4341: Sol começa um novo ciclo. Cientistas da NASA explicam o que isso significa

CIÊNCIA/ASTRONOMIA

A nossa estrela a cada onze anos regista um ciclo. Há padrões de manchas que aparecem e desaparecem que mostram mais ou menos a actividade do Sol. Desde há algum tempo que os cientistas da NASA perceberam que algo mudou e que deveria estar já em curso o 25.º ciclo solar. Assim, tendo em conta o comportamento conhecido, espera-se que os próximos 11 anos sejam mais activos, e eventualmente tragam à Terra mais “riscos”.

Segundo a NASA, a nossa estrela está oficialmente neste novo estágio há nove meses. O que nos poderá trazer esta nova etapa do Sol?

O Sol está no seu 25.º ciclo

Os cientistas da NASA e da Administração Nacional Oceânica e Atmosférica dos Estados Unidos (NOAA) acreditam que o novo ciclo será muito semelhante ao anterior. O 24.º ciclo, compreendido entre 2008 e 2019, foi bastante silencioso. No entanto, isso não significa que o próximo seja “isento de riscos”, apontam.

Segundo os especialistas da NASA e NOAA, Solar Cycle Prediction Panel, o mínimo solar, ocorreu em Dezembro de 2019, marcando o início de um novo ciclo solar. Como o nosso Sol é muito variável, pode levar meses para que possa ser possível declarar que acabou um ciclo e começou outro.

Os cientistas usam as imagens das manchas solares para vigiar o progresso do ciclo solar. Assim, identificam as manchas escuras no Sol como sendo indícios da actividade solar. Estas manchas resultam, em muitos casos, de explosões gigantes, como erupções solares ou ejecções de massa coronal, que podem lançar luz, energia e material solar para o espaço.

À medida que saímos do mínimo solar e nos aproximamos do máximo do ciclo 25, é importante lembrar que a actividade solar nunca para; ele muda de forma conforme o pêndulo oscila.

Explicou Lika Guhathakurta, da Divisão de Heliofísica da sede da NASA em Washington.

Manchas escuras do Sol são provas da sua actividade… ou falta dela

Para determinar o início de um novo ciclo solar, o painel de especialistas consultou dados mensais de manchas solares do World Data Center para o Índice de Manchas Solares e Observações Solares de Longo Prazo. Este departamento está localizado no Observatório Real Belga em Bruxelas e tem como missão vigiar as manchas solares. Com isso, os especialistas conseguem sinalizar os pontos altos e baixos do ciclo solar.

Mantemos um registo detalhado das poucas manchas solares minúsculas que marcam o início e o surgimento do novo ciclo. Estes são os minúsculos arautos dos futuros fogos de artifício solares gigantes. Somente seguindo a tendência geral ao longo de muitos meses, podemos determinar o ponto de inflexão entre dois ciclos.

Referiu Frédéric Clette, director do centro e um dos palestrantes da previsão.

Actividade solar: Depois da bonança vem a tempestade?

Conforme foi referido por várias vezes, o ciclo que agora terminou foi calmo. Assim, com o mínimo solar atrás de nós, os cientistas esperam que a actividade do Sol aumente em direcção ao próximo máximo previsto em Julho de 2025. Os cientistas do Solar Cycle Prediction Panel preveem que o ciclo solar 25 será tão ameno quanto o anterior, que estava abaixo da média, mas isso não significa que seja livre de riscos.

Só porque é um ciclo solar abaixo da média não significa que não haja risco de clima espacial extremo. O impacto do Sol na nossa vida diária é real.

Concluiu Biesecker.

Os especialistas lembram que as previsões do tempo espacial são essenciais para proteger os cidadãos de possíveis emergências causadas por explosões solares que atingem a Terra, mas também satélites e sondas espaciais e astronautas do programa Artemis para voltarem à Lua. Examinar este ambiente é o primeiro passo para entender e mitigar a exposição dos astronautas à radiação espacial.

A NASA vai reforçar o estudo do clima espacial e vigiar o ambiente de radiação na órbita lunar. Os especialistas trabalham em modelos preditivos para que um dia possam prever o clima espacial de maneira semelhante a como os meteorologistas preveem o clima na Terra.

