3429: JWST vai procurar atmosferas em exoplanetas potencialmente habitáveis

CIÊNCIA/ASTRONOMIA

Esta impressão de artista mostra o sete exoplanetas rochosos do sistema TRAPPIST-1, localizado a 40 anos-luz da Terra. Os astrónomos vão observar estes mundos com o Webb num esforço de detectar a primeira atmosfera num planeta do tamanho da Terra para lá do nosso Sistema Solar.
Crédito: NASA e JPL/Caltech

Este mês marca o terceiro aniversário da descoberta de um sistema notável com sete planetas conhecido como TRAPPIST-1. Estes sete mundos rochosos do tamanho da Terra orbitam uma estrela fria a 39 anos-luz do Sistema Solar. Três desses planetas estão na zona habitável, o que significa que estão à distância orbital ideal para serem quentes o suficiente para que a água líquida exista à superfície. Após o seu lançamento em 2021, o Telescópio Espacial James Webb da NASA irá observar esses mundos com o objectivo de fazer o primeiro estudo detalhado no infravermelho próximo da atmosfera de um planeta na zona habitável.

Para encontrar sinais de uma atmosfera, os astrónomos vão usar uma técnica chamada espectroscopia de transmissão. Observam a estrela hospedeira enquanto o planeta cruza a sua face, um evento conhecido como trânsito. A luz da estrela é filtrada pela atmosfera do planeta, que absorve parte desta luz e deixa impressões digitais reveladores no espectro da estrela.

Encontrar uma atmosfera em torno de um exoplaneta rochoso – a palavra que os cientistas usam para planetas para lá do nosso Sistema Solar – não será fácil. As suas atmosferas são mais compactas do que as dos gigantes gasosos, enquanto o seu tamanho menor significa que interceptam menos luz estelar. TRAPPIST-1 é um dos melhores alvos disponíveis para o Webb, já que a própria estrela também é bastante pequena, o que significa que o tamanho dos planetas, em relação à estrela, é maior.

“As atmosferas são mais difíceis de detectar, mas a recompensa é maior. Seria muito emocionante fazer a primeira detecção de uma atmosfera num planeta do tamanho da Terra,” disse David Lafrenière da Universidade de Montreal, investigador principal de uma das equipas que examinam TRAPPIST-1.

Estrelas anãs vermelhas como TRAPPIST-1 tendem a ter surtos violentos que podem tornar os seus planetas inóspitos. Mas determinar se têm atmosferas e, em caso afirmativo, do que são feitos, é o próximo passo para descobrir se a vida como a conhecemos poderia sobreviver nestes mundos distantes.

Um esforço coordenado

Mais de uma equipa de astrónomos vai estudar o sistema TRAPPIST-1 com o Webb. Planeiam usar uma variedade de instrumentos e modos de observação para obter o máximo de detalhes possíveis para cada planeta no sistema.

“É um esforço coordenado porque nenhuma equipa pode fazer tudo o que queremos com o sistema TRAPPIST-1. O nível de cooperação tem sido realmente espectacular,” explicou Nikole Lewis da Universidade de Cornell, a investigadora principal de uma das equipas.

“Com sete planetas para escolher, cada um de nós pode ‘comer um pedaço do bolo’,” acrescentou Lafrenière.

O programa de Lafrenière terá como alvo TRAPPIST-1d e -1f, num esforço de não apenas detectar uma atmosfera, mas determinar a sua composição básica. Eles esperam ser capazes de distinguir entre uma atmosfera dominada por vapor de água, ou uma composta principalmente de azoto (como a Terra) ou dióxido de carbono (como Marte e Vénus).

O programa de Lewis vai observar TRAPPIST-1e com objectivos semelhantes. TRAPPIST-1e é um dos exoplanetas que mais tem em comum com a Terra em termos de densidade e quantidade de radiação que recebe da sua estrela. Isto torna-o um óptimo candidato à habitabilidade – mas os cientistas precisam de saber mais para ter a certeza.

Uma ampla variedade de planetas

Embora os planetas de TRAPPIST-1 tenham apelo particular do ponto de vista de potencial habitabilidade, o programa de Lafrenière terá como alvo uma variedade de planetas – desde rochosos a mini-Neptunos a gigantes de gás do tamanho de Júpiter – a uma variedade de distâncias das suas estrelas. O objectivo é aprender mais sobre como e onde estes planetas se formam.

Em particular, os astrónomos continuam a debater como os planetas gasosos podem ser encontrados tão perto das suas estrelas. Muitos acreditam que este planeta deve ter-se formado mais longe no disco protoplanetário – o disco em torno de uma estrela onde nascem os planetas -, pois o material está disponível longe da estrela e depois migrou para dentro. No entanto, outros cientistas teorizam que até mesmo os grandes gigantes gasosos podem formar-se relativamente perto da sua estrela.

“Além disso, talvez se tenham formado mais longe, mas quanto mais longe?”, perguntou Lewis.

Para ajudar a informar o debate, os astrónomos vão analisar a proporção de carbono e oxigénio numa variedade de exoplanetas. Esta proporção pode servir como um marcador de onde o planeta se formou, porque varia com a distância da estrela.

Mapas meteorológicos

Além de examinar planetas usando espectroscopia de transmissão, as equipas vão também empregar uma técnica conhecida como curva de fase. Isto envolve a observação de um planeta ao longo de uma órbita inteira, o que só é prático para os mundos mais quentes com os períodos orbitais mais curtos.

Um planeta que orbita a sua estrela muito perto sofre bloqueio de maré, o que significa que mostra sempre a mesma face para a estrela, como a Lua faz com a Terra. Como resultado, observadores distantes que observam o planeta vão vê-lo passar por várias fases, uma vez que lados diferentes do planeta são visíveis a diferentes pontos da sua órbita.

Medindo o planeta em vários momentos, os astrónomos podem construir um mapa da temperatura atmosférica em função da longitude. Esta técnica foi pioneira no Telescópio Espacial Spitzer, que fez o primeiro “mapa meteorológico” de um exoplaneta em 2007.

Além disso, observando a emissão de calor do próprio planeta, os astrónomos podem modelar a estrutura vertical da atmosfera.

“Com uma curva de fase, podemos construir um modelo 3D completo da atmosfera de um planeta,” explicou Lafrenière.

Este trabalho está a ser realizado como parte do programa GTO (Guaranteed Time Observations) do Webb. Este programa foi desenvolvido para recompensar cientistas que ajudaram a desenvolver os principais componentes de hardware e software ou o conhecimento técnico e interdisciplinar do observatório.

O Telescópio Espacial James Webb será o principal observatório científico espacial do mundo quando for lançado em 2021. Vai resolver mistérios do nosso Sistema Solar, olhar para mundos distantes em torno de outras estrelas e investigar as misteriosas estruturas e origens do nosso Universo e o nosso lugar nele. O Webb é um projecto internacional liderado pela NASA e pelos seus parceiros, a ESA e a Agência Espacial Canadiana.

Astronomia On-line
11 de Fevereiro de 2020

 

spacenews

 

3410: Telescópio Webb vai continuar o legado do Spitzer

CIÊNCIA/ASTRONOMIA

O Telescópio Espacial Spitzer da NASA, na altura conhecido como SIRTF (Space Infrared Telescope Facility), foi lançado a partir de Cabo Canaveral no dia 25 de Agosto de 2003.
Crédito: NASA

Quando uma janela para o Universo se fecha, outra abre-se com uma vista ainda melhor. Alguns dos mesmos planetas, estrelas e galáxias que vimos através da primeira janela vão aparecer com detalhes ainda mais nítidos na que será aberta em breve.

