e começou a fazer as primeiras observações científicas do asteróide. A OSIRIS-REx é a primeira missão da NASA de retorno de amostras de um asteróide.

Dados obtidos a partir de dois espectrómetros da sonda, o OVIRS (OSIRIS-REx Visible and Infrared Spectrometer) e o OTES (OSIRIS-REx Thermal Emission Spectrometer), revelaram a presença de moléculas que contêm átomos de oxigénio e hidrogénio ligados, conhecidos como “hidroxilos”. A equipa suspeita que estes grupos hidroxilos existam globalmente no asteróide em minerais argilosos, o que significa que, em algum momento, o material rochoso de Bennu interagiu com água. Embora o próprio Bennu seja pequeno demais para abrigar água líquida, a descoberta indica que a água líquida estava presente num determinado ponto da história do corpo parente de Bennu, um asteróide muito maior.

“A presença de minerais hidratados no asteróide confirma que Bennu, um remanescente do início da formação do Sistema Solar, é um exemplo excelente para a missão OSIRIS-REx estudar a composição de voláteis e materiais orgânicos primitivos,” afirma Amy Simon, cientista do instrumento OVIRS no Centro de Voo Espacial Goddard da NASA em Greenbelt, no estado norte-americano de Maryland. “Quando as amostras deste material chegarem à Terra em 2023, os cientistas receberão um tesouro de novas informações sobre a história e evolução do nosso Sistema Solar.”

Além disso, os dados obtidos pela OCAMS (OSIRIS-REx Camera Suite) corroboram as observações telescópicas terrestre de Bennu e confirmam o modelo original desenvolvido em 2013 pelo chefe da equipa científica da OSIRIS-REx, Michael Nolan, e colaboradores. Esse modelo previu com bastante precisão a forma real do asteróide: o diâmetro de Bennu, a rotação, a inclinação e a forma geral são quase como modelados.

Um “outlier” do modelo previsto da forma é o tamanho da grande rocha perto do pólo sul de Bennu. O modelo, desenvolvido com base em observações terrestres, calculou que a rocha teria pelo menos 10 metros de altura. Os cálculos preliminares das observações da OCAMS mostram que o pedregulho está mais próximo dos 50 metros de altura, com uma largura de aproximadamente 55 metros.

O material à superfície de Bennu é uma mistura de regiões muito rochosas, cheias de pedregulhos e algumas regiões relativamente planas que não têm pedregulhos. No entanto, a quantidade de pedras à superfície é maior do que o esperado. A equipa fará observações adicionais a distâncias menores para avaliar com mais precisão o local onde poderá ser obtida a amostra para envio posterior para a Terra.

“Os nossos dados iniciais mostram que a equipa escolheu o asteróide correto como alvo da missão OSIRIS-REx. Ainda não descobrimos nenhum problema insuperável em Bennu,” comenta Dante Lauretta, investigador principal da OSIRIS-REx na Universidade do Arizona, em Tucson. “A sonda está bem de saúde e os instrumentos científicos estão a funcionar melhor do que o necessário. Agora é hora da nossa aventura começar.”

A missão está actualmente a realizar um levantamento preliminar do asteróide, fazendo com que a sonda passe pelo pólo norte, equador e pólo sul de Bennu a distâncias de até 7 km para melhor determinar a massa do asteróide. Os cientistas e engenheiros da missão têm que conhecer a massa do asteróide a fim de projectar a inserção da nave em órbita porque a massa afecta a atracção gravitacional do objecto. A determinação da massa de Bennu também ajudará a equipa científica a compreender a estrutura e composição do asteróide.

O levantamento também fornece a primeira oportunidade para o OLA (OSIRIS-REx Laser Altimeter), um instrumento fornecido pela Agência Espacial Canadiana, fazer observações, agora que a sonda está perto de Bennu.