Que se passa com o Sol, estará a acordar de um longo sono? Explosão poderá marcar nova fase

Poderá não ter dado conta, mas o nosso Sol está, desde 2017, a atravessar um período de maior letargia. Em grosso modo, parece ter adormecido e está em serviços mínimos. Contudo, uma poderosa explosão, … Continue a ler Que se passa com o Sol, estará a acordar de um longo sono? Explosão poderá marcar nova fase

Autor: Vítor M.
16 Set 2020

 

spacenews

 

4201: O Sol pode ter começado a sua vida com uma companheira binária

CIÊNCIA/ASTRONOMIA

Impressão de artista de uma potencial companheira solar, que os teóricos pensam ter sido desenvolvida no enxame natal do Sol e mais tarde perdida. Se confirmada, a teoria da companheira solar forneceria evidências adicionais às teorias de que a nuvem de Oort se formou como a vemos hoje, e que o Planeta Nove foi capturado em vez de ter sido formado naquele lugar.
Crédito: M. Weiss

Uma nova teoria publicada na revista The Astrophysical Journal Letters por cientistas da Universidade de Harvard sugere que o Sol pode ter tido uma companheira binária de massa semelhante. Se confirmada, a presença de uma companheira estelar precoce aumenta a probabilidade de que a nuvem de Oort se tenha formado conforme observado e que o Planeta Nove tenha sido capturado em vez de formado dentro do Sistema Solar.

O Dr. Avi Loeb, professor de Ciências de Harvard, e Amir Siraj, estudante de Harvard, postularam que a existência de uma companheira estelar binária no enxame natal do Sol – a colecção de estrelas formadas juntamente com o Sol a partir da mesma nuvem densa de gás molecular – poderia explicar a formação da nuvem de Oort como a observamos hoje.

A teoria popular associa a formação da nuvem de Oort com detritos deixados para trás da formação do Sistema Solar e dos seus vizinhos, onde objectos foram espalhados pelos planetas a grandes distâncias e alguns foram trocados entre estrelas. Mas um modelo binário pode ser a peça que faltava no puzzle e, segundo Siraj, não deve ser uma surpresa para os cientistas. “Os modelos anteriores tiveram dificuldade em produzir a proporção esperada objectos dispersos do disco e objectos da nuvem de Oort. O modelo de captura binária fornece melhorias e refinamentos significativos, o que é aparentemente óbvio em retrospectiva: a maioria das estrelas parecidas com o Sol nascem com companheiras binárias.”

Se a nuvem de Oort foi realmente capturada com a ajuda de uma companheira estelar precoce, as implicações para a nossa compreensão da formação do Sistema Solar seriam significativas. “Os sistemas binários são muito mais eficientes na captura de objectos do que estrelas simples,” disse Loeb. “Se a nuvem de Oort se formou conforme observado, isso implicaria que o Sol de facto teve uma companheira de massa semelhante que se perdeu antes de deixar o enxame onde nasceu.”

Mais do que apenas redefinir a formação do nosso Sistema Solar, a evidência de uma nuvem de Oort capturada poderia responder a perguntas sobre a origem da vida na Terra. “Objectos na nuvem de Oort podem ter desempenhado papéis importantes na história da Terra, como possivelmente transportar água para a Terra e provocar a extinção dos dinossauros,” comentou Siraj. “Compreender as suas origens é importante.”

O modelo também tem implicações para o hipotético Planeta Nove, que Loeb e Siraj pensam não estar sozinho. “O puzzle não é apenas em relação às nuvens de Oort, mas também a objectos trans-Neptunianos extremos, como o potencial Planeta Nove,” disse Loeb. “Não está claro de onde vieram, e o nosso novo modelo prevê que devem existir mais objectos com uma orientação orbital semelhante à do Planeta Nove.”

Tanto a nuvem de Oort quanto a localização proposta do Planeta Nove estão tão distantes do Sol que a observação directa e a avaliação são um desafio para os investigadores de hoje. Mas o Observatório Vera C. Rubin, que verá a sua primeira luz no início de 2021, irá confirmar ou negar a existência do Planeta Nove e suas origens. Siraj está optimista: “Se o Observatório Vera C. Rubin verificar a existência do Planeta Nove, e uma origem capturada, e também encontrar uma população de planetas anões capturados de forma semelhante, o modelo binário será favorecido em detrimento da história estelar solitária que tem sido assumida há tanto tempo.”