O Telescópio Espacial Spitzer da NASA concluiu a sua missão no dia 30 de Janeiro de 2020, após mais de 16 extraordinários anos de exploração. O telescópio fez muitas descobertas para lá da imaginação dos seus construtores, como planetas fora do nosso Sistema Solar, chamados exoplanetas, e galáxias que se formaram perto do início do Universo. Muitas das descobertas do Spitzer serão estudadas com mais precisão com o futuro Telescópio Espacial James Webb, com lançamento previsto para 2021.

“Temos muitas perguntas novas a fazer sobre o Universo graças ao Spitzer,” disse Michael Werner, cientista do projecto Spitzer no JPL da NASA em Pasadena, no estado norte-americano da Califórnia. “É muito gratificante saber que está quase a chegar um conjunto tão poderoso de recursos para acompanhar o que conseguimos começar com o Spitzer.”

Tanto o Webb como o Spitzer são especializados na luz infravermelha, que é invisível aos olhos humanos. Mas com o seu espelho gigante de berílio revestido a ouro e a nove novas tecnologias, o Webb é cerca de 1000 vezes mais poderoso. Este próximo telescópio poderá empurrar as descobertas científicas do Spitzer a novas fronteiras, desde a identificação de substâncias químicas nas atmosferas de exoplanetas até à localização de algumas das primeiras galáxias formadas pouco depois do Big Bang.

Além das suas descobertas, o Spitzer também desbravou caminho para o Webb em termos de como operar um telescópio deste tipo. A fim de medir a radiação infravermelha com alta sensibilidade, um telescópio tem que estar muito frio. O Spitzer mostrou aos engenheiros como um observatório infravermelho se comporta na vastidão do espaço e a que temperaturas os planeadores da missão devem esperar lidar com o Webb.

“É difícil ter um telescópio enorme no espaço. Mas ter um telescópio enorme e frio é muito mais complicado,” disse Amber Straughn, vice-cientista do projecto JWST (James Webb Space Telescope) para Comunicações de Ciência. “O Spitzer ajudou-nos a aprender como melhor operar um telescópio muito frio no espaço.”

Com mais de 8700 artigos científicos publicados tendo por base as descobertas do Spitzer, o telescópio tem sido um trunfo tremendo para os astrónomos nas mais variadas disciplinas. Muitos destes resultados tentadores estão prontos para serem revisitados com um telescópio mais poderoso, e o Webb prepara-se para os examinar no início da sua missão. Aqui fica uma lista dos feitos do Spitzer nos quais o Webb vai basear-se.

Exoplanetas

Uma das descobertas mais impressionantes do Spitzer foi que existem não apenas três, mas sete planetas rochosos do tamanho da Terra em órbita de uma estrela pequena e fraca chamada TRAPPIST-1. TRAPPIST-1 é um dos sistemas planetários mais estudados, além do nosso, mas há muito mais a aprender sobre ele.

O quarto planeta da estrela, TRAPPIST-1e, é especialmente interessante porque possui densidade e gravidade superficial muito semelhante à da Terra e recebe radiação estelar suficiente para ter temperaturas amigáveis o suficiente para a água líquida. O Webb vai observar este planeta para entender melhor se possui uma atmosfera e, a haver, qual a sua composição química.

A presença de moléculas como o dióxido de carbono, dominante em Marte e em Vénus, teria implicações para a capacidade de um planeta em ter água líquida e outras condições habitáveis. O Webb também será capaz de detectar água atmosférica. Além disso, o Webb procurará calor proveniente de TRAPPIST-1b, o planeta mais próximo da sua estrela.

“A diversidade de atmosferas em torno de mundos terrestres está provavelmente além das nossas imaginações mais selvagens,” disse Nikole Lewis, professora assistente de astronomia na Universidade Cornell em Ithaca, Nova Iorque, EUA. “Obter qualquer informação sobre o ar nestes planetas será muito útil.”

WASP-18b é outro planeta intrigante que o Spitzer examinou e que o Webb investigará mais em observações no início da missão. Este gigante gasoso, com 10 vezes a massa de Júpiter, está localizado extremamente perto da sua estrela, completando uma órbita a cada 23 horas. Devido à sua alta temperatura (265º Celsius) e grande tamanho, é conhecido como um “Júpiter quente”. Usando dados do Spitzer e do Hubble, os astrónomos descobriram em 2017 que este planeta possui muito monóxido de carbono na sua atmosfera superior e pouco vapor de água. Este planeta é particularmente interessante porque está tão perto da sua estrela que corre o risco de ser completamente destruído e poderá não sobreviver outro milhão de anos. Os astrónomos estão interessados em usar o Webb para observar os processos que ocorrem na atmosfera deste planeta, o que fornecerá informações sobre os Júpiteres quentes em geral.

O Spitzer também forneceu relatórios meteorológicos sem precedentes para exoplanetas. Em 2007, fez o primeiro mapa da superfície de um exoplaneta, o Júpiter quente HD 189733b, mostrando as suas variações de temperatura e topo de nuvens. Mais recentemente, em 2016, o Spitzer destacou os padrões climáticos de 55 Cancri e, um mundo possivelmente coberto de lava com mais do dobro do tamanho da Terra. Mas os mapas do Spitzer deram aos cientistas muito que pensar, enquanto procuram novas investigações com o Webb.

Outros objectos exóticos

O Spitzer também fez progressos na identificação e caracterização de anãs castanhas. Uma anã castanha é maior que um planeta, mas menos massiva que uma estrela e, embora as estrelas produzam a sua própria energia através da fusão do hidrogénio, as anãs castanhas não. O Spitzer foi capaz de olhar para as nuvens nas atmosferas das anãs castanhas e observar como se movem e mudam de forma com o tempo. O Webb vai examinar as propriedades das nuvens das anãs castanhas e aprofundar a ffísica destes objectos misteriosos.

A luz infravermelha também foi revolucionária na observação de discos de gás e poeira em órbita de estrelas, e tanto o Spitzer como o Webb são sensíveis ao brilho infravermelho deste material. Os discos estudados pelo Spitzer contêm as matérias-primas para a formação planetária e podem representar o estado do nosso Sistema Solar antes do nascimento da Terra e dos seus vizinhos. O Spitzer viu partículas ao redor de estrelas jovens a transformarem-se nas sementes de pequenos corpos planetários, e que alguns discos têm materiais parecidos aos vistos em cometas no nosso Sistema Solar. O Webb pode observar os mesmos discos e descobrir ainda mais sobre o processo de formação planetária.

Muitas galáxias

À medida que a luz viaja de objectos distantes até à Terra, o seu comprimento de onda torna-se mais longo porque o Universo está a expandir-se e esses objectos estão a afastar-se de nós. Assim como o som de uma sirene parece diminuir de tom quando uma ambulância se afasta, a luz de galáxias distantes também diminui de frequência, um fenómeno chamado “desvio para o vermelho”. Isto significa que as estrelas que emitem luz visível no Universo primitivo aparecerão no infravermelho quando a sua luz chegar à Terra. Isto faz da luz infravermelha uma ferramenta especialmente poderosa para explorar o passado do Universo.

Actualmente, é impossível localizar centenas de milhares de milhões de galáxias, mas o Spitzer fez grandes catálogos de galáxias que representam diferentes “fatias” do Universo, contendo algumas das galáxias mais distantes que conhecemos. As grandes áreas de levantamento do Spitzer e do Telescópio Espacial Hubble permitiram aos astrónomos procurar mais eficazmente objetos que podem ser estudados em mais detalhe com o Webb.

Por exemplo, o Spitzer, juntamente com o Hubble, obteve uma imagem de uma galáxia chamada GN-z11, que detém o recorde de galáxia mais distante medida até agora. É uma relíquia de quando o Universo tinha apenas 400 milhões de anos, apenas 3% da sua idade actual e menos de 10% do seu tamanho de hoje.

