2525: Onde nascem as novas estrelas? O Telescópio Webb vai investigar

CIÊNCIA

Esta é uma imagem, pelo Hubble, da galáxia SDSS J1226+2152, que está a ser ampliada e distorcida pela imensa gravidade de um enxame de galáxias à sua frente. É uma de quatro galáxias com formação estelar que a equipa TEMPLATES vai estudar com o Webb. A equipa escolheu-a como um exemplo de uma galáxia que não tem muita poeira.
Crédito: NASA, ESA, STScI e H. Ebeling (Universidade do Hawaii)

Quando se trata de produzir novas estrelas, a “festa” está no fim para o Universo actual. Na verdade, está quase no fim há milhares de milhões de anos. A nossa Via Láctea continua a formar o equivalente a um Sol todos os anos. Mas, no passado, esse ritmo era até 100 vezes maior. De modo que se quisermos realmente entender como as estrelas como o nosso Sol se formaram no Universo, precisamos de olhar milhares de milhões de anos para o passado.

Usando o Telescópio Espacial James Webb da NASA como uma espécie de máquina do tempo, uma equipa de investigadores pretende fazer exactamente isso. Liderada pela investigadora Jane Rigby do Centro de Voo Espacial Goddard da NASA em Greenbelt, no estado norte-americano de Maryland, e por Joaquin Vieira da Universidade de Illinois, Champaign, a equipa aproveitará os telescópios naturais e cósmicos chamados lentes gravitacionais. Estes grandes objectos celestes ampliam a luz de galáxias distantes que estão no pico da formação estelar.

O fenómeno das lentes gravitacionais ocorre quando uma enorme quantidade de matéria, como uma galáxia gigante ou enxame galáctico, cria um campo gravitacional que distorce e amplia a luz de objectos por trás, mas na mesma linha de visão. O efeito permite que os cientistas estudem os detalhes das primeiras galáxias demasiado longe para serem vistas de outra forma, mesmo com os telescópios espaciais mais poderosos.

“Estamos a estudar quatro galáxias que parecem muito, muito mais brilhantes do que realmente são, porque foram ampliadas até 50 vezes. Usaremos lentes gravitacionais para estudar como essas galáxias estão a formar as suas estrelas, e como essa formação estelar é distribuída pelas galáxias,” explicou Rigby.

“O lado bom de usar fontes que sofrem o efeito de lente gravitacional é que é como uma lupa cósmica, onde a galáxia é esticada, aumentando assim a resolução do seu telescópio,” explicou Vieira.

O programa tem o nome TEMPLATES (Targeting Extremely Magnified Panchromatic Lensed Arcs and Their Extended Star Formation). Embora TEMPLATES seja um acrónimo, o seu significado é mais profundo. A palavra “template” pode ser traduzida para português como “modelo”, uma palavra que se refere a algo usado como padrão, molde ou guia para projectar ou construir itens semelhantes. “Queremos tornar estas quatro galáxias em alvos incrivelmente bem estudados, para que outros investigadores do Webb possam usá-las como modelos, ou bons exemplos, quando trabalharem para entender os dados de um grande número de galáxias que são muito mais fracas,” disse Rigby.

Como os alvos foram escolhidos

Uma das principais razões pelas quais estas quatro galáxias foram escolhidas é porque são muito brilhantes, facilitando o estudo. “Todas estas galáxias estão a formar furiosamente estrelas,” acrescentou Vieira.

Estes alvos também representam grande parte da variedade de galáxias no Universo em termos de quão empoeiradas são, quão brilhantes são e quantas estrelas já fabricaram. Os astrónomos chamam as galáxias de “empoeiradas” quando as suas imagens mostram manchas escuras, muitas vezes difusas, que vêm da poeira da galáxia que bloqueia a luz estelar.

Duas das galáxias são muito empoeiradas, e duas delas não o são. As duas galáxias empoeiradas são, cada uma delas, ampliadas por uma outra galáxia. As duas galáxias que não parecem ter poeira são ampliadas por enxames de galáxias.