Se o Sol teve uma companheira precoce que contribuiu para a formação do Sistema Solar exterior, a sua ausência actual levanta a questão: para onde foi? “As estrelas do enxame natal teriam removido a companheira do Sol por meio da sua influência gravitacional,” disse Loeb. “Antes da perda do binário, no entanto, o Sistema Solar já teria capturado o seu invólucro externo de objectos, ou seja, a nuvem de Oort e a população do Planeta Nove.” Siraj acrescentou: “A companheira há muito perdida do Sol pode estar agora em qualquer lugar da Via Láctea.”

Astronomia On-line
21 de Agosto de 2020

 

spacenews

 

4015: Solar Orbiter first images revealed

European Space Agency, ESA

 

ESA’s Solar Orbiter spacecraft has sent back its first images of the Sun. At 77 million kilometres from the surface, this is the closest a camera has ever flown to our nearest star. The pictures reveal features on the Sun’s exterior that have never been seen in detail before. Launched on 10 February 2020, the spacecraft completed its commissioning phase and first close-approach to the Sun in mid-June. Since then, science teams have been processing and examining this early data. The spacecraft is currently in its cruise phase, on its way to Venus, but will eventually get even closer to the Sun.
★ Subscribe: http://bit.ly/ESAsubscribe and click twice on the bell button to receive our notifications.
Check out our full video catalog: http://bit.ly/SpaceInVideos
Follow us on Twitter: http://bit.ly/ESAonTwitter
We are Europe’s gateway to space. Our mission is to shape the development of Europe’s space capability and ensure that investment in space continues to deliver benefits to the citizens of Europe and the world.
Check out http://www.esa.int/ESA to get up to speed on everything space related.
Copyright information about our videos is available here: http://www.esa.int/spaceinvideos/Term… #ESA #SolarOrbiter #TheSunUpClose

 

spacenews

 

As primeiras imagens da Solar Orbiter revelam “fogueiras” no Sol

CIÊNCIA/ASTRONOMIA

O instrumento EUI (Extreme Ultraviolet Imager) a bordo da sonda Solar Orbiter da ESA obteve esta imagem no dia 30 de maio de 2020. Mostra o aspecto do Sol a um comprimento de onda de 17 nanómetros, que fica na região ultravioleta extrema do espectro electromagnético. As imagens neste comprimento de onda revelam a atmosfera superior do Sol, a coroa, com uma temperatura de aproximadamente 1 milhão de graus Celsius. O EUI captura imagens do disco total do Sol usando o telescópio FSI (Full Sun Imager), bem como imagens de alta resolução com o telescópio HRIEUV.
No dia 30 de maio, a Solar Orbiter estava mais ou menos a metade da distância Terra-Sol, o que significa que estava mais perto do Sol do que qualquer outro telescópio solar alguma vez esteve. Isto permitiu que o EUI visse características na coroa solar com apenas 400 km de diâmetro. Ao longo da missão, a Solar Orbiter vai ficar mais perto do Sol e isto aumentará o poder de imagem do instrumento por um factor de dois na aproximação máxima.
Ainda assim, mesmo antes desta maior aproximação, as imagens já obtidas revelam um conjunto de loops, manchas brilhantes e escuras, filamentos móveis. Uma característica omnipresente da superfície solar, revelada pela primeira vez nestas imagens, foi apelidada de “fogueiras”. São erupções em miniatura que podem estar a contribuir para as altas temperaturas da coroa solar e para a origem do vento solar.
A cor nesta imagem foi acrescentada artificialmente porque o comprimento de onda original detectado pelo instrumento é invisível ao olho humano.
Crédito: Solar Orbiter/Equipa EUI (ESA & NASA); CSL, IAS, MPS, PMOD/WRC, ROB, UCL/MSSL

As primeiras imagens da Solar Orbiter, uma nova missão de observação do Sol da ESA e da NASA, revelaram explosões solares em miniatura omnipresentes, apelidadas de “fogueiras”, perto da superfície da nossa estrela mais próxima.

De acordo com os cientistas por trás da missão, a observação de fenómenos que não eram antes visíveis em detalhe, sugere o enorme potencial da Solar Orbiter, que acabou de terminar a sua fase inicial de verificação técnica conhecida como comissionamento.