“O Spitzer investigou milhares de galáxias, mapeou a Via Láctea e realizou outros feitos inovadores, observando grandes áreas do céu,” disse Sean Carey, gerente do Centro Espacial Spitzer no Caltech/IPAC em Pasadena, Califórnia, EUA. “O Webb não terá essa capacidade, mas vai revisitar alguns dos alvos mais interessantes das pesquisas do Spitzer para revelá-los com uma clareza incrível.”

Além disso, a maior sensibilidade do Webb permitirá que o telescópio procure galáxias ainda mais antigas. E ainda existem questões sobre estas galáxias distantes: será que têm muitas estrelas, ou relativamente poucas? Será que são ricas em gás, ou pobres? Será que existem buracos negros no seu centro, e como é que esses buracos negros interagem com as estrelas? E os cientistas ponderam há décadas sobre um problema parecido ao “da galinha e do ovo”: o que veio primeiro, o buraco negro ou a galáxia circundante?

“Poderemos ver algumas das primeiras galáxias do Universo,” disse Straughn.

Mais perto de casa, o Spitzer também estudou muitos exemplos de um tipo misterioso de galáxia chamado galáxia infravermelha luminosa, ou LIRG (sigla inglesa para “luminous infrared galaxy”). Estas galáxias produzem dezenas a centenas de vezes mais energia por segundo do que uma típica galáxia, e a maior parte dessa energia assume a forma de luz infravermelha distante. Os cientistas usaram o Spitzer para estudar LIRGs e para aprender sobre a formação estelar e sobre o crescimento de buracos negros durante períodos de rápida evolução, quando galáxias colidem e se fundem. Tais colisões foram ainda mais comuns há 6-10 mil milhões de anos atrás e influenciaram a evolução do Universo como o conhecemos.

“O Webb vai retirar inspiração do Spitzer e examinar uma variedade de LIRGs próximas e distantes para aprender mais sobre o papel das fusões galácticas, dos surtos de formação estelar e do crescimento dos buracos negros super-massivos na evolução galáctica ao longo do tempo cósmico,” disse Lee Armus do Caltech, que irá liderar um programa de observação LIRG para o Webb.

Para o infravermelho desconhecido

Durante mais de 16 anos, o Spitzer mapeou muitas das questões mais prementes da astronomia infravermelha. Agora cabe ao Webb revisitá-las com uma visão mais nítida, através da maior janela para o cosmos.

Astronomia On-line
31 de Janeiro de 2020

spacenews

 

Telescópio Webb vai procurar anãs castanhas e planetas “fugitivos”

CIÊNCIA/UNIVERSO

Os cientistas vão usar o Webb para investigar o berçário estelar próximo NGC 1333 em busca dos seus residentes mais pequenos e ténues. É um local ideal para procurar objectos “fugitivos” e muito fracos, incluindo aqueles com massas planetárias.
Crédito: NASA/JPL-Caltech/R. A. Gutermuth (Harvard-Smithsonian CfA)

Quão pequenos são os objectos celestes mais pequenos que se formam como estrelas, mas que não produzem a sua própria luz? Quão comuns são em comparação com estrelas de pleno direito? E que dizer dos “planetas fugitivos”, que se formam em torno de estrelas antes de serem lançados para o espaço interestelar? Quando o Telescópio Espacial James Webb da NASA for lançado em 2021, lançará luz sobre estas questões.

A sua resposta vai definir um limite entre objectos que se formam como estrelas, que nascem de nuvens de gás e poeira em colapso gravitacional e aqueles que se formam como planetas, criados quando o gás e a poeira se aglomeram num disco em torno de uma estrela jovem. Também vai distinguir, entre ideias concorrentes, as origens das anãs castanhas, objectos com massas entre 1% e 8% a massa do Sol que não conseguem sustentar a fusão de hidrogénio nos seus núcleos.

Num estudo liderado por Aleks Scholz da Universidade de St. Andrews no Reino Unido, investigadores vão usar o Webb para descobrir os residentes mais pequenos e ténues de um berçário estelar próximo chamado NGC 1333. Localizado a cerca de 1000 anos-luz de distância na direcção da constelação de Perseu, o enxame NGC 1333 está relativamente perto em termos astronómicos. Também é muito compacto e contém muitas estrelas jovens. Estes três factores tornam-no no local ideal para estudar a formação estelar em acção, particularmente para aqueles interessados em objectos muito fracos e flutuantes.

“As anãs castanhas menos massivas identificadas até agora têm apenas cinco a dez vezes a massa do planeta Júpiter,” explicou Scholz. “Ainda não sabemos se objectos ainda mais leves se formam nos berçários estelares. Com o Webb, esperamos identificar pela primeira vez membros do enxame tão pequenos quanto Júpiter. Os seus números, em relação às mais massivas anãs castanhas e estrelas, vão lançar luz sobre as suas origens e também fornecer pistas importantes sobre o processo mais amplo de formação estelar.”

Um limite difuso

Objectos de massa muito baixa são frios, o que significa que emitem a maior parte da sua luz em comprimentos de onda infravermelhos. A observação da radiação infravermelha com telescópios terrestres é complexa por causa da interferência da atmosfera da Terra. Devido ao seu tamanho e à capacidade de ver a radiação infravermelha com uma sensibilidade sem precedentes, o Webb é ideal para encontrar e caracterizar objectos fugitivos (ou flutuantes) com massas inferiores a cinco vezes a massa de Júpiter.

A distinção entre as anãs castanhas e os planetas gigantes é imprecisa.

“Existem alguns objectos com massas abaixo da marca dos 10 Júpiteres que flutuam livremente pelo enxame. Dado que não orbitam nenhuma estrela em particular, podemos chamá-los de anãs castanhas, ou objectos de massa planetária, pois não os conhecemos melhor,” disse Koraljka Muzic da Universidade de Lisboa em Portugal. “Por outro lado, alguns planetas gigantes e massivos podem ter reacções de fusão. E algumas anãs castanhas podem formar-se num disco.”

Há também a questão dos planetas “fugitivos” – objectos que se formam como planetas e mais tarde são expelidos dos seus sistemas solares. Estes corpos flutuantes estão condenados a vaguear para sempre entre as estrelas.

Dúzias de uma só vez

A equipa irá usar o instrumento NIRISS (Near Infrared Imager and Slitless Spectrograph) do Webb para estudar estes vários objectos de baixa massa. Um espectrógrafo divide a luz de uma única fonte nas suas cores componentes, da mesma maneira que um prisma divide a luz branca num arco-íris. Esta luz transporta impressões digitais produzidas quando o material emite ou interage com a luz. Os espectrógrafos permitem que os investigadores analisem essas impressões digitais e descubram propriedades como a temperatura e composição.

O NIRISS vai fornecer à equipa informações simultâneas para dúzias de objectos. “Isto é fundamental. Para uma confirmação inequívoca de uma anã castanha ou de um planeta flutuante, precisamos de ver as assinaturas de absorção de moléculas – água ou metano, principalmente – no espectro,” explicou o membro da equipa Ray Jayawardhana da Universidade de Cornell. “A espectroscopia é demorada, e ser capaz de observar muitos objectos simultaneamente ajuda muito. A alternativa é capturar imagens primeiro, medir cores, seleccionar candidatos e, em seguida, recolher espectros, o que leva muito mais tempo e baseia-se em suposições.”

O Telescópio Espacial James Webb será o principal observatório científico espacial do mundo quando for lançado em 2021. Vai resolver mistérios do nosso Sistema Solar, olhar para mundos distantes em torno de outras estrelas e investigar as misteriosas estruturas e origens do nosso Universo e o nosso lugar nele. O Webb é um projecto internacional liderado pela NASA e pelos seus parceiros, a ESA e a Agência Espacial Canadiana.