A primeira inserção orbital da sonda está programada para dia 31 de Dezembro e a OSIRIS-REx permanecerá em órbita até meados de Fevereiro de 2019, quando sair para dar início a outra série de “flybys” para a próxima fase do levantamento. Durante a primeira fase orbital, a nave orbitará o asteróide a uma distância de 1,4-2 km do centro de Bennu – estabelecendo novos recordes para o corpo mais pequeno já orbitado por uma nave e a órbita mais próxima de um corpo planetário por qualquer sonda.

Astronomia On-line
14 de Dezembro de 2018

 

1413: Hubble encontra exoplaneta distante desaparecendo a ritmo sem paralelo

Impressão de artista que mostra uma nuvem gigante de hidrogénio oriunda de um planeta quente, do tamanho de Neptuno, a apenas 97 anos-luz da Terra. O exoplaneta é minúsculo quando comparado com a sua estrela, uma anã vermelha de nome GJ 3470. A radiação intensa da estrela está a aquecer o hidrogénio na atmosfera superior do planeta até um ponto em que escapa para o espaço. O mundo alienígena está a perder hidrogénio a uma velocidade 100 vezes superior à de um exoplaneta parecido com Neptuno, previamente observado, cuja atmosfera também está a evaporar-se.
Crédito: NASA, ESA e D. Player (STScI)

A velocidade e a distância a que os planetas orbitam as suas respectivas estrelas pode determinar o destino de cada um – se permanece uma parte integrante do seu sistema solar ou se evapora mais rapidamente para o cemitério escuro do Universo.

Na sua busca por aprender mais sobre planetas distantes para lá do nosso próprio Sistema Solar, os astrónomos descobriram que um planeta de tamanho médio, com aproximadamente o tamanho de Neptuno, de nome GJ 3470b, está a evaporar 100 vezes mais depressa do que um planeta previamente descoberto de tamanho similar, chamado GJ 436b.

As descobertas, publicadas ontem na revista Astronomy & Astrophysics, avançam o conhecimento dos astrónomos sobre a evolução planetária.

“Esta é a prova de que os planetas podem perder uma parte significativa de toda a sua massa,” comenta David Sing, professor emérito da Universidade Johns Hopkins e autor do estudo. “GJ 3470b está a perder mais massa do que qualquer outro planeta que vimos até agora; daqui a alguns milhares de milhões de anos, pode ter desaparecido metade do planeta.”

O estudo faz parte do programa PanCET (Panchromatic Comparative Exoplanet Treasury), liderado por Sing, que visa medir as atmosferas de 20 exoplanetas no ultravioleta, no visível e no infravermelho enquanto orbitam as suas estrelas. O PanCET é o maior programa de observação exoplanetária a ser executado com o Telescópio Espacial Hubble da NASA.

Uma questão de particular interesse para os astrónomos é como os planetas perdem a sua massa através da evaporação. Planetas como as “super” Terras e os Júpiteres “quentes” orbitam muito mais perto das suas estrelas e são, portanto, mais quentes, fazendo com que a camada mais externa das suas atmosferas seja “soprada” através de evaporação.

Embora estes exoplanetas maiores, do tamanho de Júpiter, e mais pequenos, do tamanho da Terra, sejam abundantes, os exoplanetas de tamanho médio, como Neptuno – cerca de quatro vezes o tamanho da Terra – são raros. Os investigadores levantam a hipótese de que estes Neptunos são despojados das suas atmosferas e, finalmente, tornam-se planetas mais pequenos. No entanto, é difícil testemunhar activamente estas etapas porque só podem ser estudados no ultravioleta, o que limita os cientistas a estudar estrelas próximas a não mais do que 150 anos-luz da Terra e não obscurecidas por material interestelar. GJ 3470b está a 96 anos-luz de distância e orbita uma estrela anã vermelha na direcção da constelação de Caranguejo.

