3496: Astrónomos usam bolor para mapear as maiores estruturas do Universo

CIÊNCIA/ASTRONOMIA

Os astrónomos desenvolveram um algoritmo de computador, inspirado pelo comportamento do mofo limoso, e testaram-no contra uma simulação de computador do crescimento de filamentos de matéria escura no Universo. Os cientistas então aplicaram o algoritmo de bolor limoso aos dados contendo as localizações de mais de 37.000 galáxias mapeadas pelo SDSS (Sloan Digital Sky Survey). O algoritmo produziu um mapa tridimensional da estrutura da teia cósmica subjacente.
Seguidamente, analisaram a luz de 350 quasares distantes catalogados no Arquivo Espectroscópico do Legado Hubble. Estas distantes lanternas cósmicas são os brilhantes núcleos alimentados a buracos negros de galáxias activas, cuja luz brilha através do espaço e através da teia cósmica em primeiro plano.
Crédito: NASA, ESA e J. Burchett e O. Elek (UC Santa Cruz)

O comportamento de uma das criaturas mais humildes da natureza e dados de arquivo do Telescópio Espacial Hubble da NASA/ESA estão a ajudar os astrónomos a estudar as maiores estruturas do Universo.

O organismo unicelular conhecido como mofo limoso (Physarum polycephalum) constrói redes filamentosas complexas semelhantes a teias em busca de alimentos, sempre encontrando percursos quase óptimos para ligar locais diferentes.

Ao moldar o Universo, a gravidade constrói uma vasta estrutura filamentar em forma de teia de aranha, ligando galáxias e enxames de galáxias ao longo de pontes invisíveis de gás e matéria escura com centenas de milhões de anos-luz de comprimento. Há uma estranha semelhança entre as duas redes, uma produzida pela evolução biológica e a outra pela força primordial da gravidade.

A teia cósmica é a espinha dorsal em larga escala do cosmos, consistindo principalmente de matéria escura entrelaçada com gás, sobre a qual as galáxias são construídas. Embora não possamos ver a matéria escura, constitui a maior parte do material do Universo. Os astrónomos tiveram dificuldade em encontrar estas teias elusivas porque o gás no seu interior é demasiado ténue para ser detectado.

A existência de uma estrutura semelhante a uma teia de aranha, para o Universo, foi sugerida pela primeira vez em levantamentos galácticos na década de 1980. Desde esses estudos, a grande escala desta estrutura filamentar foi revelada por levantamentos subsequentes do céu. Os filamentos formam as fronteiras entre grandes vazios no Universo. Agora, uma equipa de investigadores recorreu ao bolor limoso para os ajudar a construir um mapa dos filamentos do Universo local (até 100 milhões de anos-luz da Terra) e a encontrar o gás no seu interior.

Desenvolveram um algoritmo de computador, inspirado pelo comportamento do mofo limoso, e testaram-no contra uma simulação de computador do crescimento de filamentos de matéria escura do Universo. Um algoritmo de computador é essencialmente uma receita que informa o computador exactamente quais as etapas a serem seguidas para resolver um problema.

Os cientistas então aplicaram o algoritmo de bolor limoso aos dados contendo as localizações de mais de 37.000 galáxias mapeadas pelo SDSS (Sloan Digital Sky Survey). O algoritmo produziu um mapa tridimensional da estrutura da teia cósmica subjacente.

Seguidamente, analisaram a luz de 350 quasares distantes catalogados no Arquivo Espectroscópico do Legado Hubble. Estas distantes lanternas cósmicas são os brilhantes núcleos alimentados a buracos negros de galáxias activas, cuja luz brilha através do espaço e através da teia cósmica em primeiro plano. Impressa nessa luz estava a assinatura reveladora do hidrogénio gasoso invisível que a equipa analisou em pontos específicos ao longo dos filamentos. Estes locais-alvo estão longe das galáxias, o que permitiu à equipa de investigação vincular o gás à estrutura de larga escala do Universo.

“É realmente fascinante que uma das formas mais simples de vida realmente permita desvendar mais sobre as estruturas de maior escala do Universo,” disse o investigador Joseph Burchett, da Universidade da Califórnia, EUA. “Usando a simulação de mofo limoso para encontrar a localização dos filamentos da teia cósmica, incluindo aqueles longe das galáxias, pudemos usar dados de arquivo do Telescópio Espacial Hubble para detectar e determinar a densidade do gás frio nos arredores desses filamentos invisíveis. Os cientistas detectam assinaturas deste gás há mais de meio século e agora provámos a expectativa teórica de que este gás compreende a teia cósmica.”

O levantamento ainda valida investigações que indicam que o gás intergaláctico está organizado em filamentos e também revela a que distância das galáxias o gás é detectado. Os membros da equipa ficaram surpresos ao encontrar gás associado aos filamentos da teia cósmica a mais de 10 milhões de anos-luz das galáxias.

Mas essa não foi a única surpresa. Também descobriram que a assinatura ultravioleta do gás fica mais forte nas regiões mais densas dos filamentos, mas que depois desaparece. “Achamos que esta descoberta nos diz mais sobre as interacções violentas que as galáxias têm nas regiões densas do meio intergaláctico, onde o gás se torna demasiado quente para detectar,” explicou Burchett.

Os cientistas voltaram-se para as simulações de bolor limoso quando procuravam uma maneira de visualizar a ligação teorizada entre a estrutura da teia cósmica e o gás frio, detectado em estudos espectroscópicos anteriores do Hubble.

Oskar Elek, na altura membro da equipa e cientista da computação na Universidade da Califórnia em Santa Cruz, descobriu online o trabalho de Sage Jenson, artista de Berlim. Entre os trabalhos de Jenson, visualizações artísticas fascinantes que mostram o crescimento de uma rede de bolor, parecida com tentáculos, movendo-se de uma fonte de alimento para outra. A arte de Jenson baseou-se no trabalho científico de 2010 de Jeff Jones, da Universidade do Oeste da Inglaterra, em Bristol, que detalhou um algoritmo para simular o crescimento destes organismos unicelulares.

A equipa de investigação foi inspirada pelo modo como o mofo limoso constrói filamentos complexos para capturar novos alimentos e como este mapeamento podia ser aplicado à forma como a gravidade molda o Universo, à medida que a teia cósmica constrói os filamentos entre galáxias e enxames de galáxias. Com base na simulação descrita no artigo de Jones, Elek desenvolveu um modelo tridimensional do crescimento do bolor para estimar a localização da estrutura filamentar da teia cósmica.

Esta análise da teia cósmica no Universo local também encaixa com observações publicadas no outono passado na revista Science da estrutura filamentar do Universo muito mais distante, a cerca de 12 mil milhões de anos-luz da Terra, perto do início do Universo. Nesse estudo, os astrónomos analisaram a luz energética de um jovem enxame de galáxias iluminando os filamentos de hidrogénio gasoso que as ligam.

Astronomia On-line
13 de Março de 2020

 

spacenews

 

3480: Telescópio do ESO observa superfície de Betelgeuse a diminuir de brilho

CIÊNCIA/ASTRONOMIA

Com o auxílio do Very Large Telescope do ESO (VLT), os astrónomos capturaram a diminuição de brilho de Betelgeuse, uma estrela super-gigante vermelha localizada na constelação de Orion. As novas imagens da superfície da estrela mostram não apenas a super-gigante vermelha a desvanecer em brilho mas também a variação da sua forma aparente.

Betelgeuse tem sido um farol no céu nocturno para os observadores estelares, no entanto durante o último ano temos assistido a uma diminuição do seu brilho. Nesta altura Betelgeuse apresenta cerca de 36% do seu brilho normal, uma variação considerável, visível até a olho nu. Tanto os entusiastas da astronomia como os cientistas pretendiam descobrir o porquê desta diminuição de brilho sem precedentes.

Uma equipa liderada por Miguel Montargès, astrónomo na KU Leuven, Bélgica, tem estado desde Dezembro a observar a estrela com o Very Large Telescope do ESO, com o objectivo de compreender por que é que esta se está a tornar mais ténue. Entre as primeiras observações da campanha encontra-se uma imagem da superfície de Betelgeuse, obtida no final do ano passado com o instrumento SPHERE.

A equipa tinha também observado a estrela com o SPHERE em Janeiro de 2019, antes da diminuição do seu brilho, dando-nos assim uma imagem do antes e do depois de Betelgeuse. Obtidas no óptico, as imagens destacam as mudanças que ocorreram na estrela, tanto em brilho como em forma aparente.

Muitos entusiastas da astronomia perguntam-se se esta diminuição de brilho da Betelgeuse significará que a estrela está prestes a explodir. Tal como todas as super-gigantes, um dia Betelgeuse transformar-se-á numa super-nova, no entanto os astrónomos não pensam que seja isso que está a acontecer actualmente, tendo formulado outras hipóteses para explicar o que está exactamente a causar as variações em forma e brilho observadas nas imagens SPHERE. “Os dois cenários em que estamos a trabalhar são um arrefecimento da superfície devido a actividade estelar excepcional ou ejecção de poeiras na nossa direcção,” explica Montargès [1]. “Claro que o nosso conhecimento de super-gigantes vermelhas é ainda incompleto e este é um trabalho em curso, por isso podemos ainda ter alguma surpresa.”

Montargès e a sua equipa usaram o VLT instalado no Cerro Paranal, no Chile, para estudar a estrela, a qual se encontra a mais de 700 anos-luz de distância da Terra, e tentar encontrar pistas que apontem para o porquê da diminuição do seu brilho. “O Observatório do Paranal do ESO é uma das poucas infra-estruturas capazes de obter imagens da superfície de Betelgeuse,” diz Montargès. Os instrumentos montados no VLT permitem efectuar observações  desde o visível ao infravermelho médio, o que significa que os astrónomos podem observar tanto a superfície da estrela como o material que a circunda. “Esta é a única maneira de compreendermos o que está a acontecer a esta estrela.”

Outra imagem nova, obtida com o instrumento VISIR montado no VLT, mostra a radiação infravermelha emitida pela poeira que circundava a Betelgeuse em Dezembro de 2019. Estas observações foram realizadas por uma equipa liderada por Pierre Kervella do Observatório de Paris, França, que explicou que o comprimento de onda capturada nesta imagem é semelhante ao detectado por câmaras que detectam calor. As nuvens de poeira, que se assemelham a chamas na imagem VISIR, formam-se quando a estrela lança a sua matéria para o espaço.

“A frase ‘somos todos feitos de poeira estelar’ é algo que ouvimos muito na astronomia popular, mas donde é que vem exactamente esta poeira?” pergunta Emily Cannon, estudante de doutoramento na KU Leuven, que trabalha com imagens SPHERE de super-gigantes vermelhas. “Ao longo das suas vidas, as super-gigantes vermelhas como a Betelgeuse criam e ejectam enormes quantidades de material ainda antes de explodirem sob a forma de super-novas. A tecnologia moderna permite-nos estudar estes objectos, situados a centenas de anos-luz de distância de nós, com um detalhe sem precedentes, dando-nos a oportunidade de desvendar o mistério que dá origem a esta perda de massa.”

Notas

[1] A superfície irregular de Betelgeuse é composta por células convectivas gigantes que se movem, diminuem e aumentam. A estrela apresenta também pulsações, tal como o bater de um coração, variando em brilho periodicamente. Referimo-nos a estas variações de convecção e pulsação em Betelgeuse como actividade estelar.

Informações adicionais

A equipa é composta por Miguel Montargès (Instituto de Astronomia, KU Leuven, Bélgica), Emily Cannon (Instituto de Astronomia, KU Leuven, Bélgica), Pierre Kervella (LESIA, Observatoire de Paris – PSL, França), Eric Lagadec (Laboratoire Lagrange, Observatoire de la Côte d’Azur, França), Faustine Cantalloube (Max-Planck-Institut für Astronomie, Heidelberg, Alemanha), Joel Sánchez Bermúdez (Instituto de Astronomía, Universidad Nacional Autónoma de México, Cidade do México, México e Max-Planck-Institut für Astronomie, Heidelberg, Alemanha), Andrea Dupree (Center for Astrophysics | Harvard & Smithsonian, EUA), Elsa Huby (LESIA, Observatoire de Paris – PSL, França), Ryan Norris (Georgia State University, EUA), Benjamin Tessore (IPAG, França), Andrea Chiavassa (Laboratoire Lagrange, Observatoire de la Côte d’Azur, França), Claudia Paladini (ESO, Chile), Agnès Lèbre (Université de Montpellier, França), Leen Decin (Instituto de Astronomia, KU Leuven, Bélgica), Markus Wittkowski (ESO, Alemanha), Gioia Rau (NASA/GSFC, EUA), Arturo López Ariste (IRAP, França), Stephen Ridgway (NSF’s National Optical-Infrared Astronomy Research Laboratory, EUA), Guy Perrin (LESIA, Observatoire de Paris – PSL, França), Alex de Koter (Instituto Astronómico Anton Pannekoek, Universidade de Amesterdão, Holanda & Instituto de Astronomia, KU Leuven, Bélgica), Xavier Haubois (ESO, Chile).

A imagem VISIR foi obtida no âmbito das observações de demonstração científica NEAR (Near Earths in the AlphaCen Region), o qual é um melhoramento do VISIR e foi implementado como uma experiência com tempo limitado.

O ESO é a mais importante organização europeia intergovernamental para a investigação em astronomia e é de longe o observatório astronómico mais produtivo do mundo. O ESO tem 16 Estados Membros: Alemanha, Áustria, Bélgica, Dinamarca, Espanha, Finlândia, França, Holanda, Irlanda, Itália, Polónia, Portugal, Reino Unido, República Checa, Suécia e Suíça, para além do país de acolhimento, o Chile, e a Austrália, um parceiro estratégico. O ESO destaca-se por levar a cabo um programa de trabalhos ambicioso, focado na concepção, construção e operação de observatórios astronómicos terrestres de ponta, que possibilitam aos astrónomos importantes descobertas científicas. O ESO também tem um papel importante na promoção e organização de cooperação na investigação astronómica. O ESO mantém em funcionamento três observatórios de ponta no Chile: La Silla, Paranal e Chajnantor. No Paranal, o ESO opera  o Very Large Telescope e o Interferómetro do Very Large Telescope, o observatório astronómico óptico mais avançado do mundo, para além de dois telescópios de rastreio: o VISTA, que trabalha no infravermelho, e o VLT Survey Telescope, concebido exclusivamente para mapear os céus no visível. O ESO é também um parceiro principal em duas infra-estruturas situadas no Chajnantor, o APEX e o ALMA, o maior projecto astronómico que existe actualmente. E no Cerro Armazones, próximo do Paranal, o ESO está a construir o Extremely Large Telescope (ELT) de 39 metros, que será “o maior olho do mundo virado para o céu”.