Astronomia On-line
3 de Janeiro de 2020

spacenews

 

3276: Astrónomos propõem novo método de descobrir atmosferas em mundos rochosos

CIÊNCIA

Esta impressão de artista mostra um exoplaneta rochoso com uma atmosfera nublada em órbita de uma anã vermelha. Os astrónomos identificaram um novo método que pode permitir que o Telescópio Espacial James Webb detecte a atmosfera de um exoplaneta em poucas horas de tempo de observação.
Crédito: L. Hustak e J. Olmsted (STScI)

Quando o Telescópio Espacial James Webb da NASA for lançado em 2021, uma das contribuições mais esperadas para a astronomia será o estudo dos exoplanetas – planetas que orbitam estrelas distantes. Uma das questões mais prementes da ciência exoplanetária é: será que um pequeno planeta rochoso, em órbita íntima de uma estrela anã vermelha, consegue reter uma atmosfera?

Numa série de quatro artigos publicados na revista The Astrophysical Journal, uma equipa de astrónomos propõe um novo método de usar o Webb para determinar se um exoplaneta rochoso tem uma atmosfera. A técnica, que envolve a medição da temperatura do planeta enquanto passa por trás da sua estrela e volta depois a ser visível, é significativamente mais rápida do que os métodos tradicionais de detecção atmosférica, como a espectroscopia de transmissão.

“Descobrimos que o Webb podia facilmente inferir a presença ou ausência de uma atmosfera em torno de uma dúzia de exoplanetas rochosos com menos de 10 horas de tempo de observação por planeta,” disse Jacob Bean da Universidade de Chicago, co-autor de três dos artigos.

Os astrónomos estão particularmente interessados em exoplanetas que orbitam estrelas anãs vermelhas por várias razões. Estas estrelas, mais pequenas e mais frias que o Sol, são o tipo mais comum de estrela na nossa Galáxia. Além disso, dado que as anãs vermelhas são pequenas, um planeta que passe à sua frente parece bloquear uma fracção maior da luz estelar caso a estrela fosse maior, como o nosso Sol. Isto torna o planeta que orbita uma anã vermelha mais fácil de detectar por meio desta técnica de “trânsito”.

As anãs vermelhas também produzem muito menos calor do que o nosso Sol, de modo que para desfrutar de temperaturas habitáveis, um planeta precisaria de orbitar muito perto de uma anã vermelha. De facto, para estar na zona habitável – a área em torno da estrela onde pode existir água líquida à superfície de um planeta – o planeta tem que orbitar muito mais perto da estrela do que Mercúrio está do Sol. Como resultado, transitará a estrela mais frequentemente, facilitando observações repetidas.

Mas um planeta que orbita tão perto de uma anã vermelha está sujeito a condições adversas. As anãs vermelhas jovens são muito activas, lançando enormes proeminências e erupções de plasma. A estrela também emite um forte vento de partículas carregadas. Todos estes efeitos podem potencialmente destruir a atmosfera de um planeta, deixando para trás uma rocha nua.

“A perda atmosférica é a ameaça existencial número um à habitabilidade dos planetas,” disse Bean.

Outra característica fundamental dos exoplanetas que orbitam perto de anãs vermelhas também o é para a nova técnica: espera-se que sofram bloqueio de maré, o que significa que têm sempre o mesmo lado voltado para a estrela. Como resultado, vemos diferentes fases do planeta em diferentes pontos da sua órbita. Quando cruza a face da estrela, vemos apenas o lado nocturno do planeta. Mas quando está prestes a viajar para trás da estrela (um evento conhecido como eclipse secundário), ou quando está apenas a emergir de trás da estrela, podemos observar o lado diurno.

Se um exoplaneta rochoso não possuir atmosfera, o seu lado diurno será muito quente, assim como vemos com a Lua ou Mercúrio. No entanto, se um exoplaneta rochoso tiver uma atmosfera, espera-se que a presença dessa mesma atmosfera diminua a temperatura diurna medida pelo Webb. Isto pode ser feito de duas maneiras. Uma atmosfera espessa pode transportar o calor do lado diurno para o lado nocturno através de ventos. Uma atmosfera mais fina pode ainda conter nuvens, que refletem parte da luz estelar, diminuindo assim a temperatura do lado diurno do planeta.

“Sempre que acrescentamos uma atmosfera, estamos a diminuir a temperatura do lado diurno. Portanto, se virmos algo mais frio que rocha nua, inferiremos que provavelmente é sinal de uma atmosfera,” explicou Daniel Koll do MIT (Massachusetts Institute of Technology), o autor principal de dois dos artigos científicos.

O Webb é ideal para fazer estas medições porque possui um espelho muito maior do que outros telescópios, como o Hubble ou o Spitzer da NASA, que permite recolher mais luz e estudar os comprimentos de onda infravermelhas apropriados.

Os cálculos da equipa mostram que o Webb deverá ser capaz de detectar a assinatura de calor da atmosfera de um planeta num a dois eclipses secundários – apenas algumas horas de observação. Em contraste, a detecção de uma atmosfera através de observações espectroscópicas normalmente exige oito ou mais trânsitos para estes mesmos planetas.

A espectroscopia de transmissão, que estuda a luz estelar filtrada pela atmosfera do planeta, também sofre interferência devido a nuvens ou neblinas, que podem mascarar as assinaturas moleculares da atmosfera. Nesse caso, o gráfico espectral, em vez de mostrar linhas de absorção pronunciadas devido a moléculas, seria essencialmente plano.

“Na espectroscopia de transmissão, se obtivermos uma linha plana, isso não nos diz nada. A linha plana pode significar que o Universo está repleto de planetas mortos que não têm atmosfera, ou que o Universo está repleto de planetas que têm toda uma gama de atmosferas diversas e interessantes, mas parecem-nos todos iguais porque são nublados,” disse Eliza Kempton da Universidade de Maryland, co-autora de três dos artigos.

“As atmosferas exoplanetárias sem nuvens e neblinas são como unicórnios – ainda não as vimos, e podem não existir,” acrescentou.

A equipa enfatizou que uma temperatura mais baixa do que o esperado para o lado diurno será uma pista importante, mas que não confirma a existência de uma atmosfera. Quaisquer dúvidas remanescentes sobre a presença de uma atmosfera podem ser descartadas com estudos de acompanhamento usando outros métodos como a espectroscopia de transmissão.

A verdadeira força da nova técnica será determinar qual a fracção dos exoplanetas rochosos que provavelmente possui uma atmosfera. Aproximadamente uma dúzia de exoplanetas que são bons candidatos para este método foram detectados neste último ano. É provável que mais sejam encontrados quando o Webb ficar operacional.

“O TESS (Transiting Exoplanet Survey Satellite) está a encontrar muitos destes planetas,” afirmou Kempton.

O método do eclipse secundário tem uma limitação chave: funciona melhor em planetas demasiado quentes para estarem na zona habitável. No entanto, determinar se estes planetas quentes hospedam atmosferas tem implicações importantes para os planetas na zona habitável.

“Se os planetas quentes conseguem manter uma atmosfera, os mais frios também devem conseguir,” disse Koll.

O Telescópio Espacial James Webb será o principal observatório científico espacial do mundo quando for lançado em 2021. Vai resolver mistérios do nosso Sistema Solar, olhar para mundos distantes em torno de outras estrelas e investigar as misteriosas estruturas e origens do nosso Universo e o nosso lugar nele. O Webb é um projecto internacional liderado pela NASA e pelos seus parceiros, a ESA e a Agência Espacial Canadiana.