Neste estudo, o Hubble descobriu que o exoplaneta GJ 3470b perdeu significativamente mais massa e tinha uma exosfera visivelmente menor do que o primeiro exoplaneta do tamanho de Neptuno estudado, GJ 436b, devido à sua menor densidade e ao recebimento de uma forte explosão de radiação da sua estrela hospedeira.

A densidade mais baixa de GJ 3470b faz com que seja incapaz de se agarrar gravitacionalmente à atmosfera aquecida e, enquanto a estrela que hospeda GJ 436b tem entre 4 e 8 mil milhões de anos, a estrela-mãe de GJ 3470b tem apenas 2 mil milhões de anos. Uma estrela mais jovem é mais activa e poderosa e, portanto, tem mais radiação para aquecer a atmosfera do planeta.

A equipa de Sing estima que GJ 3470b possa já ter perdido até 35% da sua massa total e, daqui a alguns milhares de milhões de anos, todo o seu gás pode ser retirado, deixando para trás apenas um núcleo rochoso.

“Estamos a começar a melhor entender como os planetas se formam e quais as propriedades que influenciam a sua composição geral,” explica Sing. “O nosso objectivo com este estudo e o abrangente programa PanCET é observar de modo geral as atmosferas destes planetas para determinar como cada um é afectado pelo seu próprio ambiente. Ao comparar planetas diferentes, podemos começar a juntar as peças do puzzle da sua evolução.”

Olhando para o futuro, Sing e a sua equipa esperam estudar mais exoplanetas procurando hélio no infravermelho, o que permitirá um maior alcance de investigação do que a busca por hidrogénio na luz ultravioleta.

Actualmente, os planetas que são compostos na sua maioria por hidrogénio e hélio, só podem ser estudados através do rastreamento do hidrogénio no ultravioleta. Usando o Hubble, o Telescópio Espacial James Webb da NASA (que terá uma maior sensibilidade ao hélio), e um novo instrumento chamado Carmenes que Sing descobriu recentemente poder rastrear com precisão a trajectória dos átomos de hélio, os astrónomos serão capazes de ampliar a sua busca por planetas distantes.

Astronomia On-line
14 de Dezembro de 2018

 

1412: Astrónomos estão cada vez mais perto de encontrar o misterioso Planeta X

Martin Kornmesser, The International Astronomical Union / Wikimedia

Astrónomos receberam fotografias detalhadas do céu onde pode estar o nono planeta gigantesco do Sistema Solar. Têm “80% de certeza” de que conseguirão encontrá-lo nas imagens, caso exista realmente.

“Pela primeira vez, conseguimos passar sete dias a observar sem parar. Penso que se encontrarmos o Planeta X, vai estar escondido justamente nestes dados. As imagens cobrem 85% do céu onde poderá estar. Se realmente houver algo lá, as possibilidades da descoberta do planeta são de 95%“, afirmou o astrónomo Michael Brown.

No início de 2016, os astrónomos Michael Brown e Konstantin Batygin declararam ter conseguido calcular a localização do misterioso Planeta X, o nono planeta do Sistema Solar, que estaria localizado a 41 mil milhões de quilómetros do Sol e que pesa dez vezes mais do que a Terra. O nono planeta demoraria 14 mil anos para dar uma volta ao Sol.

Até hoje não há informações concretas sobre a existência e localização exacta do planeta, além do movimento estranho dos planetas anões no Cinturão de Kuiper. Há também alguns dados sobre a possível órbita do corpo celeste, inclinado a 30 graus. As buscas pelo planeta ainda não tiveram sucesso, mas a área de procura já foi demarcada.

Em 2017,  Brown e Batygin começaram a procurar o Planeta X com ajuda do telescópio Subaru no arquipélago do Hawai, passando uma semana a observar a suposta órbita.

As primeiras tentativas de receber fotos não deram frutos por causa das condições climáticas desfavoráveis e problemas no funcionamento do observatório. Agora, os astrónomos procura encontrar nas imagens finalmente obtidas vestígios do planeta.