“Estas são apenas as primeiras imagens e já podemos ver novos fenómenos interessantes,” diz Daniel Müller, Cientista do Projecto Solar Orbiter da ESA. “Não esperávamos resultados tão bons desde o início. Também podemos ver como os nossos dez instrumentos científicos se complementam, fornecendo uma imagem holística do Sol e do ambiente circundante.”

A Solar Orbiter, lançada no dia 10 de Fevereiro de 2020, transporta seis instrumentos de sensoriamento remoto, ou telescópios, que retratam o Sol e seus arredores e quatro instrumentos in situ que monitorizam o ambiente em torno da aeronave. Ao comparar os dados de ambos os conjuntos de instrumentos, os cientistas obterão informações sobre a formação do vento solar, o fluxo de partículas carregadas do Sol que influencia todo o Sistema Solar.

O aspecto único da missão Solar Orbiter é que nenhuma outra aeronave conseguiu capturar imagens da superfície do Sol a uma distância tão próxima.

Imagens mais próximas do Sol revelam novos fenómenos

As fogueiras, mostradas no primeiro conjunto de imagens, foram capturadas pelo EUI (Extreme Ultraviolet Imager) do primeiro periélio da Solar Orbiter, o ponto na sua órbita elíptica mais próximo do Sol. Naquele momento, a sonda estava a apenas 77 milhões de quilómetros do Sol, cerca da metade da distância entre a Terra e a estrela.

“As fogueiras são parentes pequenos das explosões solares que podemos observar a partir da Terra, milhões ou milhares de milhões de vezes menores,” diz David Berghmans, do Observatório Real da Bélgica, Investigador Principal do Instrumento EUI, que captura imagens de alta resolução das camadas inferiores da atmosfera do Sol, conhecida como coroa solar. “O Sol pode parecer pacífico à primeira vista, mas quando olhamos em detalhe, podemos ver essas labaredas em miniatura em todos os lugares.”

Os cientistas ainda não sabem se as fogueiras são apenas pequenas versões de grandes explosões ou se são movidas por diferentes mecanismos. Já existem, no entanto, teorias de que estas explosões em miniatura poderiam estar a contribuir para um dos fenómenos mais misteriosos do Sol, o aquecimento coronal.

Desvendar os mistérios do Sol

“Estas fogueiras são totalmente insignificantes mas, ao somar os seus efeitos em todo o Sol, estas podem ser a contribuição dominante para o aquecimento da coroa solar,” diz Frédéric Auchère, do Instituto de Astrofísica Espacial, França, Investigador Principal do EUI.

A coroa solar é a camada mais externa da atmosfera do Sol que se estende milhões de quilómetros para o espaço sideral. A sua temperatura é superior a um milhão de graus Celsius, o que é uma ordem de magnitude mais quente que a superfície do Sol, uns “refrescantes” 5500°C. Após muitas décadas de estudos, os mecanismos físicos que aquecem a coroa ainda não são totalmente compreendidos, mas identificá-los é considerado o “santo graal” da física solar.

“Obviamente é prematuro dizer, mas esperamos que, ao ligar estas observações com as medições dos nossos outros instrumentos que ‘sentem’ o vento solar ao passar na aeronave, possamos eventualmente responder a alguns destes mistérios,” diz Yannis Zouganelis, Cientista Adjunto do Projeto Solar Orbiter da ESA.

Observar o lado mais distante do Sol

O PHI (Polarimetric and Helioseismic Imager) é outro instrumento de ponta a bordo da Solar Orbiter. Faz medições de alta resolução das linhas do campo magnético na superfície do sol. Foi projectado para monitorizar regiões activas do Sol, áreas com campos magnéticos especialmente fortes, que podem dar origem a explosões solares.

Durante as explosões solares, o Sol liberta rajadas de partículas energéticas que aumentam o vento solar que emana constantemente da estrela para o espaço circundante. Quando estas partículas interagem com a magnetosfera da Terra, podem causar tempestades magnéticas que podem atrapalhar as redes de telecomunicações e as redes de energia no solo.

“Neste momento, estamos na parte do ciclo solar de 11 anos quando o Sol está muito tranquilo,” diz Sami Solanki, Director do Instituto Max Planck de Investigação de Sistemas Solares em Göttingen, Alemanha, e Investigador Principal do PHI. “Mas como a Solar Orbiter está num ângulo diferente do Sol e da Terra, podemos ver uma região activa que não era observável da Terra. Esta é a primeira vez. Nunca fomos capazes de medir o campo magnético na parte de trás do sol.”