Astronomia On-line
27 de Dezembro de 2019

spacenews

 

3132: Telescópio Webb vai desvendar os segredos de galáxias anãs próximas

CIÊNCIA

A galáxia anã do Escultor é uma companheira da Via Láctea. Os astrónomos vão usar o Telescópio Espacial James Webb para estudar os movimentos das suas estrelas e da anã de Dragão, outra companheira da nossa Galáxia. Ao estudarem o movimento das estrelas, os investigadores serão capazes de determinar a distribuição da matéria escura nestas galáxias.
Crédito: ESA/Hubble, Digitized Sky Survey 2

Em dois estudos separados recorrendo ao futuro Telescópio Espacial James Webb da NASA, uma equipa de astrónomos irá observar companheiras anãs da Via Láctea e da vizinha Galáxia de Andrómeda. O estudo destas pequenas companheiras ajudará os cientistas a aprender mais sobre a formação das galáxias e sobre as propriedades da matéria escura, uma substância misteriosa que, segundo se pensa, é responsável por aproximadamente 85% da matéria no Universo.

No primeiro estudo, a equipa obterá conhecimento da matéria escura medindo os movimentos das estrelas em duas companheiras anãs da Via Láctea. No segundo estudo, vão examinar os movimentos de quatro galáxias anãs em redor da nossa grande vizinha galáctica mais próxima, a Galáxia de Andrómeda. Isto ajudará a determinar se algumas das galáxias satélites de Andrómeda orbitam dentro de um plano, como os planetas em torno do Sol. Se o fizerem, isso terá importantes implicações para a compreensão da formação das galáxias. O investigador principal dos dois programas é Roeland van der Marel do STScI (Space Telescope Science Institute) em Baltimore, no estado norte-americano da Maryland.

Observando movimentos estelares em companheiras anãs da Via Láctea

As galáxias mais próximas da nossa Via Láctea são as suas galáxias anãs companheiras, muito mais pequenas que a Via Láctea. Van der Marel e a sua equipa planeiam estudar os movimentos das estrelas em duas destas galáxias anãs, Dragão e Escultor. As órbitas das estrelas são governadas pela gravidade resultante da matéria escura em cada galáxia. Ao estudar como as estrelas se movem, os investigadores serão capazes de determinar como a matéria escura é distribuída nessas galáxias.

“O modo como as estruturas no Universo se formam depende das propriedades da matéria escura, que compreende a maior parte da massa do Universo,” explicou van der Marel. “Nós sabemos que a matéria escura existe, mas não sabemos o que realmente compõe essa matéria escura. Nós apenas sabemos que existe algo no Universo que tem gravidade e que puxa objectos, mas não sabemos realmente o que é.”

A equipa estudará a distribuição da matéria escura nos centros das galáxias anãs para determinar as propriedades de temperatura deste misterioso fenómeno. Se a matéria escura for “fria”, a sua densidade será muito alta perto dos centros das galáxias. Se a matéria escura for “amena”, será mais homogénea por toda a área perto dos centros galácticos.

Ao mesmo tempo que o instrumento NIRCam (Near Infrared Camera) do Webb estiver a estudar os centros das galáxias anãs de Dragão e Escultor, outro instrumento, o NIRISS (Near Infrared Imager and Slitless Spectrograph) estará a investigar os arredores das galáxias anãs. “Estas observações simultâneas fornecerão algumas dicas sobre como as estrelas se movem de maneira diferente perto do centro e na periferia das galáxias anãs,” disse o co-investigador Tony Sohn do STScI. “Também permitirão duas medições independentes da mesma galáxia, para verificar se existem efeitos sistemáticos ou instrumentais.”

Dado que o Webb possui aproximadamente seis vezes a área de recolha de luz do Telescópio Espacial Hubble da NASA/ESA, a equipa pode medir os movimentos de estrelas muito mais fracas do que o Hubble consegue observar. Quantas mais estrelas individuais incluídas num estudo, mais precisamente a equipa pode modelar a matéria escura que influencia os seus movimentos.

Estudando o movimento das galáxias anãs companheiras de Andrómeda

A grande galáxia mais próxima da nossa Via Láctea, Andrómeda, tem várias companheiras anãs, assim como a nossa Galáxia. Van der Marel e a sua equipa planeiam estudar como quatro destas galáxias anãs se movem em torno de Andrómeda, para determinar se estão agrupadas num plano no espaço ou se se movem em torno de Andrómeda em todas as direcções.

Ao contrário do primeiro programa de observações, a equipa não está a tentar medir como as estrelas dentro das galáxias anãs se movem. Neste estudo, vão tentar determinar como as galáxias anãs como um todo se movem em redor da Galáxia de Andrómeda. Isto fornecerá mais informações sobre o processo pelo qual as grandes galáxias se formam por acreção e pelo acumular de galáxias mais pequenas e como exactamente isso funciona.

Na maioria dos modelos, não é de esperar que as galáxias anãs que rodeiam as galáxias maiores estejam num plano. Normalmente, os cientistas esperam que as galáxias anãs orbitem em redor das galáxias maiores de maneira aleatória. Lentamente, estas companheiras anãs perdem energia e podem ser acretadas para a galáxia maior, que crescem ainda mais.

No entanto, tanto para a Via Láctea como para Andrómeda, vários estudos sugeriram que pelo menos uma fracção das galáxias anãs encontram-se num plano e podem até estar a girar nesse plano. Uma das maneiras de determinar se isto é verdade é medir os seus movimentos tridimensionais. Se os movimentos estiverem realmente num plano, isto sugere que as galáxias anãs permanecerão no plano. Mas se as companheiras anãs parecem estar num plano, mas os seus movimentos estiverem em todas as direcções, isso indicaria um alinhamento ao acaso e não uma estrutura duradoura.

Caso as galáxias anãs se alinharem num plano, isso pode significar uma de várias coisas. Poderá ser que uma boa fracção das companheiras anãs tenha entrado em órbita de Andrómeda como um único grupo. Se for esse o caso, as anãs reteriam a “memória” de que todas caíram juntas e exibem actualmente propriedades dinâmicas semelhantes.

Outra possibilidade é que as galáxias anãs de Andrómeda se formaram como o que é chamado de “galáxias anãs de marés”. Estas colecções gravitacionalmente ligadas de gás e estrelas formam-se durante fusões ou interacções entre grandes galáxias espirais. São tão massivas quanto as galáxias anãs, mas não são dominadas por matéria escura, como os cientistas pensam que a maior parte das galáxias anãs são. É possível que uma fusão de duas galáxias grandes com muito gás possa formar algumas galáxias anãs que terminem numa única estrutura plana, mas isso seria invulgar, porque os cientistas não acham que as galáxias anãs de marés sejam o tipo predominante de galáxia anã no Universo. Sabe-se que as galáxias anãs tipicamente se formam dentro de nuvens de matéria escura chamadas halos.

Qualquer um dos casos pode significar que a formação é mais complicada do que os investigadores às vezes pensam. Qualquer um deles forneceria restrições adicionais aos cientistas que desenvolvem modelos teóricos da formação das galáxias.

A precisão extrema do Webb

Em ambos os programas, a equipa levará o Webb aos seus limites em termos de exactidão e precisão. “É uma situação muito complicada, porque basicamente o que queremos medir são movimentos muito pequenos,” explicou o co-investigador Andrea Bellini do STScI. “A precisão que queremos alcançar é como medir algo que se move alguns centímetros por ano na superfície da Lua, visto a partir da Terra.”

Ambos os estudos são programas de Observação de Tempo Garantido alocados à equipa do cientista Matt Mountain do Telescópio Webb. O Telescópio Espacial James Webb será o principal observatório espacial do mundo quando for lançado em 2021. O Webb vai resolver mistérios no nosso Sistema Solar, olhar além para mundos distantes em torno de outras estrelas e investigar as estruturas misteriosas e origens do nosso Universo. É um programa internacional liderado pela NASA com os seus parceiros ESA e Agência Espacial Canadiana.