“O nosso principal problema principal será a própria Via Láctea, que entra parcialmente na zona de procura, onde há milhares de estrelas. O resplendor era tão brilhante que nem tentámos procurar o Planeta X nesta parte do céu”, explicou o investigador.

R. Hurt (IPAC) / Caltech
O Planeta X (ou Planeta 9) será um gigante gasoso semelhante a Úrano e Neptuno

Descobertos quatro candidatos ao “Planeta Nove” do Sistema Solar

Uma intensa investigação de três dias resultou em quatro possíveis candidatos ao “Planeta Nove” do nosso Sistema Solar. A caça…

1410: Medir a expansão do Universo acaba de se complicar

NASA/CXC/M.WEISS
A fonte das emissões agora detectadas não pode ser fruto da fusão, mas antes de acreção

Uma equipa de cientistas acaba de descobrir que as explosões de raios-X “super-suaves” podem ter origem quer em processos de acreção, quer em fenómenos de fusão nuclear – uma descoberta que torna mais complicada a medição da expansão do Universo.

Durante décadas, astrónomos e astrofísicos basearam as medições da expansão do Universo num determinado tipo de super-nova: as anãs-brancas. Contudo, a descoberta agora divulgada pela Universidade de Tecnologia do Texas, nos Estados Unidos, pode pôr este pressuposto em causa.

A emissão de raios-X “super suaves”, uma gama de raios-X de energia mais baixa, tem sido, até então, considerada como resultado da fusão nuclear que ocorre na superfície de uma anã branca, uma estrela pequena e muito densa.

Um novo estudo, publicado a semana passada na Nature Astronomy, dá conta de uma nova detecção de emissões super-brandas que claramente não são impulsionadas pela fusão nuclear, mostrando que a fusão não é a única forma de ocorrerem. Ou seja, o novo estudo vem desconstruir o que se acreditava até então, frisando que as emissões de raios X “super-suaves” podem ter outra origem.

De acordo com a publicação, os astrónomos detectaram uma uma explosão de raios-X de uma anã branca na Pequena Nuvem de Magalhães a cerca de 200.000 anos-luz, o que indica que a estrela está a puxar o material de uma gigante vermelha companheira a um ritmo tão alto que pode ser a anã branca de mais rápido crescimento já observada.

O evento, apelidado de ASASSN16-oh, foi observado pela primeira vez na Pequena Nuvem de Magalhães pelo telescópio All-Sky Automated Survey, localizado na Polónia. Observações adicionais do Swift Observatory da NASA e do Chandra X-ray Observatory vieram depois ajudar a verificar a descoberta.

“No passado, fontes de raios-X super-suaves foram associadas à fusão nuclear na superfície de anãs brancas”, disse Maccarone, professor do Departamento de Física e Astronomia da Universidade do Texas, em comunicado. “Quando uma anã branca captura material de uma estrela companheira, o material acumula-se na sua superfície e aquece e, eventualmente, a fusão nuclear ocorre, como numa bomba de hidrogénio”, explicou.

“Mas esta emissão é oriunda de uma região menor do que a superfície da anã branca e temos fortes argumentos contra qualquer tipo de explosão que tenha ocorrido na anã branca”. Em particular, explicou, “não há linhas de emissão amplas em raios-X ou espectros ópticos, portanto não pode haver vento forte a ser gerado”, considerou.

“Em alguns casos, a fusão nuclear pode ser constante na superfície de uma anã branca, mas não pode começar imediatamente como uma fusão constante. Deve haver uma explosão de algum tipo quando a fusão começar”.

“Em alguns casos, a fusão nuclear pode ser constante na superfície de uma anã branca, mas não pode começar imediatamente como uma fusão constante. Deve haver uma explosão de algum tipo quando a fusão começar”.

Por tudo isto, acreditam os cientistas, a fonte das emissões agora detectadas não pode ser fruto da fusão, mas antes de acreção, o processo de acumulação de material na superfície de um astro. Neste caso em particular, na superfície da anã-branca.