Das galáxias com muita poeira, os cientistas têm uma imagem de como as galáxias evoluíram. De levantamentos de galáxias sem poeira, têm uma imagem diferente. Essas imagens nem sempre correspondem. Espera-se que o Webb forneça uma história mais completa da formação estelar, pois tem sensibilidade para ver a luz da poeira aquecida por estrelas jovens – mesmo em galáxias que não têm muita poeira – bem como a sensibilidade para ver luz visível até das galáxias empoeiradas.

A equipa do programa TEMPLATES vai usar três dos quatro instrumentos a bordo do Webb, bem como muitos dos filtros e configurações do telescópio, para obter o máximo de dados possível destas galáxias. Além de obter fotos, a equipa vai usar espectroscopia, uma técnica que revela a composição química das galáxias, como o gás está a mover-se e quão denso e quente esse gás é.

O Webb vai permitir que a equipa faça essas medições em cada galáxia. “É como uma dissecação,” explicou Rigby. “Vamos separar cada pedaço da galáxia, em vez de obter apenas uma medição média.”

Desbloqueando os mistérios da formação estelar

A equipa TEMPLATES tem quatro objectivos principais:

  1. Medir quantas novas estrelas estão a formar-se, para determinar com que rapidez as galáxias formam estrelas. Ao fazer diferentes tipos de medições de ritmos de formação estelar para as quatro galáxias, a equipa planeia ver como concordam ou discordam uma das outras. Por meio de verificações cruzadas, a equipa determinará se estas galáxias estão, ou não, em formação estelar vigorosa, ou se apenas formam uma estrela ocasionalmente;
  2. Mapear o ritmo de formação estelar nestas galáxias. Os cientistas não sabem muito sobre onde as estrelas se formam nas galáxias durante a maior parte do tempo cósmico. O mapeamento da formação estelar em galáxias no Universo próximo é relativamente fácil, mas é muito mais difícil para galáxias distantes. Observando no passado distante, as galáxias longínquas parecem muito pequenas no céu e as características individuais não podem ser resolvidas. De modo que os cientistas não têm uma boa compreensão de onde as estrelas se formaram nas galáxias do Universo inicial;
  3. Comparar as populações estelares jovens e velhas. Os cientistas vão medir as estrelas mais antigas – estrelas que vivem milhares de milhões de anos, como o Sol. Vão determinar onde essas estrelas residem, dentro de uma galáxia, o que irá informá-los sobre o passado da formação estelar. Poderão depois comparar esses dados com o local onde as novas estrelas estão a formar-se. Isto revelará como a formação estelar mudou nas galáxias com o passar do tempo e responderá a algumas questões básicas sobre como as galáxias crescem. Por exemplo, constroem-se de dentro para fora ou de fora para dentro?
  4. Medir as condições do gás dentro destas galáxias. Os cientistas determinarão quanto da tabela periódica estas galáxias já construíram – por exemplo, quanto carbono, oxigénio e azoto contêm. Vão também medir outras condições físicas como a densidade do gás.

Ajudando outros investigadores a entender o Webb

As observações da equipa farão parte do programa Científico Discricionário Inicial do Diretor, que fornece tempo para projectos seleccionados no início da missão do telescópio. Este programa permite que a comunidade astronómica aprenda rapidamente a melhor maneira de usar as capacidades do Webb, ao mesmo tempo que produz ciência robusta. A equipa também está a ajudar outros investigadores a entender a melhor maneira de obter dados com este telescópio.

“O TEMPLATES apenas arranha a superfície do que podemos fazer com o Webb,” continuou Rigby. “Definitivamente não será a última palavra – é uma das primeiras palavras do que este telescópio será capaz de fazer, como podemos entender as galáxias. O que estamos a fazer com o TEMPLATES é que queremos ter a certeza de que estamos a começar esta missão com o ‘pé direito’ para realmente entender como aproveitar ao máximo as incríveis capacidades do Webb.”