Links

Contactos

Margarida Serote
Representante da Rede de Divulgação Científica do ESO em Portugal
Instituto de Astrofísica e Ciências do Espaço, Portugal
Telm.: 964951692
Email: eson-portugal@eso.org

Miguel Montargès
FWO [PEGASUS]² Marie Skłodowska-Curie Fellow / Institute of Astronomy, KU Leuven
Leuven, Belgium
Tel.: +32 16 32 74 67
Email: miguel.montarges@kuleuven.be

Emily Cannon
Institute of Astronomy, KU Leuven
Leuven, Belgium
Tel.: +32 16 32 88 92
Email: emily.cannon@kuleuven.be

Pierre Kervella
LESIA, Observatoire de Paris – PSL
Paris, France
Tel.: +33 0145077966
Email: pierre.kervella@observatoiredeparis.psl.eu

Bárbara Ferreira
ESO Public Information Officer
Garching bei München, Germany
Tel.: +49 89 3200 6670
Telm.: +49 151 241 664 00
Email: pio@eso.org

Connect with ESO on social media

Este texto é a tradução da Nota de Imprensa do ESO eso2003, cortesia do ESON, uma rede de pessoas nos Países Membros do ESO, que servem como pontos de contacto local com os meios de comunicação social, em ligação com os desenvolvimentos do ESO. A representante do nodo português é Margarida Serote.

 

spacenews

 

 

3447: Telescópio do ESO observa superfície de Betelgeuse a diminuir de brilho

CIÊNCIA/ASTRONOMIA

Este mosaico de comparação mostra a estrela Betelgeuse antes e depois da diminuição de brilho. As observações obtidas em Janeiro e Dezembro de 2019 com o instrumento SPHERE, montado no Very Large Telescope do ESO, mostram o quanto a estrela desvaneceu e como é que a sua forma aparente variou.
Crédito: ESO/M. Montargès et al.

Com o auxílio do VLT (Very Large Telescope) do ESO, os astrónomos capturaram a diminuição de brilho de Betelgeuse, uma estrela super-gigante vermelha localizada na constelação de Orionte. As novas imagens da superfície da estrela mostram não apenas a super-gigante vermelha a desvanecer em brilho, mas também a variação da sua forma aparente.

Betelgeuse tem sido um farol no céu nocturno para os observadores estelares, no entanto durante o último ano temos assistido a uma diminuição do seu brilho. Nesta altura Betelgeuse apresenta cerca de 36% do seu brilho normal, uma variação considerável, visível até a olho nu. Tanto os entusiastas da astronomia como os cientistas pretendiam descobrir o porquê desta diminuição de brilho sem precedentes.

Uma equipa liderada por Miguel Montargès, astrónomo na KU Leuven, Bélgica, tem estado desde Dezembro a observar a estrela com o VLT do ESO, com o objectivo de compreender porque é que esta se está a tornar mais ténue. Entre as primeiras observações da campanha encontra-se uma imagem da superfície de Betelgeuse, obtida no final do ano passado com o instrumento SPHERE.

A equipa tinha também observado a estrela com o SPHERE em Janeiro de 2019, antes da diminuição do seu brilho, dando-nos assim uma imagem do antes e do depois de Betelgeuse. Obtidas no óptico, as imagens destacam as mudanças que ocorreram na estrela, tanto em brilho como em forma aparente.

Muitos entusiastas da astronomia perguntam-se se esta diminuição de brilho da Betelgeuse significará que a estrela está prestes a explodir. Tal como todas as super-gigantes, um dia Betelgeuse transformar-se-á numa super-nova, no entanto os astrónomos não pensam que seja isso que está a acontecer actualmente, tendo formulado outras hipóteses para explicar o que está exactamente a causar as variações em forma e brilho observadas nas imagens SPHERE. “Os dois cenários em que estamos a trabalhar são um arrefecimento da superfície devido a actividade estelar excepcional ou ejecção de poeiras na nossa direcção,” explica Montargès. “Claro que o nosso conhecimento de super-gigantes vermelhas é ainda incompleto e este é um trabalho em curso, por isso podemos ainda ter alguma surpresa.”

Montargès e a sua equipa usaram o VLT instalado no Cerro Paranal, no Chile, para estudar a estrela, a qual se encontra a mais de 700 anos-luz de distância da Terra, e tentar encontrar pistas que apontem para o porquê da diminuição do seu brilho. “O Observatório do Paranal do ESO é uma das poucas infra-estruturas capazes de obter imagens da superfície de Betelgeuse,” diz Montargès. Os instrumentos montados no VLT permitem efectuar observações desde o visível ao infravermelho médio, o que significa que os astrónomos podem observar tanto a superfície da estrela como o material que a circunda. “Esta é a única maneira de compreendermos o que está a acontecer a esta estrela.”

Outra imagem nova, obtida com o instrumento VISIR montado no VLT, mostra a radiação infravermelha emitida pela poeira que circundava Betelgeuse em Dezembro de 2019. Estas observações foram realizadas por uma equipa liderada por Pierre Kervella do Observatório de Paris, França, que explicou que o comprimento de onda capturado nesta imagem é semelhante ao detectado por câmaras que detectam calor. As nuvens de poeira, que se assemelham a chamas na imagem VISIR, formam-se quando a estrela lança a sua matéria para o espaço.

“A frase ‘somos todos feitos de poeira estelar’ é algo que ouvimos muito na astronomia popular, mas donde é que vem exactamente esta poeira?” pergunta Emily Cannon, estudante de doutoramento na KU Leuven, que trabalha com imagens SPHERE de super-gigantes vermelhas. “Ao longo das suas vidas, as super-gigantes vermelhas como Betelgeuse criam e ejectam enormes quantidades de material ainda antes de explodirem sob a forma de super-novas. A tecnologia moderna permite-nos estudar estes objectos, situados a centenas de anos-luz de distância de nós, com um detalhe sem precedentes, dando-nos a oportunidade de desvendar o mistério que dá origem a esta perda de massa.”

Astronomia On-line
18 de Fevereiro de 2020

 

spacenews

 

3402: O legado do Telescópio Espacial Spitzer

CIÊNCIA/ASTRONOMIA

Nesta impressão de artista do Telescópio Espacial Spitzer da NASA no espaço, o fundo é visto no infravermelho.
Crédito: NASA/JPL-Caltech

A NASA está a celebrar o legado de um dos seus grandes observatórios, o Telescópio Espacial Spitzer, que estuda há mais de 16 anos o Universo no infravermelho. A missão terminará no dia 30 de Janeiro.

Lançado em 2003, o Spitzer revelou características anteriormente ocultas de objectos cósmicos conhecidos e levou a descobertas e informações que vão desde o nosso próprio Sistema Solar até quase aos confins do Universo.

“O Spitzer ensinou-nos o quão importante a radiação infravermelha é para entender o nosso Universo, tanto na nossa própria vizinhança cósmica quanto nas galáxias mais distantes,” disse Paul Hertz, director de astrofísica na sede da NASA. “Os avanços que fizermos nas muitas áreas da astrofísica, no futuro, serão por causa do extraordinário legado do Spitzer.”

O Spitzer foi construído para estudar “o frio, o velho e o empoeirado,” três coisas que os astrónomos observam particularmente bem no infravermelho. A radiação infravermelha refere-se a uma gama de comprimentos de onda no espectro infravermelho, desde os 700 nanómetros (demasiado pequeno para ser visto a olho nu) até cerca de 1 milímetro (aproximadamente o tamanho da cabeça de um alfinete). Diferentes comprimentos de onda infravermelhos podem revelar características diferentes do Universo. Por exemplo, o Spitzer pode ver coisas demasiado frias para emitirem muita luz visível, incluindo exoplanetas (planetas para lá do nosso Sistema Solar), anãs castanhas e matéria fria encontrada no espaço entre as estrelas.

Quanto ao “antigo”, o Spitzer estudou algumas das galáxias mais distantes já detectadas. A luz de algumas delas viajou durante milhares de milhões de anos para chegar até nós, permitindo que os cientistas vissem esses objectos como eram há muito, muito tempo. De facto, trabalhando juntos, o Spitzer e o Telescópio Espacial Hubble (que observa principalmente no visível e em comprimentos de onda infravermelhos mais pequenos do que os detectados pelo Spitzer) identificaram e estudaram a galáxia mais distante observada até hoje. A luz que vemos daquela galáxia foi emitida há 13,4 mil milhões de anos, quando o Universo tinha menos de 5% da sua idade actual.

Entre outras coisas, os dois observatórios descobriram que estas galáxias iniciais são mais pesadas do que os cientistas esperavam. E, ao estudar galáxias mais próximas de nós, o Spitzer aprofundou a nossa compreensão de como a formação galáctica evoluiu ao longo da vida do Universo.

O Spitzer também está atento à poeira interestelar, prevalecente na maioria das galáxias. Misturada com gás em nuvens massivas, pode condensar-se para formar estrelas, e os restos podem dar à luz planetas. Com uma técnica chamada espectroscopia, o Spitzer pode analisar a composição química da poeira para aprender mais sobre os ingredientes que formam planetas e estrelas.

Em 2005, após a missão Deep Impact da NASA ter intencionalmente atingido o Cometa Tempel 1, o telescópio analisou a poeira levantada, fornecendo uma lista de materiais que estariam presentes no início do Sistema Solar. Além disso, o Spitzer encontrou um anel anteriormente não detectado em torno de Saturno, composto por partículas esparsas de poeira que os observatórios não conseguem ver no visível.

Além disso, alguns comprimentos de onda infravermelhos podem penetrar a poeira quando a luz visível não consegue, permitindo que o Spitzer revele regiões que, de outra forma, permaneceriam obscurecidas.

“É incrível quando ‘colocamos na mesa’ tudo o que o Spitzer já fez ao longo da sua vida, desde a detecção de asteróides no nosso Sistema Solar, não maiores do que uma limusina, até aprender mais sobre algumas das galáxias mais distantes que conhecemos,” disse Michael Werner, cientista do projecto Spitzer.

Para aprofundar as suas ideias científicas, os cientistas do Spitzer combinaram frequentemente os seus achados com os de muitos outros observatórios, incluindo dois dos outros Grandes Observatórios da NASA, o Hubble e o Observatório de raios-X Chandra.

Outros mundos

Algumas das maiores descobertas científicas do Spitzer, incluindo aquelas relativas a exoplanetas, não faziam parte dos objectivos científicos originais da missão. A equipa usou uma técnica chamada método de trânsito, que procura uma queda no brilho da estrela que resulta quando um planeta passa à sua frente, para confirmar a presença de dois planetas do tamanho da Terra no sistema TRAPPIST-1. Depois, o Spitzer descobriu outros cinco planetas do tamanho da Terra no mesmo sistema – e forneceu informações cruciais sobre as suas densidades – totalizando o maior lote de exoplanetas terrestres já descoberto em torno uma única estrela.

Um dos primeiros observatórios a distinguir a luz vinda directamente de um exoplaneta, o Spitzer aproveitou a mesma capacidade para outro “primeiro”: a detecção de moléculas na atmosfera de um exoplaneta (estudos anteriores revelaram elementos químicos individuais em atmosferas exoplanetárias). E também forneceu as primeiras medições de variações de temperatura e de vento numa atmosfera exoplanetária.

“Quando o Spitzer estava a ser projectado, os cientistas ainda não tinham encontrado um único exoplaneta em trânsito e, quando o Spitzer foi lançado, só conhecíamos um punhado deles,” disse Sean Carey, gestor do Centro Científico Spitzer do IPAC no Caltech, Pasadena, no estado norte-americano da Califórnia. “O facto do Spitzer se ter tornado numa ferramenta exoplanetária tão poderosa, quando isso nem era algo para o qual os planeadores originais pudessem ter-se preparado, é realmente profundo. E obtivemos alguns resultados absolutamente impressionantes.”

Mantendo-se frio

Um dos principais pontos fortes do Spitzer é a sua sensibilidade – isto é, a capacidade de detectar fontes muito fracas de luz infravermelha. A Terra é uma das principais fontes de radiação infravermelha, e tentar ver fontes infravermelhas fracas a partir do solo é como tentar observar estrelas quando o Sol está acima do horizonte. Essa é uma das principais razões pelas quais os construtores do Spitzer o tornaram o primeiro observatório astrofísico numa órbita que segue a órbita da Terra: longe do calor do nosso planeta, os detectores do Spitzer não teriam que lidar com a sua radiação infravermelha.

Diferentes comprimentos de onda infravermelhos podem revelar diferentes características do Universo. Alguns telescópios terrestres podem observar em certos comprimentos de onda infravermelhos e fornecer informações científicas valiosas, mas o Spitzer pode alcançar uma maior sensibilidade do que telescópios terrestres muito maiores e ver fontes muito mais fracas, como galáxias extremamente distantes. Além disso, foi projectado para detectar alguns comprimentos de onda infravermelhos que a atmosfera da Terra bloqueia completamente, observando nesses comprimentos de onda que estão fora do alcance dos observatórios terrestres.

As naves espaciais também podem gerar calor infravermelho, de modo que o Spitzer foi construído para permanecer frio, operando a temperaturas tão baixas quanto -267º Celsius. Em 2009, o Spitzer esgotou a sua reserva de hélio refrigerante, assinalando o fim da sua “missão fria”. Mas a grande distância do Spitzer, à Terra, ajudou-o a não aquecer demasiado – ainda opera a -244º Celsius – e os membros da equipa da missão descobriram que podiam continuar a observar em dois comprimentos de onda infravermelhos. A “missão quente” do Spitzer já dura há mais de uma década, quase o dobro da sua “missão fria”.

Os planeadores da missão original não esperavam que o Spitzer operasse por mais de 16 anos. Esta vida útil prolongada levou a alguns dos resultados científicos mais profundos do Spitzer, mas também colocou desafios à medida que o observatório se afasta cada vez mais da Terra.

“Não estava nos planos ter o Spitzer a operar tão longe da Terra, de modo que a equipa teve que adaptar-se, ano após ano, a manter a nave em operação,” disse Joseph Hunt, gestor do projecto do Spitzer. “Mas eu acho que superar esse desafio deu às pessoas uma grande sensação de orgulho. Esta missão afectou-nos positivamente.”