Duas formas de emissão

No novo estudo, os cientistas sustentam que o sistema em causa consiste numa estrela gigante vermelha altamente evoluída e uma anã-branca com um disco de emissão extremamente grande à sua volta. A velocidade de entrada de material através do disco é instável e, quando o material começa a fluir mais rapidamente, o brilho do sistema dispara para cima da superfície.

“O que estamos a observar aqui é um episódio transitório de uma emissão super-suave, mas sem nenhum dos sinais que associamos à fusão nuclear”, disse Maccarone. “Se uma nova [emissão] ocorresse, esperávamos ver o material a afastar-se da anã branca – o que não acontece aqui. Em vez disso, o que estamos a ver é uma emissão quente do disco que transporta o material da estrela companheira até à anã branca. A massa está a ocorrer numa taxa maior do que em qualquer sistema que tenhamos detectado no passado”.

Sinteticamente, a nova descoberta frisa que existem duas formas para a emissão deste tipo de raios: a acreção e a fusão nuclear. “Os nossos resultados vão contra o consenso de longa data sobre como a emissão de raios-X nas anãs-brancas é produzida (…) Sabemos que a emissão de raios-X pode ser feita de duas formas diferentes”, acrescentou.

“Estou animado com este resultado”, disse Maccarone, notando que este é um “fenómenos totalmente novo e, sempre que é encontrado, é muito emocionante”.

Por mais emocionante que seja, a descoberta pode mudar a forma como os astrofísicos medem a expansão do cosmos – essa pode ser a sua grande virtude. Acreditava-se, até então, que este tipo de super-novas eram uma das formas principais da expansão do Universo, onde as anãs-brancas cresciam em massa explodindo, eventualmente como super-novas do Tipo Ia.

“Estes sistemas são também a forma como medimos a expansão do Universo”, disse Maccarone. Neste sentido, medir a expansão do Universo acaba de se complicar. Para perceber este crescimento, é preciso entender a origem das super-novas do Tipo Ia, que acabam agora de ganhar uma nova forma de produzir explosões de raios-X. Os cientistas precisam agora de refinar o método de medição, tendo em conta o fenómeno da acreção.

SA, ZAP // EuropaPress / AstronomyNow

Por SA
13 Dezembro, 2018

 

1408: Descoberta água em asteróide Bennu, um dos mais próximos da Terra

NASA’s Goddard Space Flight Center
Sonda OSIRIS-REx

A sonda OSIRIS-REx, que se encontra a orbitar em volta do Bennu, descobriu a presença de água neste asteróide primitivo composto pelas mesmas moléculas que deram origem à vida na Terra, informou a NASA.

“A informação recentemente analisada proveniente da missão OSIRIS-REx revelou a presença de água na argila que forma o seu objectivo científico, o asteróide Bennu”, refere a NASA em comunicado.

Esta informação foi obtida através de dois espectrómetros com os quais a sonda está equipada. “Uma vez que o Bennu é demasiado pequeno para ter água, esta descoberta indica que, em algum momento, se deu a presença deste líquido em algum corpo paralelo, seguramente um asteróide muito maior“, salienta a agência espacial norte-americana.

No dia 3 de Dezembro a NASA anunciou que a OSIRIS-Rex tinha completado a primeira fase da sua missão, que era alcançar a órbita do asteróide e, a partir de agora, vai acompanhar o Bennu como seu satélite.

“Quando as amostras desta missão chegarem à Terra em 2023, os cientistas recebem um tesouro oculto de novas informações sobre a história e evolução do nosso sistema solar”, afirmou Amy Simon, responsável pela execução da missão e cientista da NASA.

Esta é a primeira missão da NASA que visa estudar e recolher uma amostra de um asteróide, neste caso um dos mais próximos da Terra e o corpo celeste mais pequeno alguma vez orbitado de tão perto por uma sonda.