Os magnetogramas, que mostram como a força do campo magnético solar varia através da superfície do Sol, podem ser comparados com as medições dos instrumentos in situ.

“O instrumento PHI está a medir o campo magnético na superfície, vemos estruturas na coroa do Sol com o EUI, mas também tentamos inferir as linhas do campo magnético que saem para o meio interplanetário, onde está a Solar Orbiter,” diz Jose Carlos del Toro Iniesta, Investigador Principal do PHI, do Instituto de Astrofísica da Andaluzia, Espanha.

Apanhar o vento solar

Os quatro instrumentos in situ na Solar Orbiter caracterizam as linhas do campo magnético e o vento solar à medida que passam na aeronave.

Christopher Owen, do Laboratório de Ciências Espaciais Mullard da University College London e Investigador Principal do Solar Wind Analyser in situ, acrescenta: “Através destas informações, podemos estimar em que fracção do Sol uma parte específica do vento solar foi emitida e, em seguida, usar o conjunto completo de instrumentos da missão para revelar e entender os processos físicos que operam nas diferentes regiões do Sol que levam à formação de ventos solares.”

“Estamos todos realmente empolgados com estas primeiras imagens – mas este é apenas o começo,” acrescenta Daniel. “A Solar Orbiter iniciou um grande circuito pelo Sistema Solar interno e aproximar-se-á muito do Sol em menos de dois anos. Por fim, chegará a 42 milhões de quilómetros, o que representa quase um-quarto da distância do Sol à Terra.”

“Os primeiros dados já demonstram o poder por trás de uma colaboração bem-sucedida entre agências espaciais e a utilidade de um conjunto diversificado de imagens para desvendar alguns dos mistérios do Sol,” comenta Holly Gilbert, Directora da Divisão de Ciências Heliofísicas do Centro de Voo Espacial Goddard da NASA e Cientista do Projecto Solar Orbiter da NASA.

A Solar Orbiter é uma missão espacial de colaboração internacional entre a ESA e a NASA. Dezanove Estados membros da ESA (Áustria, Bélgica, República Checa, Dinamarca, Finlândia, França, Alemanha, Grécia, Itália, Irlanda, Luxemburgo, Holanda, Noruega, Polónia, Portugal, Espanha, Suécia, Suíça e Reino Unido), bem como a NASA, contribuíram para a carga científica e/ou a aeronave. O satélite foi construído pela contratante principal Airbus Defense and Space, no Reino Unido.

Astronomia On-line
17 de Julho de 2020

 

spacenews

 

4005: Estas são as imagens mais próximas do Sol alguma vez tiradas

CIÊNCIA/SOL

As primeiras imagens do Sol transmitidas pelo satélite europeu Solar Orbiter permitiram ver explosões à superfície da estrela que nunca tinham sido observadas com tal pormenor, afirmou esta quinta-feira a Agência Espacial Europeia (ESA).

© EPA/SOLAR ORBITER

O que os cientistas chamam de “fogueiras” são “parentes pequenos das explosões solares que podemos observar a partir da Terra, milhões ou milhares de milhões de vezes menores”, afirmou o investigador David Berghmans, do Observatório Real da Bélgica.

As imagens foram captadas quando a Solar Orbiter estava a 77 milhões de quilómetros do Sol, a meio caminho entre a Terra e a estrela.

Segundo a ESA, os cientistas desconhecem para já se as “fogueiras” são como as explosões grandes, mas em ponto pequeno, ou se têm uma explicação diferente, mas teorizam que podem estar a contribuir para “um dos fenómenos mais misteriosos do Sol”.

© EPA/SOLAR ORBITER

“Estas fogueiras são totalmente insignificantes, mas, ao somar os seus efeitos em todo o Sol, podem ser a contribuição dominante para o aquecimento da coroa solar”, afirmou Frédéric Auchère, do Instituto de Astrofísica Espacial de França.

A coroa solar é a camada mais externa do Sol, que se projecta milhões de quilómetros para o espaço a uma temperatura de um milhão de graus centígrados, enquanto à superfície da estrela a temperatura ronda os 5.500 graus.

Os cientistas não sabem exactamente o que faz com que a coroa aqueça tanto.