O Telescópio Espacial James Webb será o principal observatório científico espacial do mundo quando for lançado em 2021. Vai resolver mistérios do nosso Sistema Solar, olhar para mundos distantes em torno de outras estrelas e investigar as misteriosas estruturas e origens do nosso Universo e o nosso lugar nele. O Webb é um projecto internacional liderado pela NASA e pelos seus parceiros, a ESA e a Agência Espacial Canadiana.

Astronomia On-line
27 de Agosto de 2019

 

2228: Telescópio Webb vai estudar Saturno e a sua lua Titã

Esta imagem mostra uma gigante tempestade saturniana observada em comprimentos de onda do infravermelho médio pelo VLT (Very Large Telescope) do ESO em 2011. Os gases quentes que alimentam a tempestade fazem-na brilhar em comparação com o resto do planeta.
Crédito: L. Fletcher (Universidade de Leicester) e ESO

Se perguntar a um estranho na rua qual o seu planeta favorito, provavelmente a resposta será Saturno. Os impressionantes anéis de Saturno são uma vista memorável em qualquer telescópio amador. Mas ainda há muito a aprender sobre Saturno, especialmente sobre o clima e a química do planeta, bem como sobre a origem do seu opulento sistema de anéis. Após o seu lançamento em 2021, o Telescópio Espacial James Webb da NASA observará Saturno, os seus anéis e a sua família de luas como parte de um abrangente programa do Sistema Solar.

Este estudo será levado a cabo através de um programa de Observações de Tempo Garantido liderado por Heidi Hammel, astrónoma planetária e vice-presidente executiva da AURA (Association of Universities for Research in Astronomy) em Washington, D.C., EUA. Hammel foi, em 2002, seleccionada pela NASA como cientista interdisciplinar do Webb.

“O objectivo deste programa é demonstrar as capacidades do Webb para observações do Sistema Solar, incluindo observações de objectos brilhantes, o rastreamento de objectos em movimento e a localização de alvos fracos ao lado de objectos brilhantes,” explicou Hammel. “Os dados serão disponibilizados para a comunidade do Sistema Solar o mais rápido possível para mostrar que o Webb pode fazer o que prometemos.”

O Webb vai prosseguir onde a sonda Cassini da NASA parou. A Cassini orbitou Saturno durante 13 anos, de 2004 até a missão terminar em 2017, quando mergulhou na atmosfera de Saturno. Desde então, programas como o OPAL (Outer Planet Atmospheres Legacy) do Telescópio Espacial Hubble e medições no solo têm sido a única maneira de monitorizar Saturno.

As estações de Saturno

Saturno está inclinado no seu eixo, tal como a Terra e, como resultado, também tem estações à medida que orbita o Sol. No entanto, como o ano de Saturno equivale a 30 anos terrestres, cada estação dura cerca de sete anos e meio. A Cassini chegou durante o verão no hemisfério sul (inverno no hemisfério norte). Mas agora é verão no hemisfério norte. Os astrónomos estão ansiosos por procurar mudanças sazonais na atmosfera de Saturno.

“Estas observações vão dar-nos um ensaio completo do sistema de Saturno para ver o que mudou, para ver como as estações evoluíram desde os últimos vislumbres da Cassini e para aproveitar capacidades do Webb que a Cassini nunca teve,” disse Leigh Fletcher, da Universidade de Leicester, Inglaterra, investigador principal do programa.

No final de 2010, uma tempestade monstruosa irrompeu no hemisfério norte de Saturno. Começou como uma mancha pequena, mas cresceu rapidamente, até que no final de Janeiro de 2011 cercava o planeta. Os astrónomos ficaram surpresos porque tais tempestades normalmente só se formam depois do solstício de verão, que ocorreu em 2017. Eles vão observar mais tempestades à medida que o hemisfério norte de Saturno passa de verão para outono ao longo da missão do Webb.