No dia 30 de Janeiro de 2020, os engenheiros vão desactivar o Spitzer e cessar as operações científicas. Durante o processo de revisão da NASA, em 2016, a agência espacial tomou a decisão de encerrar a missão do Spitzer. O encerramento estava inicialmente planeado para 2018, em antecipação do lançamento do Telescópio Espacial James Webb, que também realizará observações astronómicas no infravermelho. Quando o lançamento do Webb foi adiado, a missão do Spitzer recebeu a sua quinta e última extensão. Estas extensões deram ao Spitzer mais tempo para continuar a produzir ciência transformadora, incluindo tarefas de “desbravamento de caminho” para o Webb.

Astronomia On-line
28 de Janeiro de 2020

spacenews

 

“Lupas” cósmicas fornecem medição da expansão do Universo

CIÊNCIA/ASTRONOMIA

Cada uma destas imagens obtidas pelo Telescópio Espacial Hubble revela quatro imagens distorcidas de um quasar de fundo em redor do núcleo central de uma galáxia massiva no plano da frente.
As múltiplas imagens do quasar foram produzidas pela gravidade da galáxia no plano da frente, que actua como uma lupa cósmica distorcendo a luz do quasar num efeito chamado lente gravitacional. Os quasares são “holofotes” cósmicos distantes produzidos por buracos negros activos.
As imagens do Hubble foram obtidas entre 2003 e 2004 com o instrumento ACS (Advanced Camera for Surveys).
Crédito: NASA, ESA, S. H. Suyu (Instituto Max Planck para Astrofísica, Universidade Técnica de Munique e Instituto de Astronomia e Astrofísica da Academia Sinica) e K. C. Wong (Instituto Kavli para Física e Matemática do Universo da Universidade de Tóquio)

Uma equipa de astrónomos usou o Telescópio Espacial Hubble para medir o ritmo de expansão do Universo usando uma técnica que é completamente independente de qualquer método anterior.

A determinação do valor exacto da rapidez com que o Universo se expande é importante para a determinação da idade, tamanho e destino do cosmos. Resolver este mistério tem sido um dos maiores desafios da astrofísica dos últimos anos. O novo estudo acrescenta evidências à ideia de que novas teorias podem ser necessárias para explicar o que os cientistas estão a descobrir.

O resultado dos cientistas reforça ainda mais uma discrepância preocupante entre o ritmo de expansão, de nome Constante de Hubble, calculada a partir de medições do Universo local e o ritmo previsto pela radiação de fundo no Universo inicial, um tempo antes da existência das estrelas e galáxias.

Este valor mais recente representa a medição mais precisa, até ao momento, usando o método de lentes gravitacionais, em que a gravidade de uma galáxia em primeiro plano actua como uma lupa gigante, ampliando e distorcendo a luz de objectos de fundo. Este estudo mais recente não se baseou na técnica tradicional da “escada de distâncias cósmicas” para medir distâncias precisas de galáxias usando vários tipos de estrelas como “marcadores”. Em vez disso, os investigadores empregaram a física exótica das lentes gravitacionais para calcular o ritmo de expansão do Universo.

A equipa de astronomia que fez as novas medições da Constante de Hubble chama-se H0LiCOW (H0 Lenses in COSMOGRAIL’s Wellspring). COSMOSGRAIL é o acrónimo de “Cosmological Monitoring of Gravitational Lenses”, um grande projeto internacional cujo objectivo é monitorizar lentes gravitacionais. “Wellspring” refere-se ao suprimento abundante de sistemas de quasares sob o efeito de lentes gravitacionais.

A equipa de investigação derivou o valor H0LiCOW para a Constante de Hubble por meio de técnicas de observação e análise que têm sido bastante refinadas ao longo das últimas duas décadas.

H0LiCOW e outras medições recentes sugerem uma expansão mais rápida no Universo local do que o esperado, com base em observações do satélite Planck da ESA de como o cosmos se comportou há mais de 13 mil milhões de anos.

A diferença entre os dois valores tem importantes contribuições para a compreensão dos parâmetros físicos subjacentes do Universo e pode exigir nova física para explicar a incompatibilidade.

“Se estes resultados não estiverem de acordo, pode ser uma dica de que ainda não entendemos completamente como a matéria e a energia evoluíram ao longo do tempo, principalmente no início do Universo,” disse Sherry Suyu, líder da equipa H0LiCOW, do Instituto Max Planck para Astrofísica na Alemanha, da Universidade Técnica de Munique e do Instituto de Astronomia e Astrofísica da Academia Sinica em Taipei, Taiwan.

A equipa H0LiCOW usou o Hubble para observar a luz de seis quasares distantes, os brilhantes “holofotes” de gás que orbitam buracos negros super-massivos no centro de galáxias. Os quasares são objectos de fundo ideais por vários motivos: por exemplo, são brilhantes, extremamente distantes e estão espalhados por todo o céu. O telescópio observou como a luz de cada quasar era multiplicada em quatro imagens pela gravidade de uma galáxia massiva em primeiro plano. As galáxias estudadas estão entre 3 mil milhões e 6,5 mil milhões de anos-luz. A distância média dos quasares é de 5,5 mil milhões de anos-luz da Terra.

A luz de cada imagem quasar com efeito de lente gravitacional segue um caminho ligeiramente diferente através do espaço até alcançar a Terra. A dimensão deste percurso depende da quantidade de matéria que distorce o espaço ao longo da linha de visão até ao quasar. Para traçar cada caminho, os astrónomos monitorizam a oscilação da luz do quasar à medida que o seu buraco negro devora material. Quando a luz pisca, cada imagem na lente aumenta de brilho a diferentes momentos.

Esta sequência de oscilação na luz permite que os investigadores meçam os atrasos entre cada imagem à medida que viaja ao longo do seu caminho até à Terra. Para entender completamente estes atrasos, a equipa primeiro usou o Hubble para fazer mapas precisos da distribuição da matéria em cada galáxia. Os astrónomos depois puderam deduzir com confiança as distâncias de cada galáxia ao quasar, e da Terra à galáxia e ao quasar de fundo. Ao comparar estes valores de distância, os investigadores mediram o ritmo de expansão do Universo.

“A duração de cada atraso indica a rapidez com que o Universo se expande,” disse Kenneth Wong, membro da equipa e do Instituto Kavli para Física e Matemática do Universo da Universidade de Tóquio, autor principal do artigo mais recente da colaboração H0LiCOW. “Se os atrasos forem mais curtos, então o Universo está a expandir-se mais depressa. Se forem mais longos, então o ritmo de expansão é mais lento.”

O processo de atraso no tempo é análogo a quatro comboios que deixam a mesma estação exactamente ao mesmo tempo e que viajam à mesma velocidade para chegar ao mesmo destino. No entanto, cada um dos comboios chega ao destino em tempos diferentes. Isto porque cada comboio segue um caminho diferente e a distância de cada percurso não é a mesma. Alguns comboios viajam por colinas. Outros por vales, e outros contornam montanhas. A partir dos vários tempos de chegada, podemos inferir que cada comboio viajou uma distância diferente para chegar à mesma estação. Da mesma forma, o padrão de oscilação não aparece ao mesmo tempo porque parte da luz é “atrasada” ao viajar por curvas criadas pela gravidade da matéria densa na galáxia interveniente.

Os investigadores calcularam um valor da Constante de Hubble de 73 quilómetros por segundo por mega-parsec (com 2,4% de incerteza). Isto significa que a cada 3,3 milhões de anos-luz adicionais que uma galáxia está da Terra, esta parece estar a mover-se 73 km por segundo mais depressa, devido à expansão do Universo.

A medição da equipa também se aproxima do valor de 74 da Constante de Hubble calculado pela equipa SH0ES (Super-nova H0 for the Equation of State), que usou a técnica da escada de distâncias cósmicas. A medição da equipa SH0ES baseia-se na medição das distâncias de galáxias perto e longe da Terra usando variáveis Cefeidas e super-novas como marcadores para as galáxias.

Os valores das equipas SH0ES e H0LiCOW diferem significativamente do número 67 do Planck, fortalecendo a tensão nas medições da Constante de Hubble no Universo moderno e no valor previsto com base nas observações do Universo primitivo.

“Um dos desafios que superámos foi a criação de programas de monitorização dedicados, através do COSMOGRAIL, para obter os tempos de vários destes sistemas de lentes,” disse Frédéric Courbin, da Escola Politécnica Federal de Lausanne, líder do projecto COSMOGRAIL.

Suyu acrescentou: “Ao mesmo tempo, foram desenvolvidas novas técnicas de modelagem de massa a fim de medir a distribuição de matéria numa galáxia, incluindo modelos que desenhámos para fazer uso das imagens de alta resolução do Hubble. As imagens permitiram-nos reconstruir, por exemplo, as galáxias que hospedam os quasares. Estas imagens, juntamente com imagens adicionais de campo mais amplo obtidas com telescópios terrestres, também nos permitem caracterizar o ambiente do sistema de lentes, que afecta a curvatura da luz. As novas técnicas de modelagem de massa, em combinação com os atrasos no tempo, ajudam-nos a medir com precisão as distâncias das galáxias.”

Com início em 2012, a equipa H0LiCOW possui agora imagens do Hubble e informações de atraso de tempo para 10 quasares sobre o efeito de lentes gravitacionais e galáxias intervenientes. A equipa vai continuar a procurar e a seguir novos quasares em colaboração com investigadores de dois novos programas. Um deles, de nome STRIDES (STRong-lensing Insights into Dark Energy Survey), está a procurar novos sistemas de quasares sob o efeito de lentes gravitacionais. O segundo, chamado SHARP (Strong-lensing at High Angular Resolution Program), usa ópticas adaptativas com os telescópios Keck para obter imagens desses sistemas de lentes gravitacionais. O objectivo da equipa é observar mais 30 sistemas de quasares sob o efeito de lentes gravitacionais e assim reduzir a incerteza de 2,4% para 1%.

O Telescópio Espacial James Webb da NASA, com lançamento previsto para o próximo ano, poderá ajudá-los a atingir a meta de 1% de incerteza muito mais depressa graças à sua capacidade em mapear as velocidades das estrelas numa galáxia que actua como lente gravitacional, o que permitirá aos astrónomos desenvolver modelos mais precisos da distribuição de matéria escura numa galáxia.

O trabalho da equipa H0LiCOW também abre caminho para o estudo de centenas de quasares sob o efeito de lentes gravitacionais que os astrónomos estão a descobrir graças a levantamentos como o DES (Dark Energy Survey) ou PanSTARRS (Panoramic Survey Telescope and Rapid Response System), e com o futuro LSST (Large Synoptic Survey Telescope) da NSF (National Science Foundation), que deverá descobrir milhares de fontes adicionais.

Além disso, o WFIRST (Wide Field Infrared Survey Telescope) da NASA vai ajudar os astrónomos a resolver o desacordo no valor da Constante de Hubble, rastreando a história da expansão do Universo. A missão também vai usar várias técnicas, como a amostragem de milhares de super-novas e outros objectos a várias distâncias, para ajudar a determinar se a discrepância é resultado de erros de medição, técnicas observacionais, ou se os astrónomos precisam de ajustar a teoria a partir da qual derivam as suas previsões.

A equipa apresentou os seus resultados na 235.ª reunião da Sociedade Astronómica Americana em Honolulu, Hawaii.

Astronomia On-line
17 de Janeiro de 2020

spacenews

 

3369: Sem ele não haveria vida na Terra. Cientistas traçam viagem cósmica do fósforo

CIÊNCIA

Forma-se nas correntes de gás que dão origem às estrelas e viaja à boleia de cometas. Foi assim que o fósforo, um dos constituintes da vida, chegou à Terra, há cerca de 4,5 mil milhões de anos. Astrónomos traçaram pela primeira vez o seu roteiro

Dizem os poetas que somos feitos do pó de estrelas, e não podiam estar mais certos, porque são as estrelas que forjam os elementos constituintes da vida. Toda ela: das bactérias e das plantas aos crustáceos ou aos vermes, dos linces, aos elefantes, e dos cachalotes aos seres humanos. Mas como surgiu, afinal, a vida na Terra, há cerca de quatro mil milhões de anos?

Esse processo é ainda hoje bastante misterioso, mas a ciência começa a ter algumas respostas, e uma delas tem a ver com o fósforo, um desses elementos essenciais à vida. Combinando dados de observações do telescópio ALMA, do ESO (European Southern Observatory), instalado no deserto de Atacama, no Chile, e da sonda Rosetta, da ESA, a agência espacial europeia, uma equipa de internacional de astrónomos traçou agora pela primeira vez o roteiro de viagem do fósforo, das estrelas, onde se forma, até à Terra, onde se juntou a outros elementos básicos para aqui fazer despontar a vida.

Os dados, publicados hoje na revista científica Monthly Notices of the Royal Astronomical Society mostram que o fósforo se constitui durante a própria formação de um certo tipo de estrelas, e que viaja depois através do cosmos à boleia de cometas, dispersando-se assim no espaço.

“A vida apareceu na Terra há cerca de 4 mil milhões de anos, mas ainda não sabemos bem que processos a tornaram possível”, afirma o principal autor do estudo, Víctor Rivilla, do Instituto Nacional de Astrofísica de Itália, sublinhando que os “dados combinados” do telescópio ALMA e do ROSINA, um dos instrumentos da sonda Rosetta, que estudou em detalhe o cometa 67P/Churyumov-Gerasimenko, acabam por mostrar como se dá a sua génese, como se dispersa e como se tornou uma peça vital “no puzzle da origem da vida” na Terra.

Graças ao telescópio ALMA, os astrónomos observaram em grande detalhe uma região de formação de estrelas chamada AFGL 5142, e foi assim que conseguiram traçar o rasto ao fósforo. O que verificaram foi que as moléculas com fósforo, nomeadamente o monóxido de fósforo, se formam nas correntes de gás emitidas pelas estrelas massivas quando elas próprias estão a nascer.

É um processo complexo. As estrelas massivas em formação abrem grandes cavidades nas nuvens interestelares (as regiões nebulosas de gás e poeira que existem entre as estrelas) e é então nas paredes dessas cavidades que se formam as moléculas com fósforo, pela acção combinada da radiação e dos choques que são produzidos pela estrela bebé. Estava assim encontrada a sua origem. Mas o que aconteceria depois?

Das estrelas para o espaço

Para tentar responder à pergunta, os investigadores concentraram-se no cometa 67P/Churyumov-Gerasimenko, do qual a missão europeia Rosetta traçou um dos mais detalhados retratos de um destes astros viajantes, e a ideia era tentar seguir o percurso das moléculas de fósforo, ou à base de fósforo, após a sua formação inicial. É que, após o colapso das tais cavidades nas nuvens interstelares, o fósforo ali criado agrega-se a poeiras que, por sua vez se agregam entre si, formando lentamente outros astros, como os cometas, que se tornam assim os seus veículos de transporte através do espaço.