Descoberto em 1999, Bennu é conhecido por ser rico em carbono, um composto básico da vida tal como se conhece.

Durante um ano, a OSIRIS-REx vai estudar o corpo rochoso, sem aterrar nele, com o propósito de seleccionar um local seguro e cientificamente interessante para recolher em 2020, com o auxílio de um braço robótico, um fragmento de rocha que será enviado para análise na Terra, onde a sonda deverá regressar em 2023.

ZAP // Lusa

Por ZAP
12 Dezembro, 2018

 

1407: Voyager 2 entra no espaço interestelar

Esta ilustração mostra a posição das sondas Voyager 1 e Voyager 2 da NASA, para lá da heliosfera, uma bolha protectora criada pelo Sol que se estende bem para lá da órbita de Plutão.
Crédito: NASA/JPL-Caltech

Pela segunda vez na história, um objecto feito pelo homem alcançou o espaço entre as estrelas. A sonda Voyager 2 da NASA saiu da heliosfera – a bolha protectora de partículas e campos magnéticos criada pelo Sol.

Através da comparação de dados de diferentes instrumentos a bordo da pioneira sonda espacial, os cientistas da missão determinaram que atravessou a orla externa de heliosfera no dia 5 de Novembro. Esta fronteira, chamada heliopausa, é onde o ténue e quente vento solar encontra o frio e denso meio interestelar. A sua gémea, a Voyager 1, cruzou este limite em 2012, mas a Voyager 2 transporta um instrumento ainda em funcionamento que fornecerá as primeiras observações do seu tipo sobre a natureza dessa porta de entrada no espaço interestelar.

A Voyager 2 está agora a pouco mais de 18 mil milhões de quilómetros da Terra. Os operadores da missão ainda podem comunicar com a Voyager 2 enquanto entra nesta nova fase da sua viagem, mas a informação – que se move à velocidade da luz – leva cerca de 16,5 horas para viajar da nave até à Terra. Em comparação, a luz do Sol demora aproximadamente 8 minutos para chegar à Terra.

A evidência mais convincente da saída da heliosfera pela Voyager 2 vem do instrumento PLS (Plasma Science Experiment), que parou de funcionar na Voyager 1 em 1980, muito antes da sonda atravessar a heliopausa. Até recentemente, o espaço em redor da Voyager 2 era preenchido predominantemente com plasma que fluía do nosso Sol. Este fluxo, chamado vento solar, cria uma bolha – a heliosfera – que envolve os planetas no nosso Sistema Solar. O PLS usa a corrente eléctrica do plasma para detectar a velocidade, densidade, temperatura, pressão e fluxo do vento solar. O PLS a bordo da Voyager 2 observou um declínio acentuado na velocidade das partículas do vento solar no dia 5 de Novembro. Desde essa data, o instrumento de plasma não observou nenhum fluxo de vento solar no ambiente em redor da Voyager 2, o que dá confiança aos cientistas da missão de que a sonda deixou a heliosfera.

“Trabalhar na missão Voyager faz-me sentir como um explorador, porque tudo o que vemos é novo,” comenta John Richardson, investigador principal do instrumento PLS e cientista principal do MIT em Cambridge, no estado norte-americano de Massachusetts. “Embora a Voyager 1 tenha atravessado a heliopausa em 2012, fê-lo num local diferente e numa altura diferente, e sem dados do seu PLS. De modo que estamos a ver coisas que nunca ninguém viu antes.”

Além dos dados de plasma, os membros da equipa científica da Voyager viram evidências de outros três instrumentos a bordo – o subsistema de raios cósmicos, o instrumento de partículas carregadas de baixa energia e o magnetómetro – consistentes com a conclusão de que a Voyager 2 passou para lá da heliopausa. Os membros da equipa da Voyager estão ansiosos por continuar a estudar os dados destes instrumentos a bordo a fim de obter uma imagem mais clara do ambiente pelo qual a Voyager 2 está a viajar.