Astronomia On-line
3 de Dezembro de 2019

spacenews

 

2525: Onde nascem as novas estrelas? O Telescópio Webb vai investigar

CIÊNCIA

Esta é uma imagem, pelo Hubble, da galáxia SDSS J1226+2152, que está a ser ampliada e distorcida pela imensa gravidade de um enxame de galáxias à sua frente. É uma de quatro galáxias com formação estelar que a equipa TEMPLATES vai estudar com o Webb. A equipa escolheu-a como um exemplo de uma galáxia que não tem muita poeira.
Crédito: NASA, ESA, STScI e H. Ebeling (Universidade do Hawaii)

Quando se trata de produzir novas estrelas, a “festa” está no fim para o Universo actual. Na verdade, está quase no fim há milhares de milhões de anos. A nossa Via Láctea continua a formar o equivalente a um Sol todos os anos. Mas, no passado, esse ritmo era até 100 vezes maior. De modo que se quisermos realmente entender como as estrelas como o nosso Sol se formaram no Universo, precisamos de olhar milhares de milhões de anos para o passado.

Usando o Telescópio Espacial James Webb da NASA como uma espécie de máquina do tempo, uma equipa de investigadores pretende fazer exactamente isso. Liderada pela investigadora Jane Rigby do Centro de Voo Espacial Goddard da NASA em Greenbelt, no estado norte-americano de Maryland, e por Joaquin Vieira da Universidade de Illinois, Champaign, a equipa aproveitará os telescópios naturais e cósmicos chamados lentes gravitacionais. Estes grandes objectos celestes ampliam a luz de galáxias distantes que estão no pico da formação estelar.

O fenómeno das lentes gravitacionais ocorre quando uma enorme quantidade de matéria, como uma galáxia gigante ou enxame galáctico, cria um campo gravitacional que distorce e amplia a luz de objectos por trás, mas na mesma linha de visão. O efeito permite que os cientistas estudem os detalhes das primeiras galáxias demasiado longe para serem vistas de outra forma, mesmo com os telescópios espaciais mais poderosos.

“Estamos a estudar quatro galáxias que parecem muito, muito mais brilhantes do que realmente são, porque foram ampliadas até 50 vezes. Usaremos lentes gravitacionais para estudar como essas galáxias estão a formar as suas estrelas, e como essa formação estelar é distribuída pelas galáxias,” explicou Rigby.

“O lado bom de usar fontes que sofrem o efeito de lente gravitacional é que é como uma lupa cósmica, onde a galáxia é esticada, aumentando assim a resolução do seu telescópio,” explicou Vieira.

O programa tem o nome TEMPLATES (Targeting Extremely Magnified Panchromatic Lensed Arcs and Their Extended Star Formation). Embora TEMPLATES seja um acrónimo, o seu significado é mais profundo. A palavra “template” pode ser traduzida para português como “modelo”, uma palavra que se refere a algo usado como padrão, molde ou guia para projectar ou construir itens semelhantes. “Queremos tornar estas quatro galáxias em alvos incrivelmente bem estudados, para que outros investigadores do Webb possam usá-las como modelos, ou bons exemplos, quando trabalharem para entender os dados de um grande número de galáxias que são muito mais fracas,” disse Rigby.

Como os alvos foram escolhidos

Uma das principais razões pelas quais estas quatro galáxias foram escolhidas é porque são muito brilhantes, facilitando o estudo. “Todas estas galáxias estão a formar furiosamente estrelas,” acrescentou Vieira.

Estes alvos também representam grande parte da variedade de galáxias no Universo em termos de quão empoeiradas são, quão brilhantes são e quantas estrelas já fabricaram. Os astrónomos chamam as galáxias de “empoeiradas” quando as suas imagens mostram manchas escuras, muitas vezes difusas, que vêm da poeira da galáxia que bloqueia a luz estelar.

Duas das galáxias são muito empoeiradas, e duas delas não o são. As duas galáxias empoeiradas são, cada uma delas, ampliadas por uma outra galáxia. As duas galáxias que não parecem ter poeira são ampliadas por enxames de galáxias.

Das galáxias com muita poeira, os cientistas têm uma imagem de como as galáxias evoluíram. De levantamentos de galáxias sem poeira, têm uma imagem diferente. Essas imagens nem sempre correspondem. Espera-se que o Webb forneça uma história mais completa da formação estelar, pois tem sensibilidade para ver a luz da poeira aquecida por estrelas jovens – mesmo em galáxias que não têm muita poeira – bem como a sensibilidade para ver luz visível até das galáxias empoeiradas.

A equipa do programa TEMPLATES vai usar três dos quatro instrumentos a bordo do Webb, bem como muitos dos filtros e configurações do telescópio, para obter o máximo de dados possível destas galáxias. Além de obter fotos, a equipa vai usar espectroscopia, uma técnica que revela a composição química das galáxias, como o gás está a mover-se e quão denso e quente esse gás é.

O Webb vai permitir que a equipa faça essas medições em cada galáxia. “É como uma dissecação,” explicou Rigby. “Vamos separar cada pedaço da galáxia, em vez de obter apenas uma medição média.”

Desbloqueando os mistérios da formação estelar

A equipa TEMPLATES tem quatro objectivos principais:

  1. Medir quantas novas estrelas estão a formar-se, para determinar com que rapidez as galáxias formam estrelas. Ao fazer diferentes tipos de medições de ritmos de formação estelar para as quatro galáxias, a equipa planeia ver como concordam ou discordam uma das outras. Por meio de verificações cruzadas, a equipa determinará se estas galáxias estão, ou não, em formação estelar vigorosa, ou se apenas formam uma estrela ocasionalmente;
  2. Mapear o ritmo de formação estelar nestas galáxias. Os cientistas não sabem muito sobre onde as estrelas se formam nas galáxias durante a maior parte do tempo cósmico. O mapeamento da formação estelar em galáxias no Universo próximo é relativamente fácil, mas é muito mais difícil para galáxias distantes. Observando no passado distante, as galáxias longínquas parecem muito pequenas no céu e as características individuais não podem ser resolvidas. De modo que os cientistas não têm uma boa compreensão de onde as estrelas se formaram nas galáxias do Universo inicial;
  3. Comparar as populações estelares jovens e velhas. Os cientistas vão medir as estrelas mais antigas – estrelas que vivem milhares de milhões de anos, como o Sol. Vão determinar onde essas estrelas residem, dentro de uma galáxia, o que irá informá-los sobre o passado da formação estelar. Poderão depois comparar esses dados com o local onde as novas estrelas estão a formar-se. Isto revelará como a formação estelar mudou nas galáxias com o passar do tempo e responderá a algumas questões básicas sobre como as galáxias crescem. Por exemplo, constroem-se de dentro para fora ou de fora para dentro?
  4. Medir as condições do gás dentro destas galáxias. Os cientistas determinarão quanto da tabela periódica estas galáxias já construíram – por exemplo, quanto carbono, oxigénio e azoto contêm. Vão também medir outras condições físicas como a densidade do gás.

Ajudando outros investigadores a entender o Webb

As observações da equipa farão parte do programa Científico Discricionário Inicial do Diretor, que fornece tempo para projectos seleccionados no início da missão do telescópio. Este programa permite que a comunidade astronómica aprenda rapidamente a melhor maneira de usar as capacidades do Webb, ao mesmo tempo que produz ciência robusta. A equipa também está a ajudar outros investigadores a entender a melhor maneira de obter dados com este telescópio.

“O TEMPLATES apenas arranha a superfície do que podemos fazer com o Webb,” continuou Rigby. “Definitivamente não será a última palavra – é uma das primeiras palavras do que este telescópio será capaz de fazer, como podemos entender as galáxias. O que estamos a fazer com o TEMPLATES é que queremos ter a certeza de que estamos a começar esta missão com o ‘pé direito’ para realmente entender como aproveitar ao máximo as incríveis capacidades do Webb.”