Olhando para os dados do 67P/Churyumov-Gerasimenko, os astrónomos acabaram por encontrar o que procuravam: lá estava, sem margem para dúvida, a assinatura química do monóxido de fósforo.

O cometa 67P, fotografado pela sonda Rosetta
© ESA/Rosetta/NAVCAM

“A combinação de dados ALMA e ROSINA [o instrumento da sonda Rosetta que identificou os seus elementos] revelou uma espécie de linha condutora química durante todo o processo de formação estelar e onde o monóxido de fósforo desempenha um papel principal,” explica Victor Rivilla.

Kathrin Altwegg, investigadora principal de ROSINA e também autora do estudo acrescenta que “o monóxido de fósforo encontrado no cometa 67P poderá fortalecer [a tese] da ligação entre cometas e a vida na Terra”. O fósforo, diz, “é essencial à vida tal como a conhecemos” e, “muito provavelmente, os cometas transportaram enormes quantidades de compostos orgânicos para a Terra”.

Já Leonardo Testi, astrónomo do ESO e o gestor de operações do ALMA na Europa, sublinha a importância da “sinergia entre infra-estruturas líder mundiais no solo [o ALMA] e no espaço [a Rosetta], através da colaboração entre o ESO e a ESA”, para se chegar a esta “descoberta transformadora”, que permite ir mais além no conhecimento das “nossas origens cósmicas”.

Diário de Notícias

Filomena Naves

spacenews

 

3363: Hubble detecta os mais pequenos aglomerados conhecidos de matéria escura

CIÊNCIA/ASTRONOMIA

Cada um destes instantâneos do Hubble revela quatro imagens distorcidas de um quasar de fundo e da sua galáxia hospedeira em redor do núcleo central de uma galáxia massiva no plano da frente. A gravidade da galáxia massiva no plano da frente actua como uma lupa distorcendo a luz do quasar num efeito chamado lente gravitacional. Os quasares são “candeeiros” cósmicos extremamente distantes produzidos por buracos negros activos. Estas imagens quádruplas dos quasares são raras devido ao alinhamento quase exacto necessário entre a galáxia no plano da frente e o quasar de fundo. Os astrónomos usaram o efeito de lente gravitacional para detectar os aglomerados mais pequenos de matéria escura já encontrados. Os aglomerados estão localizados ao longo da linha de visão do telescópio até os quasares, bem como nas galáxias no plano da frente e em seu redor. A presença das concentrações de matéria escura altera o brilho aparente e a posição de cada imagem distorcida do quasar. Os astrónomos compararam estas medições com previsões de como as imagens dos quasares seriam sem a influência dos aglomerados de matéria escura. Os investigadores usaram estas medições para calcular as massas das pequenas concentrações de matéria escura. O instrumento WFC3 do Hubble capturou a luz no infravermelho próximo para cada quasar e dispersou-a nas suas cores componentes para estudo com espectroscopia. As imagens foram obtidas entre 2015 e 2018.
Crédito: NASA, ESA, A. Nierenberg (JPL) e T. Treu (UCLA)

Usando o Telescópio Espacial Hubble da NASA e uma nova técnica de observação, os astrónomos descobriram que a matéria escura forma aglomerados muito mais pequenos do que se pensava anteriormente. Este resultado confirma uma das previsões fundamentais da teoria amplamente aceite da “matéria escura fria”.

Todas as galáxias, de acordo com esta teoria, se formam e estão embebidas dentro de nuvens de matéria escura. A matéria escura propriamente dita consiste de partículas lentas, ou “frias”, que se juntam para formar estruturas que variam de centenas de milhares de vezes a massa da Via Láctea até aglomerados não mais massivos do que um avião comercial (neste contexto, “fria” refere-se à velocidade das partículas).

A observação do Hubble fornece novas ideias sobre a natureza da matéria escura e de como se comporta. “Fizemos um teste de observação muito convincente do modelo de matéria escura fria e este passa com notas excelentes’,” disse Tommaso Treu da Universidade da Califórnia, EUA, membro da equipa de observação.

A matéria escura é uma forma invisível de matéria que compõe a maior parte da massa do Universo e cria os andaimes sobre os quais as galáxias são construídas. Embora os astrónomos não possam ver a matéria escura, podem detectar a sua presença indirectamente medindo como a sua gravidade afecta as estrelas e as galáxias. A detecção das formações mais pequenas de matéria escura, procurando estrelas incorporadas, pode ser difícil ou impossível, porque contêm muito poucas estrelas.

Embora já tenham sido detectadas concentrações de matéria escura em torno de galáxias grandes e médias, até agora ainda não tinham sido encontrados aglomerados muito mais pequenos de matéria escura. Na ausência de evidências observacionais de tais aglomerados de pequena escala, alguns investigadores desenvolveram teorias alternativas, incluindo “matéria escura quente”. Esta ideia sugere que as partículas de matéria escura se movem rapidamente, passando depressa demais para se fundirem e formarem concentrações mais pequenas. As novas observações não suportam este cenário, descobrindo que a matéria escura é “mais fria” do que teria que ser na teoria alternativa da matéria escura quente.

“A matéria escura é mais fria do que pensávamos a escalas mais pequenas,” disse Anna Nierenberg do JPL da NASA em Pasadena, no estado norte-americano da Califórnia, líder do levantamento do Hubble. “Os astrónomos já realizaram outros testes observacionais das teorias da matéria escura, mas o nosso fornece a evidência mais forte, até ao momento, da presença de pequenos aglomerados de matéria escura fria. Ao combinar as previsões teóricas mais recentes, ferramentas estatísticas e novas observações do Hubble, temos agora um resultado muito mais robusto do que era possível anteriormente.”

A procura de concentrações de matéria escura sem estrelas provou ser um desafio. A equipa de investigação do Hubble, no entanto, usou uma técnica na qual não precisavam de procurar a influência gravitacional de estrelas como rastreadores de matéria escura. A equipa teve como alvos oito “candeeiros” cósmicos poderosos e distantes, chamados quasares (regiões em torno de buracos negros activos que emitem enormes quantidades de luz). Os astrónomos mediram como a luz emitida pelo oxigénio e néon, em órbita de cada um dos buracos negros dos quasares, é distorcida pela gravidade de uma galáxia massiva no plano da frente, que actua como uma lupa.

Usando este método, a equipa descobriu grupos de matéria escura ao longo da linha de visão do telescópio até aos quasares, bem como dentro e ao redor das galáxias intervenientes. As concentrações de matéria escura detectadas pelo Hubble têm 1/10.000 a 1/100.000 vezes a massa do halo de matéria escura da Via Láctea. Muitos destes pequenos grupos provavelmente não contêm sequer galáxias pequenas e, portanto, seriam impossíveis de detectar pelo método tradicional de procurar estrelas embebidas.

Os oito quasares e galáxias estavam alinhados tão precisamente que o efeito de distorção, chamado lente gravitacional, produziu quatro imagens distorcidas de cada quasar. O efeito é como olhar para um espelho de uma casa de diversões numa feira. As imagens quádruplas de quasares são raras devido ao alinhamento quase exacto necessário entre a galáxia em primeiro plano e o quasar no plano de trás. No entanto, os investigadores precisaram de várias imagens para realizar uma análise mais detalhada.

A presença de aglomerados de matéria escura altera o brilho e a posição aparentes de cada imagem distorcida do quasar. Os astrónomos compararam estas medições com previsões de como as imagens dos quasares seriam sem a influência da matéria escura. Os investigadores usaram as medições para calcular as massas das pequenas concentrações de matéria escura. Para analisar os dados, os cientistas também desenvolveram elaborados programas de computação e técnicas intensivas de reconstrução.

“Imagine que cada uma destas oito galáxias é uma lupa gigante,” explicou Daniel Gilman, membro da equipa na UCLA. “Os pequenos aglomerados de matéria escura agem como pequenas rachas na lupa, alterando o brilho e posição das quatro imagens do quasar em comparação com o que esperaríamos ver se o vidro não estivesse rachado.”

Os investigadores usaram o instrumento WFC3 (Wide Field Camera 3) do Hubble para capturar a luz infravermelha próxima de cada quasar e para dispersá-la nas suas cores componentes para estudo com espectroscopia. As emissões únicas dos quasares de fundo são melhor observadas no infravermelho. “As observações do Hubble, a partir do espaço, permitem-nos fazer estas medições em sistemas de galáxias que não seriam acessíveis com telescópios terrestres de menor resolução – e a atmosfera da Terra é opaca à luz infravermelha que precisamos de observar,” explicou Simon Birrer, membro da equipa na UCLA.

Treu acrescentou: “É incrível que, após quase 30 anos de operação, o Hubble permita visões de ponta da física fundamental e da natureza do Universo com que nem sonhávamos quando o telescópio foi lançado.”

As lentes gravitacionais foram descobertas através de levantamentos cá na Terra, como o SDSS (Sloan Digital Sky Survey) e o DES (Dark Energy Survey), que fornecem os mapas tridimensionais mais detalhados do Universo já feitos. Os quasares estão localizados a aproximadamente 10 mil milhões de anos-luz da Terra; as galáxias no plano da frente, a cerca de 2 mil milhões de anos-luz.

O número de pequenas estruturas detectadas no estudo fornece mais pistas sobre a natureza da matéria escura. “As propriedades das partículas da matéria escura afectam o número de aglomerados formados,” explicou Nierenberg. “Isto significa que podemos aprender mais sobre a física das partículas de matéria escura contando o número de pequenos aglomerados.”

No entanto, o tipo de partícula que compõe a matéria escura é ainda um mistério. “De momento, não existem evidências directas, no laboratório, da existência de partículas de matéria escura,” disse Birrer. “Os físicos de partículas nem sequer falariam sobre a matéria escura se os cosmólogos não dissessem que ela existe, com base nas observações dos seus efeitos. Quando nós, cosmólogos, falamos sobre matéria escura, estamos a perguntar ‘como é que governa a aparência do Universo, e em que escalas?'”

Os astrónomos poderão realizar estudos de acompanhamento da matéria escura usando telescópios espaciais de próxima geração como o JWST (James Webb Space Telescope) e o WFIRST (Wide Field Infrared Survey Telescope), ambos observatórios infravermelhos. O Webb será capaz de obter eficazmente estas medições para todos os quasares quadruplamente ampliados por lentes gravitacionais. A nitidez e o amplo campo de visão do WFIRST vão ajudar os astrónomos os astrónomos a fazer observações de toda a região do espaço afectada pelo imenso campo gravitacional de galáxias massivas e enxames de galáxias. Isto vai ajudar os investigadores a descobrir muito mais destes sistemas raros.

A equipa apresentou os seus resultados na 235.ª reunião da Sociedade Astronómica Americana em Honolulu, Hawaii.

Astronomia On-line
14 de Janeiro de 2020

spacenews

 

3346: Enigmático sinal de rádio vindo do Espaço desapareceu misteriosamente

CIÊNCIA/ASTRONOMIA

Raimond Spekking / Wikimedia
Westerbork Synthesis Radio Telescope (WSRT)

Um sinal de rádio intermitente vindo do Espaço desapareceu misteriosamente. Os cientistas ainda não compreendem bem o fenómeno e estão a tentar perceber o que terá acontecido.

Os estranhos sinais de rádio vindos do Espaço, conhecidos como Rajadas Rápidas de Rádio (FRB) continuam a intrigar a comunidade científica. Apesar de muito poderosos, apenas duram alguns milissegundos e por vezes são vistos de forma repetida do mesmo ponto do Espaço. No entanto, os cientistas continuam sem saber explicar a sua origem.

O primeiro exemplo de Rajadas Rápidas de Rádio repetitivas, R1, surgiram em 2012 e veio-se a descobrir que pertenciam a uma galáxia anã a três mil milhões de anos-luz de distância. O segundo exemplo de FRB, que ficou conhecido como R2, apenas foi detectado em 2018.

Recentemente, uma equipa de investigadores observou R1 e R2 durante 130 e 300 horas, respectivamente. Embora tenham detectado 30 rajadas de R1, não conseguiram qualquer sinal de R2.

Segundo o New Scientist, a explicação mais plausível é que R2 não é detectável nos comprimentos de onda observados pelo telescópio usado, o Westerbork Synthesis Radio Telescope (WSRT).

Outra explicação possível é que R2 tenha parado de enviar sinais de rádio. Ainda assim, a equipa de investigadores acredita que não seja este o caso e que simplesmente R2 não é detectável pelo WSRT ou que então não tenham sido emitidos sinais enquanto os cientistas observavam.

“Só porque você não vê nada neste momento com este telescópio não significa que não há nada para ver”, disse Jason Hessels, do Instituto Holandês de Radioastronomia.

Mas nem tudo são más notícias. Isto pode significar que R1 e R2 são muito diferentes um do outro. “Se os dois fossem parecidos, deveríamos ter visto facilmente o segundo repetidor, e não o vimos. Eles podem ser muito diferentes em quão brilhantes são, com que frequência se repetem e basicamente em outros parâmetros também”, explicou Leon Oostrum, também ele do Instituto Holandês de Radioastronomia.

Novas evidências de um estudo publicado esta segunda-feira na revista científica Nature mostram que isto pode significar também que os dois sinais vêm de galáxias diferentes.

“O principal objectivo no final é descobrir o que são estas coisas, mas, por enquanto, quanto mais informação tivermos, mais perguntas teremos”, realçou Oostrum.

ZAP //

Por ZAP
10 Janeiro, 2020

spacenews

 

3277: Novas descobertas que podem revelar a geologia de exoplanetas

CIÊNCIA

Investigadores da The Open University fizeram novas descobertas que podem revelar a geologia de planetas para lá do nosso Sistema Solar.
Crédito: Projecto DMPP

Os astrónomos anunciaram a descoberta de três exoplanetas como parte do projecto DMPP (Dispersed Matter Planet Project), usando o instrumento HARPS (High Accuracy Radial Velocity Planet Searcher) acoplado ao telescópio de 3,6 m do ESO em La Silla, Chile.

A equipa estudou as estrelas conhecidas como DMPP–1, DMPP–2 and DMPP–3. Os planetas descobertos DMPP-1b, DMPP-1c, DMPP-1d, DMPP-1e, DMPP-2b e DMPP-3Ab, estão muito próximos das suas estrelas e são aquecidos a temperaturas de 1100ºC – 1800º C. A estas temperaturas, a atmosfera e até a superfície rochosa do planeta podem desaparecer, e parte deste material dispersa-se para formar um fino manto de gás.