As tempestades não são os únicos fenómenos atmosféricos que Saturno e a Terra partilham. Saturno também tem auroras. Estas auroras desencadeiam mudanças químicas na atmosfera de Saturno, quebrando algumas moléculas e permitindo a formação de algumas novas. O Webb vai procurar assinaturas desta química invulgar em comprimentos de onda infravermelhos, particularmente na região polar norte.

Titã, a maior lua de Saturno

A maior lua de Saturno, Titã, também cairá sob o olhar poderoso do Webb. Titã não tem igual porque é a única lua do nosso Sistema Solar com uma atmosfera substancial. Na verdade, é maior que o planeta Mercúrio. A pressão atmosférica em Titã é cerca de 50% maior que a da Terra. Tal como na Terra, essa atmosfera é principalmente azoto, mas Titã também possui hidrocarbonetos vaporosos como o metano. Titã é também muito mais fria que a Terra, com uma temperatura de superfície que ronda os -180º C.

No interior da atmosfera de Titã, as reacções químicas estão constantemente a produzir a sua composição. As moléculas são quebradas nos seus constituintes como carbono, hidrogénio, oxigénio e azoto. Esses átomos formam novas moléculas, que se infiltram no ar e se acomodam em qualquer pólo onde seja inverno.

“A atmosfera de Titã é como um grande laboratório de química,” disse Conor Nixon, do Centro de Voo Espacial Goddard da NASA, em Greenbelt, no estado norte-americano de Maryland, investigador principal do programa. Nixon e colegas vão usar os instrumentos NIRSpec (Near-Infrared Spectrograph) e MIRI (Mid Infrared Imager) do Webb para estudar estas moléculas em muito mais detalhe do que os instrumentos da Cassini permitiam.

Titã é também o único objecto do nosso Sistema Solar, além da Terra, com mares e lagos líquidos à sua superfície. Enquanto a Terra tem um ciclo de água no qual a água evapora, cai como chuva e flui pelos rios até ao oceano, Titã tem um ciclo similar com o metano. Em Titã, a chuva de metano escava leitos de rios através de água gelada como rocha antes de correr para os mares. A Cassini e a sua pequena sonda Huygens, da ESA, que aterrou em Titã em 2004, fizeram descobertas notáveis sobre esta lua saturniana. O Webb vai estudar os ciclos climáticos sazonais de Titã para compará-los com os modelos dos astrónomos.

“Titã tem nuvens e clima que podemos ver mudando em tempo real. A sua química é muito diferente da da Terra, mas ainda é química orgânica baseado no carbono,” disse Stefanie Milam de Goddard, co-investigadora do programa.

O tempo de vida da missão do Webb, após o lançamento, foi projectado para ser pelo menos de cinco anos e meio, mas poderá durar dez ou mais. Como resultado, pode observar o verão no hemisfério norte passando pelo equinócio de outono e para a primavera a sul. Quase que “completaria o círculo” começado quando a Cassini chegou a Saturno durante o verão no hemisfério sul.

“Nós genuinamente teremos coberto todo um ano de Saturno. Seria uma experiência bastante reveladora,” disse Fletcher.

O Telescópio Espacial James Webb será o principal observatório científico espacial quando for lançado em 2021. Vai resolver mistérios do nosso Sistema Solar, olhar para mundos distantes ao redor de outras estrelas e investigar as misteriosas estruturas e origens do nosso Universo e o nosso lugar nele. O Webb é um projecto internacional liderado pela NASA e pelos seus parceiros, a ESA e a Agência Espacial Canadiana.

Astronomia On-line
25 de Junho de 2019

[vasaioqrcode]

2107: Uma nova visão dos exoplanetas com o futuro Telescópio Webb

Esta ilustração mostra um exoplaneta em órbita da sua estrela muito mais brilhante. O Webb vai permitir com que os cientistas observem exoploanetas em comprimentos de onda infravermelhos nunca antes estudados.
Crédito: NASA, ESA e G. Bacon (STScI)

Embora conheçamos actualmente milhares de exoplanetas – planetas em torno de outras estrelas -, a grande maioria do nosso conhecimento é indirecto. Ou seja, os cientistas não tiraram ainda muitas fotos dos exoplanetas e, devido aos limites da tecnologia actual, só podemos ver esses mundos como pontos de luz. No entanto, o número de exoplanetas observados indirectamente está a crescer com o tempo. Quando o Telescópio Espacial James Webb da NASA for lançado em 2021, abrirá uma nova janela para esses exoplanetas, vendo-os em comprimentos de onda nunca antes observados e obtendo novas informações sobre a sua natureza.