A Solar Orbiter, que foi lançada a 10 de Fevereiro, tem seis telescópios apontados ao sol e quatro instrumentos que fazem medições em torno da nave de fenómenos como o vento solar.

Quando acontecem explosões solares, são libertadas partículas de energia que fazem aumentar o vento solar projectado do sol para o espaço em volta de si, e que podem provocar tempestades magnéticas que afectam telecomunicações e redes de energia na Terra.

© EPA/SOLAR ORBITER

Os instrumentos permitem também medir o campo magnético na parte de trás do Sol, o que acontece pela primeira vez na história, porque a Solar Orbiter está num ângulo diferente do que a Terra.

Nos próximos dois anos, a Solar Orbiter aproximar-se-á até ficar a 42 milhões de quilómetros do Sol, quase um quarto da distância do Sol até à Terra.

O satélite foi construído no Reino Unido e o projecto tem 19 países europeus coligados, incluindo Portugal, bem como a agência espacial norte-americana.

Diário de Notícias

Lusa

 

spacenews

 

3926: Uma década de Sol em vídeo. NASA divulga timelapse da nossa estrela

CIÊNCIA/ASTRONOMIA

O Observatório da Dinâmica Solar tira uma fotografia do Sol a cada 0,75 segundos e reuniu, na última década, 425 milhões de imagens.

A NASA compilou dez anos de imagens do Sol num vídeo em timelapse. O Observatório da Dinâmica Solar (SDO) tira uma fotografia da estrela a cada 0,75 segundos e já reuniu, durante este período, 425 milhões de imagens, o equivalente a 20 milhões de gigabytes de dados.

As imagens permitiram “inúmeras novas descobertas sobre a forma como funciona a nossa estrela mais próxima e como ela influencia o sistema solar”, anuncia uma nota no site da agência espacial norte-americana.

O vídeo de uma hora permite ver toda a actividade do Sol no Espaço nos últimos 10 anos. Este retrato do Sol mostra um aumento e diminuição da actividade que ocorre como parte do ciclo solar de 11 anos, mas também outros “eventos notáveis” como a movimentação dos planetas e erupções.

“Embora o SDO tenha mantido um olho atento apontado para o Sol, existiram momentos que não captou. As partes escuras no vídeo são causadas ​​pela Terra ou pela Lua a eclipsar o SDO enquanto passam entre a nave espacial e o Sol”, explica a NASA.

O instrumento vai continuar a monitorizar o Sol por “muitos anos”.

ZAP //

Por ZAP
27 Junho, 2020

 

spacenews

 

3863: Mais perto do que nunca. Solar Orbiter fez sua primeira aproximação ao Sol

CIÊNCIA/ASTRONOMIA/SOL

A sonda Solar Orbiter registou esta segunda-feira as fotografias mais próximas do Sol. As imagens foram capturadas durante a primeira aproximação da missão à estrela.

A sonda Solar Orbiter, da Agência Espacial Europeia (ESA), foi enviada ao Espaço em Fevereiro com a missão de captar as primeiras imagens dos pólos do Sol. Esta segunda-feira, o explorador fez uma aproximação de cerca de 77 milhões de quilómetros de distância da nossa estrela, registando as primeiras fotografias.

A distância de 77 milhões de quilómetros corresponde a cerca de metade da distância entre o astro e o planeta Terra. A Solar Orbiter é a primeira sonda europeia a entrar na órbita de Mercúrio, e na sua maior aproximação do Sol, está previsto chegar aos 42 milhões de quilómetros de distância da sua superfície.

A aproximação vai permitir aos cientistas testar os seus 10 instrumentos científicos. Segundo o EarthSky, os seis telescópios a bordo vão permitir obter imagens muito próximas do Sol em uníssono pela primeira vez, que serão reveladas em meados de Julho.

Até agora, todas as fotografias captadas e aproximadas do astro foram feitas a partir da Terra, através do telescópio solar no Havai. A sonda solar Parker, da NASA, lançada em há dois anos, já fez algumas aproximações, mas não possui telescópios com capacidade de olhar directamente para o Sol.

As primeiras observações têm como objectivo testar se os telescópios estão preparados para futuros registos científicos e, apesar de ser um teste, a verdade é que os cientistas já aguardam com ansiedade alguns resultados.