Esta nuvem filtra a luz estelar, produzindo pistas que permitiram à equipa captar a pequena fracção de estrelas com estes planetas invulgares e muito quentes. Com um estudo mais aprofundado, a composição química da nuvem pode ser medida, revelando o tipo de rocha à superfície do planeta quente.

Os planetas recém-descobertos, nomeadamente DMPP-1d, DMPP-1e e DMPP-3Ab, podem ser a chave para desvendar a geologia dos planetas rochosos para lá do Sistema Solar.

A professora Carole Haswell, do Departamento de Astronomia da Open University, Reino Unido, disse: “estas novas descobertas são muito promissoras para novos estudos. Devem permitir-nos medir as relações entre a massa, tamanho e composição dos planetas para lá do nosso próprio Sistema Solar.

“Agora podemos ver como os planetas em geral são construídos e se o nosso próprio planeta é típico. Por exemplo, ainda não sabemos se é coincidência que no Sistema Solar, a Terra e Vénus sejam os maiores objectos rochosos e possuam ferro como a sua maior fracção de massa.”

DMPP-1 tem três super-Terras com massas entre três e dez vezes a da Terra, orbitando a estrela a cada poucos dias. Também tem um planeta quente tipo-Neptuno que orbita a estrela a cada 20 dias.

O Dr. Daniel Staab, ex-aluno de doutoramento da mesma universidade, explicou: “DMPP-1 hospeda um sistema planetário realmente importante com três exoplanetas de baixa massa cuja composição podemos medir.”

DMPP-2b é um planeta gigante com quase metade da massa de Júpiter numa órbita de cinco dias. Tinha sido negligenciado em estudos anteriores porque a estrela pulsa, o que obscurece a assinatura da força gravitacional do planeta em órbita.

Comentando a mais empolgante destas novas descobertas, o Dr. John Barnes, investigador na Open University: “DMPP-3 foi uma grande surpresa, estávamos à procura de um sinal minúsculo indicando um planeta em órbita e de baixa massa, mas a primeira coisa que encontrámos foi um enorme sinal devido a uma estrela companheira que não esperávamos!”

A estrela companheira, DMPP-3B, é apenas massiva o suficiente para sustentar a fusão de hidrogénio, tem das massas mais baixas de todas as estrelas movidas pelo mesmo mecanismo que o Sol. Estas estrelas minúsculas são muito ténues e difíceis de encontrar. Depois de contabilizar esta estrela fraca, o Dr. Barnes e a sua equipa encontraram um planeta, DMPP-3Ab, com duas ou três a massa da Terra que completa uma órbita em torno da estrela mais brilhante a cada sete dias. O Dr. Barnes concluiu: “É difícil determinar como este planeta foi formado!”

Astronomia On-line
27 de Dezembro de 2019

 

spacenews

 

3271: NASA desvenda mistério dos planetas de “algodão doce”

CIÊNCIA

NASA, ESA, and L. Hustak, J. Olmsted, D. Player and F. Summers (STScI)

Usando dados do Telescópio Espacial Hubble, da NASA, uma equipa de astrónomos confirmou uma nova classe de planetas com a densidade de algodão doce.

Há três exoplanetas jovens no sistema Kepler 51 que são 100 vezes mais leves do que o maior planeta do Sistema Solar. Novos dados do Telescópio Espacial Hubble, da NASA, acabam de fornecer as primeiras pistas sobre a química de dois destes planetas “super-inchados”, descobertos em 2012.

Os exoplanetas orbitam em torno de uma estrela jovem semelhante ao Sol, localizada a aproximadamente 2.600 anos-luz de distância do nosso Sistema Solar. As suas atmosferas de hidrogénio e hélio são tão inchadas que os exoplanetas são quase do tamanho de Júpiter.

De acordo com o comunicado da agência espacial, estes exoplanetas têm uma densidade inferior a 0,1 gramas por centímetro cúbico – e é por esse motivo que estes corpos espaciais são comparados a algodão doce.

Com a ajuda dos dados recolhidos pelo Hubble, a equipa de astrónomos procurou pela presença de alguns elementos, especialmente água, na atmosfera dos planetas Kepler-51 b e Kepler 51 d. O telescópio da NASA observou estes planetas enquanto passavam à frente da sua estrela, com o objectivo de observar a cor infravermelha do seu “pôr do sol”.

NASA / ESA / L. Hustak and J. Olmsted (STScI)

Segundo a Sputnik News, os astrónomos deduziram a quantidade de luz absorvida pela atmosfera sob luz infravermelha, o que permitiu encontrar indicadores dos constituintes químicos dos planetas. Desta forma, a equipa descobriu que os espectros de ambos os planetas não possuíam nenhuma assinatura química reveladora, possivelmente devido às altas nuvens de partículas nas suas atmosferas.

No entanto, ao contrário das nuvens de água da Terra, as nuvens destes planetas podem ser compostas por cristais de sal ou névoas fotoquímicas, como as que podemos encontrar em Titã, a maior lua de Saturno.

A equipa concluiu que as baixas densidades destes planetas seriam, em parte, consequência da juventude do sistema, isto porque é suposto que os planetas se tenham formado fora da “linha de congelamento” da estrela, a região de possíveis órbitas onde os materiais gelados podem sobreviver, movendo-se depois para o seu interior.

Em comparação com o Sol, que tem cerca de 4,6 mil milhões de anos, este sistema tem apenas 500 milhões de anos. “Este sistema oferece um laboratório único para testar as teorias da evolução inicial dos planetas”, afirmou Zach Berta-Thomson, da Universidade do Colorado, nos Estados Unidos.

Segundo os cientistas, uma vez que os planetas estão muito mais próximos da estrela, é provável que as suas atmosferas de baixa densidade evaporem no Espaço nos próximos milhares de milhões de anos.

Nem tudo está perdido nesta luta para determinar a composição atmosférica destes dois planetas: o próximo Telescópio Espacial James Webb, também da NASA,deverá ser capaz de “espiar” através das nuvens, graças à sua sensibilidade e comprimentos de onda infravermelhos mais longos.

Observações futuras com este telescópio podem fornecer ainda mais pistas sobre de que são feitos estes planetas de algodão doce.

ZAP //

Por ZAP
26 Dezembro, 2019

 

spacenews

 

3215: À espera de nova data para o lançamento do satélite CHEOPS

CIÊNCIA/ESPAÇO

Depois de uma falha técnica ter adiado esta terça-feira o lançamento do CHEOPS, a ESA promete anunciar “assim que seja possível” a nova data para o lançamento, que pode ser já esta quarta-feira, à mesma hora

A ante-visão do CHEOPS em órbita
© EPA/ATG medialab / ESA

Uma falha no software que comanda a contagem decrescente fez abortar esta terça-feira o lançamento do CHEOPS, o satélite europeu que durante os próximos três anos e meio vai estudar os exoplanetas, a partir da órbita terrestre.

A agência espacial europeia ESA, adianta na sua homepage que anunciará “assim que possível” a nova data para o lançamento, que poderá ser já amanhã, no mesmo horário, ou seja às 8.54 (hora de Lisboa).

Lançado a partir do centro espacial de Kourou, na Guiana Francesa por foguetão russo Soyuz-Fregat, que transporta outros passageiros congéneres, o CHEOPS foi desenhado e concebido por um consórcio europeu que inclui desde o início cientistas e engenheiros portugueses, do Instituto de Astrofísica e Ciências do Espaço (IA) – instituição que lidera a participação científica portuguesa na missão – e a Deimos Engenharia, que concebeu o software de decisão para as observações a serem feitas em cada momento pelo satélite.

O novo telescópio europeu ficará numa órbita entre os 800 e os 1200 km de altitude e vai observar durante os próximos três anos e meio mais de mil exoplanetas dos 4143 actualmente conhecidos.

Os exoplanetas seleccionados para este estudo aprofundado a partir das observações do CHEOPS são aqueles que têm dimensões entre as da Terra e Neptuno, para se fazer uma caracterização detalhada de cada um deles.

A ideia é levar o conhecimento sobre estes mundos distantes a um novo patamar, medindo-lhes o raio com um rigor sem precedentes, verificar a existência ou não de atmosferas, medir-lhes a temperatura e tentar perceber se algum deles poderá ter luas e anéis como acontece com alguns planetas do sistema solar.

Cerca de um mês após o lançamento, os dados do CHEOPS os cientistas poderão em terra o seu trabalho a partir dos dados enviados pelo novo telescópio espacial.

Diário de Notícias
Filomena Naves
17 Dezembro 2019 — 13:51

 

spacenews

 

3167: Vibrações provocadas por “estrelamotos” permitem precisar a idade da Via Láctea

CIÊNCIA

(dr) STScI / NASA / ESA

Os tremores estelares registados pelo telescópio espacial Kepler, da NASA, ajudaram a responder a um antigo enigma sobre a idade do “disco espesso” da Via Láctea.

Uma equipa de cientistas, liderada por investigadores do Centro de Excelência ARC da Austrália ASTRO-3-D, usou dados da missão Kepler para calcular que a idade do “disco espesso” da Via Láctea. Segundo o artigo científico, publicado em Outubro na Royal Astronomical Society, o disco tem, aproximadamente, 10.000 milhões de anos.

“Esta descoberta elimina um mistério”, afirmou o autor principal, Sanjib Sharma, citado pelo Europa Press. “Os dados anteriores sobre a distribuição etária das estrelas no disco não eram concordantes com os modelos criados, mas ninguém sabia onde estava o erro: nos dados ou nos modelos. Agora, temos certeza de que descobrimos.”

Tal como várias galáxias espirais, a Via Láctea tem duas estruturas em forma de disco, conhecidas como “grossa” e “fina”. O disco espesso contém apenas 20% do total de estrelas da galáxia e, de acordo com a sua composição e inchaço vertical, acredita-se ser o mais antigo.

Para saber a diferença de idades dos discos, Sharma e o resto da equipa usaram um método conhecido como asterosismologia, uma forma de identificar as estruturas internas das estrelas medindo as oscilações dos tremores estelares.

Impressão artística dos discos da Via Láctea

“Os terremotos geram ondas sonoras dentro das estrelas que as fazem soar ou vibrar”, explica o co-autor do artigo, Dennis Stello. “As frequências produzidas revelam características das propriedades internas das estrelas, incluindo a sua idade. É como identificar um violino Stradivarius ao ouvir o som que produz.”

Esta datação permite aos cientistas olhar para trás no tempo e discernir o período da História do Universo em que a Via Láctea foi formada, uma prática conhecida como arqueologia galáctica.

As pequenas vibrações que ocorrem nas estrelas são muito pequenas, mas os cientistas defendem que devemos prestar-lhes atenção. “As excelentes medições de brilho feitas pelo telescópio Kepler eram ideais para isso. O telescópio era tão sensível que seria capaz de detectar a atenuação dos faróis de um carro quando uma pulga passava por ele”, disse Sharma.

No entanto, os dados do telescópio apresentaram um problema aos astrónomos: as informações sugeriam que havia mais estrelas jovens no disco grosso do que o que os modelos previam. Afinal, eram os modelos que estavam errados ou os dados incompletos?

Em 2013, o Kepler partiu e a NASA propôs a criação da missão K2 (também chamada “Second Light”), um plano para incluir a utilização do Kepler, mesmo com deficiência, para observar muitas partes diferentes do céu durante 80 dias, de cada vez.

Os primeiros dados representaram uma nova fonte para Sharma. Uma nova análise espectroscópica revelou que a composição química incorporada nos modelos existentes para estrelas no disco grosso estava incorrecta, algo que afectou a previsão das suas idades.

Os cientistas descobriram então que os dados asterosísmicos observados recentemente estão em “excelente concordância” com as previsões do modelo. Além disso, destacam que os resultados fornecem uma forte verificação indirecta do poder analítico da asterosismologia na estimativa de idades.

ZAP //

Por ZAP
9 Dezembro, 2019

Artigos relacionados: Vibrações estelares levam a nova estimativa da idade da Via Láctea

spacenews

 

3154: NASA gravou acidentalmente a explosão de um cometa a aproximar-se do Sol

CIÊNCIA

Rolando Ligustri / phys.org

Astrónomos usaram dados do telescópio espacial TESS para estudar a explosão de um cometa durante a sua aproximação ao Sol.

A investigação resultou num artigo publicado em Novembro na revista científica Astrophysical Journal Letters. Foi a primeira vez que a humanidade conseguiu imagens tão claras de um evento deste género.

O cometa em questão é o 46P/Wirtanen, que teve o ponto de maior aproximação com a Terra em 16 de Dezembro do ano passado. A explosão de gás e poeira captada pelo TESS, entretanto, começou em 26 de Setembro, dissipando-se durante os 20 dias seguintes.

A explosão começou com um brilho forte e aconteceu em duas fases. O primeiro episódio durou cerca de uma hora e foi seguido por outro mais gradual, que foi aumentando a intensidade durante 8 horas. Os investigadores acreditam que a segunda fase pode ter ocorrido pelo espalhamento gradual da poeira, que aumentou a intensidade do brilho.

NASA @NASA

Boom: the most detailed observation of the formation & dissipation of a naturally-occurring comet outburst. @UofMaryland astronomers used @NASA_TESS data to capture a clear start-to-finish image sequence of the explosive emission of dust, ice & gases. https://go.nasa.gov/2RoOb95 

Após a explosão, de acordo com o CanalTech, o 46P/Wirtanen ficou praticamente indetectável durante duas semanas. Imagens do TESS são captadas a cada 30 minutos, o que permitiu aos astrónomos analisar cada fase da explosão com bastante detalhe.

“Com imagens frequentes num período de 20 dias, pudemos avaliar as mudanças de brilho com muita facilidade”, explicou Tony Farnham, autor principal do estudo, em comunicado. “Não conseguimos prever quando um cometa vai explodir. Mas mesmo que, de alguma forma, pudéssemos agendar essas observações, não poderíamos ter acertado melhor no tempo. A explosão aconteceu poucos dias depois de as observações começarem”.

Os cometas viajam pelo Sistema Solar geralmente acompanhados de um pouco de evaporação do gelo no seu núcleo. Conforme se aproximam do Sol, os gases aumentam, formando uma atmosfera difusa chamada “coma”. Essa actividade pode ser intensificada pela explosão espontânea de uma área da superfície.

Ainda não se sabe o que pode causar estas explosões, mas as imagens do TESS são o primeiro passo para compreendermos estes eventos, que até são comuns. Sabe-se que está relacionado com a actividade na superfície do cometa, mas o gatilho que faz com que uma gigantesca nuvem de gás e poeira se espalhe rapidamente é desconhecido.