O Telescópio Espacial James Webb será o principal observatório científico espacial do mundo quando for lançado em 2021. Vai resolver mistérios do nosso Sistema Solar, olhar para mundos distantes em torno de outras estrelas e investigar as misteriosas estruturas e origens do nosso Universo e o nosso lugar nele. O Webb é um projecto internacional liderado pela NASA e pelos seus parceiros, a ESA e a Agência Espacial Canadiana.

Astronomia On-line
27 de Agosto de 2019

 

2228: Telescópio Webb vai estudar Saturno e a sua lua Titã

Esta imagem mostra uma gigante tempestade saturniana observada em comprimentos de onda do infravermelho médio pelo VLT (Very Large Telescope) do ESO em 2011. Os gases quentes que alimentam a tempestade fazem-na brilhar em comparação com o resto do planeta.
Crédito: L. Fletcher (Universidade de Leicester) e ESO

Se perguntar a um estranho na rua qual o seu planeta favorito, provavelmente a resposta será Saturno. Os impressionantes anéis de Saturno são uma vista memorável em qualquer telescópio amador. Mas ainda há muito a aprender sobre Saturno, especialmente sobre o clima e a química do planeta, bem como sobre a origem do seu opulento sistema de anéis. Após o seu lançamento em 2021, o Telescópio Espacial James Webb da NASA observará Saturno, os seus anéis e a sua família de luas como parte de um abrangente programa do Sistema Solar.

Este estudo será levado a cabo através de um programa de Observações de Tempo Garantido liderado por Heidi Hammel, astrónoma planetária e vice-presidente executiva da AURA (Association of Universities for Research in Astronomy) em Washington, D.C., EUA. Hammel foi, em 2002, seleccionada pela NASA como cientista interdisciplinar do Webb.

“O objectivo deste programa é demonstrar as capacidades do Webb para observações do Sistema Solar, incluindo observações de objectos brilhantes, o rastreamento de objectos em movimento e a localização de alvos fracos ao lado de objectos brilhantes,” explicou Hammel. “Os dados serão disponibilizados para a comunidade do Sistema Solar o mais rápido possível para mostrar que o Webb pode fazer o que prometemos.”

O Webb vai prosseguir onde a sonda Cassini da NASA parou. A Cassini orbitou Saturno durante 13 anos, de 2004 até a missão terminar em 2017, quando mergulhou na atmosfera de Saturno. Desde então, programas como o OPAL (Outer Planet Atmospheres Legacy) do Telescópio Espacial Hubble e medições no solo têm sido a única maneira de monitorizar Saturno.

As estações de Saturno

Saturno está inclinado no seu eixo, tal como a Terra e, como resultado, também tem estações à medida que orbita o Sol. No entanto, como o ano de Saturno equivale a 30 anos terrestres, cada estação dura cerca de sete anos e meio. A Cassini chegou durante o verão no hemisfério sul (inverno no hemisfério norte). Mas agora é verão no hemisfério norte. Os astrónomos estão ansiosos por procurar mudanças sazonais na atmosfera de Saturno.

“Estas observações vão dar-nos um ensaio completo do sistema de Saturno para ver o que mudou, para ver como as estações evoluíram desde os últimos vislumbres da Cassini e para aproveitar capacidades do Webb que a Cassini nunca teve,” disse Leigh Fletcher, da Universidade de Leicester, Inglaterra, investigador principal do programa.

No final de 2010, uma tempestade monstruosa irrompeu no hemisfério norte de Saturno. Começou como uma mancha pequena, mas cresceu rapidamente, até que no final de Janeiro de 2011 cercava o planeta. Os astrónomos ficaram surpresos porque tais tempestades normalmente só se formam depois do solstício de verão, que ocorreu em 2017. Eles vão observar mais tempestades à medida que o hemisfério norte de Saturno passa de verão para outono ao longo da missão do Webb.

As tempestades não são os únicos fenómenos atmosféricos que Saturno e a Terra partilham. Saturno também tem auroras. Estas auroras desencadeiam mudanças químicas na atmosfera de Saturno, quebrando algumas moléculas e permitindo a formação de algumas novas. O Webb vai procurar assinaturas desta química invulgar em comprimentos de onda infravermelhos, particularmente na região polar norte.

Titã, a maior lua de Saturno

A maior lua de Saturno, Titã, também cairá sob o olhar poderoso do Webb. Titã não tem igual porque é a única lua do nosso Sistema Solar com uma atmosfera substancial. Na verdade, é maior que o planeta Mercúrio. A pressão atmosférica em Titã é cerca de 50% maior que a da Terra. Tal como na Terra, essa atmosfera é principalmente azoto, mas Titã também possui hidrocarbonetos vaporosos como o metano. Titã é também muito mais fria que a Terra, com uma temperatura de superfície que ronda os -180º C.

No interior da atmosfera de Titã, as reacções químicas estão constantemente a produzir a sua composição. As moléculas são quebradas nos seus constituintes como carbono, hidrogénio, oxigénio e azoto. Esses átomos formam novas moléculas, que se infiltram no ar e se acomodam em qualquer pólo onde seja inverno.

“A atmosfera de Titã é como um grande laboratório de química,” disse Conor Nixon, do Centro de Voo Espacial Goddard da NASA, em Greenbelt, no estado norte-americano de Maryland, investigador principal do programa. Nixon e colegas vão usar os instrumentos NIRSpec (Near-Infrared Spectrograph) e MIRI (Mid Infrared Imager) do Webb para estudar estas moléculas em muito mais detalhe do que os instrumentos da Cassini permitiam.

Titã é também o único objecto do nosso Sistema Solar, além da Terra, com mares e lagos líquidos à sua superfície. Enquanto a Terra tem um ciclo de água no qual a água evapora, cai como chuva e flui pelos rios até ao oceano, Titã tem um ciclo similar com o metano. Em Titã, a chuva de metano escava leitos de rios através de água gelada como rocha antes de correr para os mares. A Cassini e a sua pequena sonda Huygens, da ESA, que aterrou em Titã em 2004, fizeram descobertas notáveis sobre esta lua saturniana. O Webb vai estudar os ciclos climáticos sazonais de Titã para compará-los com os modelos dos astrónomos.

“Titã tem nuvens e clima que podemos ver mudando em tempo real. A sua química é muito diferente da da Terra, mas ainda é química orgânica baseado no carbono,” disse Stefanie Milam de Goddard, co-investigadora do programa.

O tempo de vida da missão do Webb, após o lançamento, foi projectado para ser pelo menos de cinco anos e meio, mas poderá durar dez ou mais. Como resultado, pode observar o verão no hemisfério norte passando pelo equinócio de outono e para a primavera a sul. Quase que “completaria o círculo” começado quando a Cassini chegou a Saturno durante o verão no hemisfério sul.

“Nós genuinamente teremos coberto todo um ano de Saturno. Seria uma experiência bastante reveladora,” disse Fletcher.

O Telescópio Espacial James Webb será o principal observatório científico espacial quando for lançado em 2021. Vai resolver mistérios do nosso Sistema Solar, olhar para mundos distantes ao redor de outras estrelas e investigar as misteriosas estruturas e origens do nosso Universo e o nosso lugar nele. O Webb é um projecto internacional liderado pela NASA e pelos seus parceiros, a ESA e a Agência Espacial Canadiana.

Astronomia On-line
25 de Junho de 2019

[vasaioqrcode]

2107: Uma nova visão dos exoplanetas com o futuro Telescópio Webb

Esta ilustração mostra um exoplaneta em órbita da sua estrela muito mais brilhante. O Webb vai permitir com que os cientistas observem exoploanetas em comprimentos de onda infravermelhos nunca antes estudados.
Crédito: NASA, ESA e G. Bacon (STScI)

Embora conheçamos actualmente milhares de exoplanetas – planetas em torno de outras estrelas -, a grande maioria do nosso conhecimento é indirecto. Ou seja, os cientistas não tiraram ainda muitas fotos dos exoplanetas e, devido aos limites da tecnologia actual, só podemos ver esses mundos como pontos de luz. No entanto, o número de exoplanetas observados indirectamente está a crescer com o tempo. Quando o Telescópio Espacial James Webb da NASA for lançado em 2021, abrirá uma nova janela para esses exoplanetas, vendo-os em comprimentos de onda nunca antes observados e obtendo novas informações sobre a sua natureza.