Os exoplanetas estão próximos de estrelas comparativamente muito mais brilhantes, de modo que a sua luz é geralmente dominada pela luz das estrelas hospedeiras. Os astrónomos costumam encontrar um exoplaneta inferindo a sua presença com base no escurecimento da luz da estrela-mãe quando o planeta passa à sua frente – um evento chamado de “trânsito”. Às vezes, um planeta puxa a estrela, fazendo a estrela balançar levemente.

Em alguns casos, os cientistas capturaram fotos de exoplanetas usando instrumentos chamados coronógrafos. Estes dispositivos bloqueiam o brilho da estrela da mesma maneira que podemos usar a nossa mão para bloquear a luz do Sol. No entanto, encontrar exoplanetas com esta técnica provou ser muito difícil. Tudo isto vai mudar com a sensibilidade do Webb. Os seus coronógrafos a bordo permitirão com que os cientistas observem exoplanetas em comprimentos de onda infravermelhos nunca antes tentados para este tipo de objecto astronómico.

As capacidades únicas do Webb

Os coronógrafos têm algo importante em comum com os eclipses. Durante um eclipse, a Lua bloqueia a luz do Sol, permitindo-nos ver estrelas que normalmente seriam ofuscadas pelo brilho da nossa. Os astrónomos aproveitaram este facto durante o eclipse de 1919, fez dia 29 de maio 100 anos, a fim de testar a teoria da relatividade geral de Albert Einstein. Da mesma forma, um coronógrafo age como um “eclipse artificial” para bloquear a luz de uma estrela, permitindo ver planetas que de outra forma ficariam perdidos no brilho estelar.

“A maioria dos planetas que detectámos até agora são aproximadamente 10.000 a 1 milhão de vezes mais fracos do que a sua estrela-mãe,” explicou Sasha Hinkley da Universidade de Exeter. Hinkley é o investigador principal de um dos primeiros programas de observação do Webb para estudar exoplanetas e sistemas exoplanetários.

“Há, sem dúvida, uma população de planetas que são ainda mais fracos, que têm maiores rácios de contraste e que estão, possivelmente, mais afastados das suas estrelas,” comentou Hinkley. “Com o Webb, podemos ver planetas que são 10 milhões, ou optimisticamente, 100 milhões de vezes mais fracos.” Para observar os seus alvos, a equipa vai usar imagiologia de alto contraste, que distingue essa grande diferença de brilho entre o planeta e a estrela.

O Webb terá a capacidade de observar os seus alvos no infravermelho médio, que é invisível ao olho humano, mas com sensibilidade muito superior a qualquer outro observatório já construído. Isto significa que o Webb será sensível a uma classe de planetas ainda não detectada. Especificamente, podem estar ao alcance do Webb planetas semelhantes a Saturno em grandes separações orbitais das suas estrelas hospedeiras.

“O nosso programa está a olhar para planetas jovens e recém-formados e para os sistemas que habitam,” explicou a co-investigadora principal Beth Biller, da Universidade de Edimburgo. “O Webb vai permitir fazer isto com muito mais detalhe e em comprimentos de onda que nunca explorámos antes. Por isso, será vital entender como estes objectos se formam e como são estes sistemas.”

Testando as águas

As observações da equipa farão parte do programa Científico Discricionário Inicial do Director, que fornece tempo para projectos seleccionados no início da missão do telescópio. Este programa permite que a comunidade astronómica aprenda rapidamente a melhor maneira de usar as capacidades do Webb, ao mesmo tempo que produz ciência robusta.