De acordo com cálculos estimados dos cientistas, o cometa 46P/Wirtanen soltou cerca de um milhão de quilogramas de massa durante a explosão, o que pode ter criado uma cratera de aproximadamente 20 metros de diâmetro na sua superfície.

O Cometa 46P/Wirtanen foi descoberto em Janeiro de 1948 pelo astrónomo norte-americano Carl Wirtanen, e é um dos poucos cometas que são, às vezes, visíveis a olho nu – fica tão brilhante como uma estrela fraca.

ZAP //

Por ZAP
7 Dezembro, 2019

spacenews

 

3153: Descoberto primeiro planeta gigante em torno de anã branca

CIÊNCIA

Esta ilustração mostra a anã branca WDJ0914+1914 e o seu exoplaneta do tipo de Neptuno. Uma vez que o gigante gelado descreve uma órbita muito próxima da anã branca quente, a intensa radiação ultravioleta emitida pela estrela faz com que a sua atmosfera lhe seja arrancada. A maior parte do gás escapa, mas algum é puxado para um disco que fica a girar em torno da anã branca.
Crédito: ESO/M. Kornmesser

Com o auxílio do VLT (Very Large Telescope do ESO), os investigadores encontraram pela primeira vez evidências de um planeta gigante associado a uma estrela anã branca. O planeta descreve uma órbita próxima da anã branca quente, o resto de uma estrela do tipo do Sol, o que faz com que a sua atmosfera lhe seja arrancada, formando um disco de gás que circunda a estrela. Este sistema único dá-nos pistas de como poderá ser o nosso próprio Sistema Solar num futuro distante.

“Foi uma daquelas descobertas que se fazem por acaso,” comenta o investigador Boris Gänsicke, da Universidade de Warwick, no Reino Unido, que liderou o estudo publicado anteontem na Nature. A equipa estudou cerca de 7000 anãs brancas observadas pelo SDSS (Sloan Digital Sky Survey) e descobriu uma muito diferente das restantes. Ao analisar as variações subtis da radiação emitida pela estrela, descobriram-se indícios de elementos químicos em quantidades que nunca tinham sido antes observadas numa anã branca. “Sabíamos que tinha de haver algo de excepcional a acontecer neste sistema e pensámos que poderia estar relacionado com algum tipo de resto planetário.”

Para ficar com uma ideia melhor das propriedades desta estrela invulgar, chamada WDJ0914+1914, a equipa observou-a com o instrumento X-shooter montado no VLT do ESO, no deserto chileno do Atacama. Estas observações de seguimento confirmaram a presença de hidrogénio, oxigénio e enxofre associados à anã branca. Ao estudar com todo o detalhe os espectros obtidos pelo X-shooter, a equipa descobriu que estes elementos se encontravam num disco de gás em torno da anã branca e não na estrela propriamente dita.

“Demorámos algumas semanas a pensar que a única maneira de tal disco poder existir seria devido à evaporação de um planeta gigante,” explica Matthias Schreiber da Universidade de Valparaíso, no Chile, que calculou a evolução passada e futura do sistema.

As quantidades detectadas de hidrogénio, oxigénio e enxofre são semelhantes às encontradas nas camadas atmosféricas profundas de planetas gigantes gelados, como Neptuno e Úrano. Se um tal planeta orbitasse perto da anã branca quente, a intensa radiação ultravioleta emitida pela estrela arrancaria as suas camadas mais exteriores e algum deste gás acabaria num disco a rodar em torno da anã branca. É este fenómeno que os cientistas pensam estar a ver em torno da WDJ0914+1914: o primeiro planeta a evaporar-se em órbita de uma anã branca.

Combinando dados observacionais com modelos teóricos, a equipa de astrónomos conseguiu obter uma ideia mais clara deste sistema único. A anã branca é pequena e extremamente quente, apresentando uma temperatura de 28.000 graus Celsius (o que corresponde a cinco vezes a temperatura do Sol). O planeta, por sua vez, é gelado e grande — pelo menos duas vezes o tamanho da estrela. Uma vez que descreve uma órbita muito próxima da estrela, completando uma translação em apenas 10 dias, os fotões de alta energia emitidos pela estrela estão a “soprar” gradualmente a atmosfera planetária. A maior parte do gás escapa, mas algum é puxado — a uma taxa de 3000 toneladas por segundo — para um disco que gira em torno da estrela. É este disco que faz com que o planeta do tipo de Neptuno seja visível, o que não aconteceria doutro modo.

“Esta é a primeira vez que conseguimos medir a quantidade de gases tais como oxigénio e enxofre no disco, o que nos fornece informação sobre a composição de atmosferas de exoplanetas,” diz Odette Toloza da Universidade de Warwick, que desenvolveu um modelo para o disco de gás que circunda a anã branca.

“Esta descoberta abre também uma nova janela no destino final de sistemas planetários,” acrescenta Gänsicke.

As estrelas como o nosso Sol queimam hidrogénio nos seus núcleos durante a maior parte das suas vidas. Quando gastam este combustível, crescem transformando-se em gigantes vermelhas, tornando-se centenas de vezes maiores e “engolindo” os planetas mais próximos. No caso do Sistema Solar, estes planetas incluirão Mercúrio, Vénus e a Terra, os quais serão consumidos pelo Sol em fase de gigante vermelha dentro de cerca de 5 mil milhões de anos. Eventualmente, o Sol perderá as suas camadas mais exteriores, sobrando apenas um núcleo gasto e consumido, uma anã branca. Tais restos estelares podem ainda acolher planetas e pensa-se que existam muitos destes sistemas estelares na nossa Galáxia. No entanto, até agora os cientistas nunca tinham descoberto evidências de um planeta gigante sobrevivente em torno de uma anã branca. A detecção de um exoplaneta em órbita de WDJ0914+1914, situada a cerca de 1500 anos-luz de distância da Terra na direcção da constelação de Caranguejo, pode bem ser a primeira de muitas detecções deste tipo de sistemas.

De acordo com os investigadores, o exoplaneta agora descoberto, graças ao X-shooter do ESO, orbita a anã branca a uma distância de apenas 10 milhões de km, ou 15 vezes o raio do Sol, o que teria correspondido ainda ao interior da gigante vermelha. A localização invulgar do planeta sugere que a determinada altura após a estrela se ter transformado em anã branca, o planeta se deslocou para mais perto desta. Os astrónomos pensam que esta nova órbita poderá ter sido o resultado de interacções gravitacionais com outros planetas no sistema, o que significa que mais do que um planeta pode ter sobrevivido à violenta transição da sua estrela hospedeira.

“Até há pouco tempo, muito poucos astrónomos paravam para ponderar o destino dos planetas em órbita de estrelas moribundas. A descoberta de um planeta em órbita muito próxima de um núcleo estelar consumido demonstra que o Universo desafia constantemente as nossas mentes a progredir para além de ideias estabelecidas,” conclui Gänsicke.

Astronomia On-line
6 de Dezembro de 2019

spacenews

 

3132: Telescópio Webb vai desvendar os segredos de galáxias anãs próximas

CIÊNCIA

A galáxia anã do Escultor é uma companheira da Via Láctea. Os astrónomos vão usar o Telescópio Espacial James Webb para estudar os movimentos das suas estrelas e da anã de Dragão, outra companheira da nossa Galáxia. Ao estudarem o movimento das estrelas, os investigadores serão capazes de determinar a distribuição da matéria escura nestas galáxias.
Crédito: ESA/Hubble, Digitized Sky Survey 2

Em dois estudos separados recorrendo ao futuro Telescópio Espacial James Webb da NASA, uma equipa de astrónomos irá observar companheiras anãs da Via Láctea e da vizinha Galáxia de Andrómeda. O estudo destas pequenas companheiras ajudará os cientistas a aprender mais sobre a formação das galáxias e sobre as propriedades da matéria escura, uma substância misteriosa que, segundo se pensa, é responsável por aproximadamente 85% da matéria no Universo.

No primeiro estudo, a equipa obterá conhecimento da matéria escura medindo os movimentos das estrelas em duas companheiras anãs da Via Láctea. No segundo estudo, vão examinar os movimentos de quatro galáxias anãs em redor da nossa grande vizinha galáctica mais próxima, a Galáxia de Andrómeda. Isto ajudará a determinar se algumas das galáxias satélites de Andrómeda orbitam dentro de um plano, como os planetas em torno do Sol. Se o fizerem, isso terá importantes implicações para a compreensão da formação das galáxias. O investigador principal dos dois programas é Roeland van der Marel do STScI (Space Telescope Science Institute) em Baltimore, no estado norte-americano da Maryland.

Observando movimentos estelares em companheiras anãs da Via Láctea

As galáxias mais próximas da nossa Via Láctea são as suas galáxias anãs companheiras, muito mais pequenas que a Via Láctea. Van der Marel e a sua equipa planeiam estudar os movimentos das estrelas em duas destas galáxias anãs, Dragão e Escultor. As órbitas das estrelas são governadas pela gravidade resultante da matéria escura em cada galáxia. Ao estudar como as estrelas se movem, os investigadores serão capazes de determinar como a matéria escura é distribuída nessas galáxias.

“O modo como as estruturas no Universo se formam depende das propriedades da matéria escura, que compreende a maior parte da massa do Universo,” explicou van der Marel. “Nós sabemos que a matéria escura existe, mas não sabemos o que realmente compõe essa matéria escura. Nós apenas sabemos que existe algo no Universo que tem gravidade e que puxa objectos, mas não sabemos realmente o que é.”

A equipa estudará a distribuição da matéria escura nos centros das galáxias anãs para determinar as propriedades de temperatura deste misterioso fenómeno. Se a matéria escura for “fria”, a sua densidade será muito alta perto dos centros das galáxias. Se a matéria escura for “amena”, será mais homogénea por toda a área perto dos centros galácticos.

Ao mesmo tempo que o instrumento NIRCam (Near Infrared Camera) do Webb estiver a estudar os centros das galáxias anãs de Dragão e Escultor, outro instrumento, o NIRISS (Near Infrared Imager and Slitless Spectrograph) estará a investigar os arredores das galáxias anãs. “Estas observações simultâneas fornecerão algumas dicas sobre como as estrelas se movem de maneira diferente perto do centro e na periferia das galáxias anãs,” disse o co-investigador Tony Sohn do STScI. “Também permitirão duas medições independentes da mesma galáxia, para verificar se existem efeitos sistemáticos ou instrumentais.”

Dado que o Webb possui aproximadamente seis vezes a área de recolha de luz do Telescópio Espacial Hubble da NASA/ESA, a equipa pode medir os movimentos de estrelas muito mais fracas do que o Hubble consegue observar. Quantas mais estrelas individuais incluídas num estudo, mais precisamente a equipa pode modelar a matéria escura que influencia os seus movimentos.

Estudando o movimento das galáxias anãs companheiras de Andrómeda

A grande galáxia mais próxima da nossa Via Láctea, Andrómeda, tem várias companheiras anãs, assim como a nossa Galáxia. Van der Marel e a sua equipa planeiam estudar como quatro destas galáxias anãs se movem em torno de Andrómeda, para determinar se estão agrupadas num plano no espaço ou se se movem em torno de Andrómeda em todas as direcções.

Ao contrário do primeiro programa de observações, a equipa não está a tentar medir como as estrelas dentro das galáxias anãs se movem. Neste estudo, vão tentar determinar como as galáxias anãs como um todo se movem em redor da Galáxia de Andrómeda. Isto fornecerá mais informações sobre o processo pelo qual as grandes galáxias se formam por acreção e pelo acumular de galáxias mais pequenas e como exactamente isso funciona.

Na maioria dos modelos, não é de esperar que as galáxias anãs que rodeiam as galáxias maiores estejam num plano. Normalmente, os cientistas esperam que as galáxias anãs orbitem em redor das galáxias maiores de maneira aleatória. Lentamente, estas companheiras anãs perdem energia e podem ser acretadas para a galáxia maior, que crescem ainda mais.

No entanto, tanto para a Via Láctea como para Andrómeda, vários estudos sugeriram que pelo menos uma fracção das galáxias anãs encontram-se num plano e podem até estar a girar nesse plano. Uma das maneiras de determinar se isto é verdade é medir os seus movimentos tridimensionais. Se os movimentos estiverem realmente num plano, isto sugere que as galáxias anãs permanecerão no plano. Mas se as companheiras anãs parecem estar num plano, mas os seus movimentos estiverem em todas as direcções, isso indicaria um alinhamento ao acaso e não uma estrutura duradoura.

Caso as galáxias anãs se alinharem num plano, isso pode significar uma de várias coisas. Poderá ser que uma boa fracção das companheiras anãs tenha entrado em órbita de Andrómeda como um único grupo. Se for esse o caso, as anãs reteriam a “memória” de que todas caíram juntas e exibem actualmente propriedades dinâmicas semelhantes.

Outra possibilidade é que as galáxias anãs de Andrómeda se formaram como o que é chamado de “galáxias anãs de marés”. Estas colecções gravitacionalmente ligadas de gás e estrelas formam-se durante fusões ou interacções entre grandes galáxias espirais. São tão massivas quanto as galáxias anãs, mas não são dominadas por matéria escura, como os cientistas pensam que a maior parte das galáxias anãs são. É possível que uma fusão de duas galáxias grandes com muito gás possa formar algumas galáxias anãs que terminem numa única estrutura plana, mas isso seria invulgar, porque os cientistas não acham que as galáxias anãs de marés sejam o tipo predominante de galáxia anã no Universo. Sabe-se que as galáxias anãs tipicamente se formam dentro de nuvens de matéria escura chamadas halos.

Qualquer um dos casos pode significar que a formação é mais complicada do que os investigadores às vezes pensam. Qualquer um deles forneceria restrições adicionais aos cientistas que desenvolvem modelos teóricos da formação das galáxias.

A precisão extrema do Webb

Em ambos os programas, a equipa levará o Webb aos seus limites em termos de exactidão e precisão. “É uma situação muito complicada, porque basicamente o que queremos medir são movimentos muito pequenos,” explicou o co-investigador Andrea Bellini do STScI. “A precisão que queremos alcançar é como medir algo que se move alguns centímetros por ano na superfície da Lua, visto a partir da Terra.”

Ambos os estudos são programas de Observação de Tempo Garantido alocados à equipa do cientista Matt Mountain do Telescópio Webb. O Telescópio Espacial James Webb será o principal observatório espacial do mundo quando for lançado em 2021. O Webb vai resolver mistérios no nosso Sistema Solar, olhar além para mundos distantes em torno de outras estrelas e investigar as estruturas misteriosas e origens do nosso Universo. É um programa internacional liderado pela NASA com os seus parceiros ESA e Agência Espacial Canadiana.