“Ainda há muito para aprender sobre a região do espaço interestelar imediatamente para lá da heliopausa,” comenta Ed Stone, cientista do projecto Voyager do Caltech em Pasadena, Califórnia.

Juntas, as duas Voyager fornecem um vislumbre detalhado de como a nossa heliosfera interage com o constante vento interestelar que flui de fora do Sistema Solar. As suas observações complementam dados do IBEX (Interstellar Boundary Explorer) da NASA, uma missão que está a detectar remotamente essa fronteira. A NASA também está a preparar uma missão adicional – IMAP (Interstellar Mapping and Acceleration Probe), com lançamento previsto para 2024 – com o objectivo de capitalizar as observações das Voyager.

“A Voyager tem um lugar muito especial na nossa frota heliofísica,” comenta Nicola Fox, director da Divisão de Heliofísica na sede da NASA. “Os nossos estudos começam no Sol e estendem-se a tudo o que o vento solar toca. O envio de informações, pelas Voyager, sobre o limite da influência do Sol dá-nos um vislumbre sem precedentes de um território verdadeiramente inexplorado.”

Embora as sondas já tenham deixado a heliosfera, a Voyager 1 e a Voyager 2 ainda não deixaram o Sistema Solar, e não vão sair tão cedo. Pensa-se que o limite do Sistema Solar alcance para lá da orla externa da Nuvem de Oort, uma colecção de objectos pequenos ainda sob a influência da gravidade do Sol. A largura da Nuvem de Oort não é conhecida com precisão, mas estima-se que comece a mais ou menos 1000 UA (Unidades Astronómicas) do Sol e se estenda a cerca de 100.000 UA. Uma Unidade Astronómica é a distância do Sol à Terra. A Voyager 2 levará cerca de 300 anos para alcançar o limite interno da Nuvem de Oort e possivelmente 30.000 anos para a cruzar.

As sondas Voyager são alimentadas usando o calor do decaimento de material radioactivo, contido num dispositivo chamado gerador térmico de radioisótopos. A energia destes dispositivos diminui cerca de 4 watts por ano, o que significa que várias partes das Voyager, incluindo as câmaras em ambas as sondas, foram desligadas ao longo do tempo a fim de conservar energia.

“Acho que estamos todos felizes e aliviados que as Voyager operem o tempo suficiente para superar este marco,” comenta Suzanne Dodd, gerente do projecto Voyager no JPL da NASA em Pasadena, Califórnia. “É por isto que todos esperávamos. Estamos agora ansiosos por aprender mais com as duas sondas fora da heliopausa.”

A Voyager 2 foi lançada em 1977, 16 dias antes da Voyager 1, e ambas viajaram muito além dos seus destinos originais. As naves foram construídas para durar cinco anos e para realizar estudar detalhados de Júpiter e Saturno. No entanto, à medida que a missão progredia, tornaram-se possíveis “flybys” adicionais pelos dois gigantes gasosos mais distantes, Úrano e Neptuno. À medida que a sonda viajava através do Sistema Solar, foi usada reprogramação por controlo remoto para dotar as Voyager de maiores capacidades do que possuíam quando deixaram a Terra. A sua missão bi-planetária tornou-se uma missão tetra-planetária. Os cinco anos de esperança de vida estenderam-se a 41 anos, fazendo da Voyager 2 a missão mais longa da NASA.

A história das Voyager não só teve impacto nas gerações de cientistas e engenheiros, actuais e futuros, mas também na cultura da Terra, incluindo no cinema, na arte e na música. Cada sonda transporta um Disco Dourado de sons, imagens e mensagens da Terra. Tendo em conta que as naves podem sobreviver durante milhares de milhões de anos, estas cápsulas do tempo podem, um dia, ser os únicos vestígios da civilização humana.

Astronomia On-line
11 de Dezembro de 2018