“Com o nosso programa, estaremos realmente a ‘testar as águas’ para entender como o Webb se comporta,” disse Hinkley. “Precisamos realmente da melhor compreensão dos instrumentos, da estabilidade, da maneira mais eficaz de pós-processar os dados. As nossas observações vão informar a comunidade da maneira mais eficiente de usar o Webb.”

Os alvos

A equipa de Hinkley vai usar todos os quatro instrumentos do Webb para observar três alvos: um exoplaneta descoberto recentemente; um objecto que é ou um exoplaneta ou uma anã castanha; e um anel bem estudado de poeira e planetesimais em órbita de uma jovem estrela.

Exoplaneta HIP 65426b: este exoplaneta recém-descoberto e fotografado directamente tem uma massa entre seis e 12 vezes a de Júpiter e está em órbita de uma estrela que é mais quente e que tem o dobro da massa do nosso Sol. O exoplaneta está aproximadamente 92 vezes mais distante da sua estrela do que a Terra está do Sol. A grande separação entre este jovem planeta e a sua estrela hospedeira significa que as observações da equipa serão muito menos afectadas pelo brilho estelar. Hinkley e a sua equipa planeiam usar o conjunto completo de coronógrafos do Webb para visualizar este alvo.

Companheiro de massa planetária VHS 1256b: um objecto algures entre o limite planeta/anã castanha, VHS 1256b também está a uma grande distância da sua anã vermelha hospedeira – cerca de 100 vezes a distância a que a Terra está do Sol. Dada a sua grande separação, as observações deste objecto serão provavelmente muito menos afectadas pela luz indesejada da estrela. Além de imagens de alto contraste, a equipa espera obter um dos primeiros espectros “não corrompidos” de um corpo semelhante a um planeta em comprimentos de onda onde estes objectos nunca antes foram estudados.

Disco circum-estelar de detritos: há mais de 20 anos que os cientistas estudam um anel de poeira e planetesimais em órbita de uma jovem estrela chamada HR 4796A, que tem cerca de duas vezes a massa do nosso próprio Sol. Os astrónomos pensam que a maioria dos sistemas planetários, inicialmente, provavelmente pareciam-se muito com HR 4796A e com o seu anel de detritos, tornando este um alvo particularmente interessante de estudar. A equipa usará imagiologia de alto contraste dos coronógrafos do Webb para ver o disco em diferentes comprimentos de onda. O seu objectivo é ver se as estruturas do disco parecem diferentes de comprimento de onda para comprimento de onda.

Planeando o programa

Para planear este programa Científico Inicial, Hinkley perguntou ao maior número possível de membros da comunidade científica a simples pergunta: se quiser planear um levantamento para procurar exoplanetas, quais são as perguntas para as quais precisa de respostas?

“O que nós desenvolvemos foi um conjunto de observações que pensamos vai responder a essas perguntas. Vamos dizer à comunidade que é assim que o Webb funciona neste modo, que é este o tipo de sensibilidade que temos, que é este o tipo de contraste que alcançamos. E precisamos rapidamente de informar a comunidade para que os astrónomos possam preparar, de maneira igualmente rápida, as suas propostas.”

A equipa está ansiosa por ver os seus alvos em comprimentos de onda nunca antes observados, e para partilhar os seus conhecimentos. De acordo com Biller, “já tínhamos noção, há anos, que para alguns dos planetas descobertos, o Webb seria realmente transformador.”

O Telescópio Espacial James Webb será o principal observatório de ciências espaciais do mundo quando for lançado em 2021. O Webb resolverá mistérios no nosso Sistema Solar, olhará mais além para mundos distantes em redor de outras estrelas e investigará as misteriosas estruturas e origens do nosso Universo e o nosso lugar nele. O Webb é um programa internacional liderado pela NASA com os seus parceiros, a ESA e a Agência Espacial Canadiana.

Astronomia On-line
4 de Junho de 2019



[vasaioqrcode]