Astronomia On-line
3 de Dezembro de 2019

spacenews

 

3113: Estrela de neutrões escondida há 32 anos foi finalmente descoberta

CIÊNCIA

Uma equipa de cientistas da Universidade de Cardiff conseguiu encontrar uma estrela de neutrões que os cientistas procuravam há mais de três décadas.

A busca que durou 32 anos conheceu o fim: a estrela de neutrões “desaparecida” foi finalmente avistada a espreitar dos destroços estelares, dando aos cientistas uma oportunidade única de estudar os primeiros momentos, e os últimos, do cataclismo de uma estrela.

Todos os detalhes foram captados pelo telescópio ALMA (Atacama Large Millimeter/submillimeter Array), localizado no Chile, que proporcionou detalhes de tirar o fôlego, revela o Scientific American.

A 23 de Fevereiro de 1987, os astrónomos assistiram entusiasmados à explosão de uma estrela numa galáxia próxima, o exemplo mais próximo conhecido de uma super-nova nos últimos 400 anos. A explosão lançou uma nuvem de poeira e detritos tão densa que a estrela de neutrões resultante não havia sido localizada até hoje.

A Super-nova 1987A foi registada a 23 de Fevereiro daquele ano por Ian Shelton, da Universidade de Toronto, usando o observatório Las Campanas, no Chile.

Este foi o primeiro evento deste género observado por um equipamento moderno. O brilho teve a intensidade de 100 milhões de sóis, adianta o Canal Tech, explicando, contudo, que o núcleo restante da explosão da super-gigante azul conhecida como Sanduleak -69º 202, a cerca de 160 mil anos-luz da Terra, permanecia escondido… até hoje.

Os astrónomos utilizaram o telescópio ALMA para localizar a estrela de neutrões que se escondia numa nuvem de poeira que continua dispersa na galáxia conhecida como Grande Nuvem de Magalhães, que fica muito perto da nossa Via Láctea. O artigo científico foi publicado no dia 19 de Novembro no The Astrophysical Journal.

“Podemos afirmar, pela primeira vez, que há uma estrela de neutrões dentro desta nuvem remanescente da super-nova”, declarou Phil Cigan, um dos autores do estudo. “A sua luz foi encoberta por uma densa nuvem de poeira, que bloqueou a luz directa da estrela de neutrões em vários comprimentos de onda, como se fosse neblina a cobrir um holofote.”

Mikako Matsuura, outro autor do estudo, explicou que o telescópio localizado no deserto do Atacama foi essencial para colocar um ponto final nesta busca que dura há mais de duas décadas.

“Apesar de a luz da estrela de neutrões ser absorvida pela nuvem de poeira que a rodeia, isso faz com que a nuvem brilhe sob luz sub-milimétrica, que agora podemos observar e identificar com o extremamente sensível telescópio ALMA”, explicou.

A Super-nova 1987A é uma das explosões mais próximas da Terra alguma vez registadas. A dificuldade em encontrar a estrela de neutrões resultante deste evento chegou a criar algumas dúvidas no seio científico, com muitos astrónomos a questionar se a ciência havia entendido o progresso da vida de uma estrela deste tipo.

O mais recente registo dos investigadores da Universidade de Cardiff é essencial para avanços futuros no estudo do Universo.

ZAP //

Por ZAP
29 Novembro, 2019

[post-news]

spacenews

 

Um buraco negro enfraquecido permite que a sua galáxia “desperte”

CIÊNCIA

O Enxame da Fénix contém o primeiro buraco negro super-massivo confirmado que não consegue impedir a formação de grandes números de estrelas no núcleo do enxame de galáxias onde reside.
Esta imagem foi composta a partir de dados obtidos pelo Chandra, pelo Hubble e pelo VLA. Os raios-X do Chandra ilustram gás quente em roxo e a emissão rádio do VLA mostra jactos em vermelho. Os dados ópticos do Hubble mostram galáxias (em amarelo) e filamentos de gás mais frio onde as estrelas se estão a formar (em azul claro).
Crédito: NASA, ESA e NRAO (clique aqui para ver versão legendada)

Os astrónomos confirmaram o primeiro exemplo de um enxame de galáxias onde um grande número de estrelas está a nascer no seu núcleo. Usando dados de telescópios espaciais da NASA e de um observatório de rádio da NSF (National Science Foundation), investigadores reuniram novos detalhes sobre como os buracos negros mais massivos do Universo afectam as suas galáxias hospedeiras.

Os enxames de galáxias são as maiores estruturas do cosmos mantidas juntas pela gravidade, consistindo de centenas ou milhares de galáxias embebidas em gás quente, bem como de matéria escura invisível. Os maiores buracos negros super-massivos encontram-se em galáxias nos centros destes enxames.

Durante décadas, os astrónomos procuraram enxames galácticos contendo ricos berçários de estrelas nas suas galáxias centrais. Em vez disso, encontraram buracos negros gigantes e poderosos, bombardeando energia através de jactos de partículas altamente energéticas e mantendo o gás demasiado quente para formar muitas estrelas.

Agora, os cientistas têm evidências convincentes de um enxame de galáxias em que as estrelas se formam a uma velocidade furiosa, aparentemente ligadas a um buraco negro menos eficaz no seu centro. Neste enxame único, os jactos do buraco negro central parecem ajudar na formação estelar. Os investigadores usaram novos dados do Observatório de raios-X Chandra e do Telescópio Espacial Hubble da NASA, e do VLA (Karl Jansky Very Large Array) da NSF para esclarecer observações anteriores deste enxame.

“Este é um fenómeno que os astrónomos têm tentado encontrar há muito tempo,” disse Michael McDonald, astrónomo do MIT (Massachusetts Institute of Technology) que liderou o estudo. “Este enxame demonstra que, em alguns casos, o ‘output’ energético de um buraco negro pode realmente melhorar o arrefecimento, levando a consequências dramáticas.”

O buraco negro está no centro de um enxame de galáxias chamado Enxame da Fénix, localizado a mais ou menos 5,8 mil milhões de anos-luz da Terra na direcção da constelação da Fénix. A grande galáxia que hospeda o buraco negro é cercada por gás quente com temperaturas de milhões de graus. A massa deste gás, equivalente a biliões de sóis, é várias vezes maior do que a massa combinada de todas as galáxias do enxame.

Este gás quente perde energia à medida que brilha em raios-X, o que deve fazer com que arrefeça até formar um grande número de estrelas. No entanto, em todos os outros enxames galácticos observados, explosões energéticas impulsionadas por um buraco negro fazem com que a maior parte do gás quente não arrefeça, impedindo o nascimento generalizado de estrelas.

“Imagine usar um ar condicionado na sua casa num dia quente, mas depois acender a sua lareira. A sua sala de estar não consegue arrefecer adequadamente até que apague o fogo,” disse o co-autor Brian McNamara da Universidade de Waterloo no Canadá. “Da mesma forma, quando a capacidade de aquecimento de um buraco negro é desactivada num enxame de galáxias, o gás pode então arrefecer.”

As evidências desta rápida formação estelar no Enxame da Fénix já tinham sido anteriormente relatadas em 2012 por uma equipa liderada por McDonald. Mas foram necessárias observações mais profundas para aprender detalhes sobre o papel do buraco negro central no renascimento de estrelas na galáxia central, e como isso pode mudar no futuro.

Combinando longas observações em raios-X, no visível e no rádio, os investigadores obtiveram uma melhoria de dez vezes na qualidade dos dados em comparação com as observações anteriores. Os novos dados do Chandra revelam que o gás quente está a arrefecer quase ao ritmo esperado na ausência de energia injectada por um buraco negro. Os novos dados do Hubble mostram que estão localizadas cerca de 10 mil milhões de massas solares de gás frio ao longo dos filamentos que conduzem ao buraco negro, e jovens estrelas estão a formar-se a partir deste gás frio a um ritmo de mais ou menos 500 massas solares por ano. Em comparação, a Via Láctea forma estrelas a um ritmo de aproximadamente uma massa solar por ano.

Os dados rádio do VLA revelam jactos saindo da vizinhança do buraco negro central. Estes jactos provavelmente insuflaram bolhas no gás quente detectado nos dados do Chandra. Tanto os jactos quanto as bolhas são evidências do rápido crescimento do buraco negro. No início deste crescimento, o buraco negro pode ter sido sub-dimensionado, em comparação com a massa da sua galáxia hospedeira, o que permitiria que o arrefecimento rápido não tivesse controlo.

“No passado, as explosões do buraco negro sub-dimensionado podem ter sido simplesmente fracas demais para aquecer os seus arredores, permitindo que o gás quente começasse a arrefecer,” disse o coautor Matthew Bayliss, investigador do MIT durante este estudo, mas que recentemente ingressou no corpo docente da Universidade de Cincinnati. “Mas, à medida que o buraco negro se tornou mais massivo e mais poderoso, a sua influência aumentou.”

O arrefecimento pode continuar quando o gás é transportado para longe do centro do enxame pelas explosões do buraco negro. A uma distância maior da influência do aquecimento do buraco negro, o gás arrefece mais depressa do que pode cair para o centro do enxame. Este cenário explica a observação de que o gás frio está localizado em redor das cavidades, com base numa comparação dos dados do Chandra e do Hubble.

Eventualmente, a explosão gerará turbulência, ondas sonoras e ondas de choque suficientes (parecidas às explosões sónicas produzidas pelos aviões supersónicos) para fornecer fontes de calor e impedir mais arrefecimento. Isto continuará até que a explosão cesse e o acumular de gás frio possa recomeçar. O ciclo inteiro pode então repetir-se.

“Estes resultados mostram que o buraco negro tem ajudado temporariamente na formação estelar, mas quando este se fortalece os seus efeitos começam a emitir os de buracos negros noutros enxames, sufocando mais nascimento estelar,” acrescentou o co-autor Mark Voit da Universidade Estatal do Michigan em East Lansing, EUA.

A ausência de objectos semelhantes mostra que os enxames de galáxias e os seus enormes buracos negros passam pela rápida fase de formação estelar de forma relativamente acelerada.

O artigo que descreve estes resultados foi publicado numa edição recente da revista The Astrophysical Journal e uma pré-impressão está disponível online.

Astronomia On-line
26 de Novembro de 2019

 

3070: Hubble estuda explosão de raios-gama com a mais alta energia já observada

CIÊNCIA

Novas observações do Telescópio Espacial Hubble da NASA/ESA investigaram a natureza da poderosa explosão de raios-gama GRB 190114C através do estudo do seu ambiente.
As explosões de raios-gama são as explosões mais poderosas do Universo. Emitem a maior parte da sua energia sob a forma de raios-gama, luz muito mais energética do que a luz visível que podemos ver com os nossos olhos.
As observações do Hubble sugerem que esta explosão em particular emitiu uma emissão tão poderosa porque a estrela em colapso estava situada num ambiente muito denso, mesmo no meio de uma galáxia brilhante a 5 mil milhões de anos-luz de distância.
Crédito: ESA/Hubble, M. Kornmesser

Novas observações do Telescópio Espacial Hubble da NASA/ESA investigaram a natureza da explosão de raios-gama GRB 190114C.

As explosões de raios-gama são as explosões mais poderosas do Universo. Emitem a maior parte da sua energia sob a forma de raios-gama, radiação que é muito mais energética do que a luz visível que podemos ver com os nossos olhos.

Em Janeiro de 2019, um GRB extremamente brilhante e longo foi detectado por um conjunto de telescópios, incluindo os telescópios Swift e Fermi da NASA, bem como pelos telescópios MAGIC (Major Atmospheric Gamma Imaging Cherenkov). Conhecido como GRB 190114C, parte da luz detectada do objecto tinha a maior energia já observada: 1 TeV (um Tera electrões-volt) – cerca de um bilião de vezes mais energia por fotão do que a luz visível. Os cientistas têm tentado observar uma emissão energética tão alta a partir de GRBs há muito tempo, de modo que esta detecção é considerada um marco na astrofísica de alta energia.

As observações anteriores revelaram que, para atingir esta energia, o material deve ser emitido de uma estrela em colapso a 99,999% da velocidade da luz. Este material é então forçado através do gás que rodeia a estrela, provocando um choque que cria a própria explosão de raios-gama. Pela primeira vez, os cientistas observaram raios-gama extremamente energéticos desta explosão em particular.

Vários observatórios terrestres e espaciais começaram a estudar GRB 190114C. Os astrónomos europeus receberam tempo de observação com o Telescópio Espacial Hubble para observar a explosão de raios-gama, estudar o seu ambiente e descobrir como esta emissão extrema é produzida.

“As observações do Hubble sugerem que esta explosão em particular estava num ambiente muito denso, bem no meio de uma galáxia brilhante a 5 mil milhões de anos-luz de distância,” explicou um dos autores principais, Andrew Levan do Instituto para Matemática, Departamento de Astrofísica e Física de Partículas da Universidade Radboud na Holanda. “Isto é realmente invulgar e sugere que talvez seja por isso que produziu esta radiação excepcionalmente poderosa.”

Os astrónomos usaram o Telescópio Espacial Hubble da NASA/ESA, juntamente com o VLT (Very Large Telescope) do ESO e o ALMA (Atacama Large Milimeter/submilimeter Array) para estudar a galáxia hospedeira deste GRB. O instrumento WFC3 (Wide Field Camera 3) foi fundamental para estudar se as propriedades ambientais do sistema hospedeiro, composto por um par próximo de galáxias em interacção, podem ter contribuído para a produção destes fotões altamente energéticos. O GRB ocorreu dentro da região nuclear de uma galáxia massiva, um local bastante único. Isto é indicativo de um ambiente mais denso do que aquele onde os GRBs são normalmente observados e poderá ter sido crucial para a produção dos fotões altamente energéticos observados.

“Os cientistas têm tentado observar emissão de energia muito alta a partir de explosões de raios-gama há muito tempo,” explicou o autor principal Antonio Ugarte Postigo do Instituto de Astrofísica da Universidade da Andaluzia na Espanha. “Esta nova observação é um passo vital para o entendimento das explosões de raios-gama, dos seus arredores imediatos e de como a matéria se comporta quando se move a 99,999% da velocidade da luz.”