Os exoplanetas estão próximos de estrelas comparativamente muito mais brilhantes, de modo que a sua luz é geralmente dominada pela luz das estrelas hospedeiras. Os astrónomos costumam encontrar um exoplaneta inferindo a sua presença com base no escurecimento da luz da estrela-mãe quando o planeta passa à sua frente – um evento chamado de “trânsito”. Às vezes, um planeta puxa a estrela, fazendo a estrela balançar levemente.

Em alguns casos, os cientistas capturaram fotos de exoplanetas usando instrumentos chamados coronógrafos. Estes dispositivos bloqueiam o brilho da estrela da mesma maneira que podemos usar a nossa mão para bloquear a luz do Sol. No entanto, encontrar exoplanetas com esta técnica provou ser muito difícil. Tudo isto vai mudar com a sensibilidade do Webb. Os seus coronógrafos a bordo permitirão com que os cientistas observem exoplanetas em comprimentos de onda infravermelhos nunca antes tentados para este tipo de objecto astronómico.

As capacidades únicas do Webb

Os coronógrafos têm algo importante em comum com os eclipses. Durante um eclipse, a Lua bloqueia a luz do Sol, permitindo-nos ver estrelas que normalmente seriam ofuscadas pelo brilho da nossa. Os astrónomos aproveitaram este facto durante o eclipse de 1919, fez dia 29 de maio 100 anos, a fim de testar a teoria da relatividade geral de Albert Einstein. Da mesma forma, um coronógrafo age como um “eclipse artificial” para bloquear a luz de uma estrela, permitindo ver planetas que de outra forma ficariam perdidos no brilho estelar.

“A maioria dos planetas que detectámos até agora são aproximadamente 10.000 a 1 milhão de vezes mais fracos do que a sua estrela-mãe,” explicou Sasha Hinkley da Universidade de Exeter. Hinkley é o investigador principal de um dos primeiros programas de observação do Webb para estudar exoplanetas e sistemas exoplanetários.

“Há, sem dúvida, uma população de planetas que são ainda mais fracos, que têm maiores rácios de contraste e que estão, possivelmente, mais afastados das suas estrelas,” comentou Hinkley. “Com o Webb, podemos ver planetas que são 10 milhões, ou optimisticamente, 100 milhões de vezes mais fracos.” Para observar os seus alvos, a equipa vai usar imagiologia de alto contraste, que distingue essa grande diferença de brilho entre o planeta e a estrela.

O Webb terá a capacidade de observar os seus alvos no infravermelho médio, que é invisível ao olho humano, mas com sensibilidade muito superior a qualquer outro observatório já construído. Isto significa que o Webb será sensível a uma classe de planetas ainda não detectada. Especificamente, podem estar ao alcance do Webb planetas semelhantes a Saturno em grandes separações orbitais das suas estrelas hospedeiras.

“O nosso programa está a olhar para planetas jovens e recém-formados e para os sistemas que habitam,” explicou a co-investigadora principal Beth Biller, da Universidade de Edimburgo. “O Webb vai permitir fazer isto com muito mais detalhe e em comprimentos de onda que nunca explorámos antes. Por isso, será vital entender como estes objectos se formam e como são estes sistemas.”

Testando as águas

As observações da equipa farão parte do programa Científico Discricionário Inicial do Director, que fornece tempo para projectos seleccionados no início da missão do telescópio. Este programa permite que a comunidade astronómica aprenda rapidamente a melhor maneira de usar as capacidades do Webb, ao mesmo tempo que produz ciência robusta.

“Com o nosso programa, estaremos realmente a ‘testar as águas’ para entender como o Webb se comporta,” disse Hinkley. “Precisamos realmente da melhor compreensão dos instrumentos, da estabilidade, da maneira mais eficaz de pós-processar os dados. As nossas observações vão informar a comunidade da maneira mais eficiente de usar o Webb.”

Os alvos

A equipa de Hinkley vai usar todos os quatro instrumentos do Webb para observar três alvos: um exoplaneta descoberto recentemente; um objecto que é ou um exoplaneta ou uma anã castanha; e um anel bem estudado de poeira e planetesimais em órbita de uma jovem estrela.

Exoplaneta HIP 65426b: este exoplaneta recém-descoberto e fotografado directamente tem uma massa entre seis e 12 vezes a de Júpiter e está em órbita de uma estrela que é mais quente e que tem o dobro da massa do nosso Sol. O exoplaneta está aproximadamente 92 vezes mais distante da sua estrela do que a Terra está do Sol. A grande separação entre este jovem planeta e a sua estrela hospedeira significa que as observações da equipa serão muito menos afectadas pelo brilho estelar. Hinkley e a sua equipa planeiam usar o conjunto completo de coronógrafos do Webb para visualizar este alvo.

Companheiro de massa planetária VHS 1256b: um objecto algures entre o limite planeta/anã castanha, VHS 1256b também está a uma grande distância da sua anã vermelha hospedeira – cerca de 100 vezes a distância a que a Terra está do Sol. Dada a sua grande separação, as observações deste objecto serão provavelmente muito menos afectadas pela luz indesejada da estrela. Além de imagens de alto contraste, a equipa espera obter um dos primeiros espectros “não corrompidos” de um corpo semelhante a um planeta em comprimentos de onda onde estes objectos nunca antes foram estudados.

Disco circum-estelar de detritos: há mais de 20 anos que os cientistas estudam um anel de poeira e planetesimais em órbita de uma jovem estrela chamada HR 4796A, que tem cerca de duas vezes a massa do nosso próprio Sol. Os astrónomos pensam que a maioria dos sistemas planetários, inicialmente, provavelmente pareciam-se muito com HR 4796A e com o seu anel de detritos, tornando este um alvo particularmente interessante de estudar. A equipa usará imagiologia de alto contraste dos coronógrafos do Webb para ver o disco em diferentes comprimentos de onda. O seu objectivo é ver se as estruturas do disco parecem diferentes de comprimento de onda para comprimento de onda.

Planeando o programa

Para planear este programa Científico Inicial, Hinkley perguntou ao maior número possível de membros da comunidade científica a simples pergunta: se quiser planear um levantamento para procurar exoplanetas, quais são as perguntas para as quais precisa de respostas?

“O que nós desenvolvemos foi um conjunto de observações que pensamos vai responder a essas perguntas. Vamos dizer à comunidade que é assim que o Webb funciona neste modo, que é este o tipo de sensibilidade que temos, que é este o tipo de contraste que alcançamos. E precisamos rapidamente de informar a comunidade para que os astrónomos possam preparar, de maneira igualmente rápida, as suas propostas.”

A equipa está ansiosa por ver os seus alvos em comprimentos de onda nunca antes observados, e para partilhar os seus conhecimentos. De acordo com Biller, “já tínhamos noção, há anos, que para alguns dos planetas descobertos, o Webb seria realmente transformador.”

O Telescópio Espacial James Webb será o principal observatório de ciências espaciais do mundo quando for lançado em 2021. O Webb resolverá mistérios no nosso Sistema Solar, olhará mais além para mundos distantes em redor de outras estrelas e investigará as misteriosas estruturas e origens do nosso Universo e o nosso lugar nele. O Webb é um programa internacional liderado pela NASA com os seus parceiros, a ESA e a Agência Espacial Canadiana.

Astronomia On-line
4 de Junho de 2019



[vasaioqrcode]