Astronomia On-line
22 de Novembro de 2019

 

3018: NICER avista explosão recorde de raios-X

CIÊNCIA

Ilustração que mostra uma explosão de raios-X do Tipo I. A explosão expele primeiro a camada de hidrogénio, que se expande e acaba por se dissipar. Em seguida, a radiação cresce até ao ponto em que liberta a camada de hélio, que ultrapassa a camada de hidrogénio. Alguns dos raios-X emitidos na explosão são espalhados para o disco de acreção. A bola de fogo arrefece rapidamente e o hélio assenta novamente para a superfície.
Crédito: Centro de Voo Espacial Goddard da NASA/Chris Smith(USRA)

O telescópio NICER (Neutron star Interior Composition Explorer) da NASA, na Estação Espacial Internacional, detectou um pico repentino de raios-X por volta das 22:04 do dia 20 de Agosto. A explosão foi provocada por um enorme flash termonuclear à superfície de um pulsar, os remanescentes esmagados de uma estrela que há muito tempo explodiu como super-nova.

O surto de raios-X, o mais brilhante visto até agora pelo NICER, veio de um objecto chamado SAX J1808.4-3658, ou J1808 para abreviar. As observações revelam muitos fenómenos que nunca foram vistos juntos numa única explosão. Além disso, o surto em diminuição aumentou novamente e brevemente de brilho por razões que os astrónomos ainda não conseguem explicar.

“Esta explosão foi notável,” disse o investigador Peter Bult, astrofísico do Centro de Voo Espacial Goddard da NASA em Greenbelt, no estado norte-americano de Maryland e da Universidade de Maryland em College Park. “Vemos uma mudança de brilho em duas etapas, que pensamos ser provocada pela libertação de camadas separadas da superfície do pulsar e outras características que nos ajudarão a descodificar a física destes eventos poderosos.”

A explosão, que os astrónomos classificam como uma explosão de raios-X do Tipo I, libertou tanta energia em 20 segundos quanto o Sol em quase 10 dias. Os detalhes que o NICER capturou desta erupção recorde ajudarão os astrónomos a entender melhor os processos físicos que impulsionam surtos termo-nucleares deste e de outros pulsares explosivos.

Os pulsares são uma espécie de estrela de neutrões, o núcleo compacto deixado para trás quando uma estrela massiva fica sem combustível, colapsa sob si própria e explode. Os pulsares podem girar rapidamente e hospedar pontos quentes emissores de raios-X nos seus pólos magnéticos. À medida que o objecto gira, varre os seus pontos quentes na nossa linha de visão, produzindo pulsos regulares de radiação altamente energética.

J1808 está localizado a mais ou menos 11.000 anos-luz de distância na direcção da constelação de Sagitário. Gira 401 vezes por segundo e é membro de um sistema binário. A sua companheira é uma anã castanha, um objecto maior do que um planeta gigante gasoso, mas pequeno demais para ser uma estrela. Um fluxo constante de hidrogénio gasoso flui da companheira para a estrela de neutrões e acumula-se numa vasta estrutura de armazenamento chamada disco de acreção.

O gás nos discos de acreção não se move para dentro facilmente. Mas a cada poucos anos, os discos em redor de pulsares como J1808 tornam-se tão densos que uma grande quantidade de gás é ionizado ou despojado dos seus electrões. Isto dificulta a movimentação da luz pelo disco. A energia aprisionada inicia um processo descontrolado de aquecimento e ionização que retém ainda mais energia. O gás torna-se mais resistente ao fluxo e começa a espiralar para dentro, caindo finalmente no pulsar.

A “chuva” de hidrogénio até à superfície forma um “mar” global quente e cada vez mais profundo. Na base desta camada, as temperaturas e as pressões aumentam até que os núcleos do hidrogénio se fundem para formar núcleos de hélio, o que produz energia – um processo em funcionamento no núcleo do nosso Sol.

“O hélio acumula-se e cria a sua própria camada,” disse Zaven Arzoumanian, vice-investigador principal do NICER e co-autor do artigo. “Quando a camada de hélio tem alguns metros de profundidade, as condições permitem que os núcleos de hélio se fundam em carbono. Então, o hélio entra em erupção explosiva e lança uma bola de fogo termonuclear por toda a superfície do pulsar.”

Os astrónomos empregam um conceito chamado limite de Eddington – em honra ao astrofísico inglês Sir Arthur Eddington – para descrever a intensidade máxima de radiação que uma estrela pode ter antes que a radiação faça com que se expanda. Este ponto depende fortemente da composição do material acima da fonte de emissão.

“O nosso estudo explora este conceito de longa data de uma nova maneira,” disse o co-autor Deepto Chakrabarty, professor de física no MIT (Massachusetts Institute of Technology) em Cambridge. “Aparentemente, estamos a ver o limite de Eddington para duas composições diferentes na mesma explosão de raios-X. Esta é uma maneira muito poderosa e directa de acompanhar as reacções de queima nuclear subjacentes ao evento.”

Ao início da explosão, os dados do NICER mostram que o brilho dos raios-X diminuiu durante quase um segundo antes de aumentar novamente num ritmo mais lento. Os cientistas interpretam esta “paralisação” como o momento em que a energia da explosão se acumulou o suficiente para fazer explodir a camada de hidrogénio do pulsar para o espaço.

A bola de fogo continuou a crescer por mais dois segundos e, em seguida, atingiu o seu pico, explodindo a camada de hélio mais massiva. O hélio expandiu-se mais rapidamente, ultrapassou a camada de hidrogénio antes que pudesse dissipar-se e, em seguida, diminuiu de velocidade, parou e assentou-se à superfície do pulsar. Após esta fase, o pulsar aumentou novamente de brilho, cerca de 20%, mas apenas brevemente, por razões que a equipa ainda não entende.

Durante esta recente actividade de J1808, o NICER detectou outra explosão de raios-X, muito mais fraca, que não exibiu nenhuma das principais características observadas no evento de 20 de Agosto.

Além de detectar a expansão de diferentes camadas, as observações da explosão pelo NICER revelam raios-X reflectidos pelo disco de acreção e registam o piscar das “oscilações de rajada” – sinais de raios-X que aumentam e diminuem na frequência de rotação do pulsar, mas que ocorrem em locais da superfície diferentes dos pontos quentes responsáveis pelos seus pulsos normais de raios-X.

O artigo que descreve estas descobertas foi publicado na revista The Astrophysical Journal Letters e está disponível online.

Astronomia On-line
12 de Novembro de 2019

 

3015: Hubble capta uma galáxia que tem 12 clones no céu

CIÊNCIA

NASA

O telescópio espacial Hubble captou uma galáxia que parece ter sido duplicada várias vezes, aparecendo em regiões distantes do Universo.

A galáxia, apelidada de Sunburst Arc, fica a a quase 11 mil milhões de anos-luz da Terra. Na foto do Hubble, há 12 imagens da mesma galáxia, devido a um enorme aglomerado de galáxias a 4,6 mil milhões de anos-luz de distância que causou o efeito conhecido como lentes gravitacionais.

Esse aglomerado massivo de galáxias é suficientemente grande para duplicar e ampliar a luz da galáxia mais distante que está atrás de si. Essa perspectiva dos objectos na lente do telescópio resulta não apenas numa deformação da luz, mas também na multiplicação da imagem da galáxia, que sofre este efeito de lente gravitacional e, por isso, apareceu “clonada” na foto.

No caso da Sunburst Arc, o efeito de lente gravitacional resultou em pelo menos 12 imagens da galáxia, distribuídas em quatro arcos principais. Três desses arcos são visíveis no canto superior direito da imagem, enquanto um contraponto é visível no canto inferior esquerdo, parcialmente obscurecido por uma estrela brilhante em primeiro plano localizada dentro da Via Láctea.

Esse efeito ilusório é útil para os investigadores, porque telescópios como o Hubble usam as lentes gravitacionais para “ver” objectos distantes que, de outra forma, seriam muito fracos e pequenos para que pudessem ser observados. O efeito torna as várias imagens da Sunburst Arc cerca de dez a 30 vezes mais brilhantes, permitindo ao Hubble visualizar melhor o alvo de estudo.

De acordo com o estudo publicado na semana passada na revista especializada Sciente, as observações de Hubble mostraram que a Sunburst Arc é, na verdade, um análogo de galáxias que existiam durante um período muito antigo conhecido como a época da reionização — período que começou 150 milhões de anos após o Big Bang.

Cerca de 300 mil anos após o Big Bang, o Universo era completamente opaco, cheio de hidrogénio neutro. Então, de acordo com o ScienceAlert, algo surgiu e ionizou o hidrogénio, tornando o Universo transparente. Não se sabe que mecanismos exactos que ocorreram na época.

Os astrónomos pensam que foi a radiação das primeiras estrelas e galáxias, mas há um problema: a radiação de alta energia necessária para ionizar o hidrogénio teria de ter conseguido escapar das galáxias sem ser absorvida pelo meio interestelar – e apenas um pequeno número de galáxias foi encontrado a fazer isso.

A Sunburst Arc contém uma pista: mostra que alguns fotões podem “escapar” através de canais estreitos num meio neutro que possui muito gás.

ZAP // CanalTech

Por ZAP
12 Novembro, 2019

 

2972: E se o Universo for um grande balão “fechado”? Tudo o que sabíamos pode estar errado

CIÊNCIA

(CC0/PD) myersalex216 / Pixabay

Há uma nova investigação que está a por em causa tudo o que sabíamos sobre a forma do Universo. De acordo com a pesquisa publicada nesta semana, o Universo pode não ser plano, como se pensava, mas antes ser como um grande balão insuflado.

A pesquisa publicada na revista Nature Astronomy tem por base as mais recentes leituras do telescópio Planck, da Agência Espacial Europeia.

Estes dados referem-se ao fundo cósmico de micro-ondas (CMB na sigla em Inglês), isto é, o brilho da radiação que resta do Big Bang e que é um efeito de luz ambiente que ocupa todo o espaço quando se bloqueiam estrelas, galáxias e outras interferências.

O CMB é fundamental para definir a história e o comportamento do Universo, sendo o seu vestígio mais antigo.

Os novos dados do Planck apontam para conclusões que ameaçam a percepção que tínhamos do Universo até agora. Já se fala numa verdadeira crise na cosmologia, tendo-se verificado também que o Universo se está a expandir muito mais rápido do que os cientistas previam.

As razões para esse facto são ainda um mistério e podem ou não estar relacionadas com outras conclusões desafiantes que apontam que o Universo pode não ser plano, como um lençol infinito, mas ser antes esférico e fechado, como um grande balão insuflado.

Esta hipótese resulta das anomalias detectadas nos dados do CMB por cosmologistas das Universidades Johns Hopkins (EUA), Sapienza de Roma (Itália) e de Manchester (Reino Unido).

As investigações indicam que há significativamente mais “lentes gravitacionais” do CMB do que seria de esperar. “A gravidade parece estar a dobrar as micro-ondas do CMB mais do que a física existente pode explicar”, destaca o site científico Live Science.

Estes cientistas apontam que há 41 vezes mais probabilidades de o Universo ser fechado do que plano. A teoria é que terá uma forma “ligeiramente curvada”, com uma “flexão lenta” que não é importante para a nossa rotina diária. Mas viajando até fora da nossa galáxia, isso significa que se nos movermos numa linha recta, terminaremos no local onde começamos.

“A diferença entre um universo fechado e aberto é um pouco como a diferença entre uma folha plana esticada e um balão insuflado”, explica ao Live Science o cosmologista Alessandro Melchiorri, um dos investigadores envolvidos no estudo.

“Isto significa, por exemplo, que se tivermos dois fotões e se viajarem em paralelo, num universo fechado vão [eventualmente] encontrar-se”, aponta Melchiorri. Num universo plano, esses dois fotões viajariam sem nunca se cruzarem, caso não houvesse qualquer interferência nos seus trajectos.

Todavia, a ideia do “Universo fechado” é, para já, apenas uma hipótese e são necessárias “futuras medições” para “clarificar se as discordâncias observadas são devidas a sistemáticas não detectadas ou a uma nova física, ou se são, simplesmente, flutuações estatísticas”, apontam os autores do estudo.

Cosmologistas que não estiveram envolvidos no estudo encaram a teoria com algum cepticismo, como é o caso de Andrei Linde da Universidade de Stanford (EUA), que, em declarações ao Live Science, faz referência a outro estudo que ainda não foi publicado em torno dos mesmos dados do Planck e que concluiu que o mais provável é que o Universo seja plano.

Melchiorri contrapõe que esse estudo teve por base um segmento demasiado pequeno dos dados do Planck, defendendo a análise da sua equipa.

Certo é que se a teoria do “Universo fechado” se confirmar, é preciso “sintonizar” a física do mecanismo primordial associado ao Big Bang e refazer todos os cálculos envolvidos, destaca o cosmologista. Isso será uma grande complicação que acarreta inúmeros problemas e toda uma nova física.

SV, ZAP //

Por SV
6 Novembro, 2019

 

2952: Português entre os premiados com 2,7 milhões por imagem de buraco negro

CIÊNCIA

A equipa de cientistas, que inclui o astrofísico português Hugo Messias, que obteve a primeira imagem de um buraco negro recebe este domingo um prémio de três milhões de dólares (2,7 milhões de euros) pelo trabalho inédito.

A NASA também tem estudado os buracos negros
© NASA NASA/Reuters

O Prémio Breakthrough, atribuído nos Estados Unidos, reconhece avanços científicos de excelência, tendo como patrocinadores Mark Zuckerberg, um dos fundadores do Facebook, e Sergey Brin, ex-presidente da Google.

A “fotografia” do buraco negro – localizado no centro da galáxia M87, a 55 milhões de anos-luz da Terra, e com uma massa 6,5 mil milhões de vezes superior à do Sol – foi apresentada em Abril e foi conseguida graças aos dados recolhidos das observações feitas, no comprimento de onda rádio, com uma rede de oito radiotelescópios espalhados pelo mundo, que funcionaram como um só e com uma resolução sem precedentes.

O “telescópio gigante” foi designado Event Horizon Telescope, tendo Hugo Messias participado nas observações com um dos radiotelescópios, o ALMA, no Chile.

A equipa internacional de 347 cientistas que obteve a primeira imagem de um buraco negro super-maciço, neste caso a sua silhueta formada por gás quente e luminoso a rodopiar em seu redor, foi premiada na categoria de Física Fundamental.

A imagem dos contornos do buraco negro – o buraco em si, um corpo denso e escuro de onde nem a luz escapa, não se vê – permitiu comprovar mais uma vez a Teoria da Relatividade Geral, de 1915, do físico Albert Einstein, que postula que a presença de buracos negros, os objectos cósmicos mais extremos do Universo, deforma o espaço-tempo e sobreaquece o material em seu redor.

De acordo com a equipa científica envolvida na observação, a sombra do buraco negro registada é o mais próximo da imagem do buraco negro em si, uma vez que este é totalmente escuro.

Diário de Notícias
Lusa
03 Novembro 2019 — 09:15