A próxima fase de aproximação será realizada em 2021 e a mais próxima planeada só para o início de 2022, prevendo-se uma aproximação de 48 milhões de quilómetros.

A Solar Orbiter vai aproveitar a gravidade de Vénus para executar rotações em forma elíptica e, assim, conseguir registar imagens dos pólos do Sol. Esta observação vai permitir aos cientistas analisar e compreender melhor o comportamento do campo magnético.

A sonda encontra-se, actualmente, a 134 milhões de quilómetros da Terra e, nesta fase, as imagens demoram cerca de uma semana a chegar, com uma janela diária de nove horas para fazer o download.

Assim que a Solar Orbiter se aproximar ainda mais do Sol, as imagens podem demorar vários meses a chegar, mas o satélite tem capacidade de reter as imagens no próprio hardware e depois enviá-las quando se aproximar novamente do nosso planeta.

ZAP //

Por ZAP
17 Junho, 2020

 

spacenews

 

3754: O Sol pode ser fruto de um acidente galáctico entre a Via Láctea e uma galáxia anã

CIÊNCIA/ASTRONOMIA

D. Minniti / VVV Survey / ESO

Uma pequena galáxia, chamada Sagitário, moldou a Via Láctea há milhares de milhões de anos: cada vez que passou perto da nossa galáxia, causou fortes explosões de formação estelar que podem até ter originado o nascimento do Sol.

A formação do Sol e do Sistema Solar ainda gera muitas dúvidas na comunidade científica, mas um novo estudo, que tem por base dados recolhidos pela central de mapas de galáxias da Agência Espacial Europeia (ESA), sugere que a nossa estrela nasceu depois de uma colisão entre a Via Láctea e a Sagitário, uma galáxia anã, há 4,7 mil milhões de anos.

As duas galáxias colidiram três vezes: a primeira há cerca de cinco ou seis mil milhões de anos; a segunda há dois mil milhões de anos; e a última há cerca de mil milhões de anos. Depois de analisarem distâncias, luminosidade e cores de estrelas, numa região de 6.500 anos-luz ao redor do Sol, os cientistas compararam com modelos de evolução estelar já existentes.

O astrónomo Tomás Ruiz-Lara, principal autor do estudo, defende a ideia de que este “acidente galáctico” deu origem ao nascimento do nosso Sol.

“No início, estamos perante uma galáxia, a Via Láctea, relativamente silenciosa. Após um período inicial de violenta formação de estrelas, parcialmente desencadeada por uma fusão anterior, a Via Láctea alcançou um estado equilibrado no qual as estrelas se formavam de maneira constante. De repente, Sagitário atrapalha o equilíbrio e faz com que todo gás e poeira anteriormente parados dentro da galáxia maior se espalhem como ondas na água”, explicou o investigador.

Em algumas áreas da Via Láctea, estas ondulações terão provocado uma maior concentração de gás e poeira. Segundo explica o New Scientist, esta densidade de material terá desencadeado a formação de novas estrelas. Aliás, segundo a equipa, a idade do Sol é consistente com uma estrela formada aquando da primeira passagem de Sagitário.

Os dados sugerem que a galáxia anã pode ter passado pelo disco da Via Láctea nos últimos 100 milhões de anos: o novo estudo constatou uma recente explosão de formação estelar, que sugere uma possível nova onda de nascimento de estrelas.

As descobertas dos astrónomos, descritas num artigo científico recentemente publicado na Nature Astronomy, foram possíveis graças ao telescópio Gaia, lançado em 2013.

ZAP //

Por ZAP
30 Maio, 2020

 

spacenews

 

3726: Mínimo solar profundo. O Sol está muito calmo e os cientistas em alerta

CIÊNCIA/ASTRONOMIA

Pitris / Canva

Com um baixo número de manchas solares a surgir na superfície, o Sol entrou num período de calmaria incomum que colocou os cientistas em alerta.

O nível de actividade do Sol está tão baixo que alguns cientistas sugerem que podemos estar a aproximar-nos de um período profundo de actividade solar mínima e, potencialmente, de um grande mínimo. Segundo a Newsweek, o último episódio semelhante aconteceu no século XVII e coincidiu com uma curta era do gelo.

A nossa estrela tem um ciclo de 11 anos, causado pelo fortalecimento e enfraquecimento do campo magnético. Quando a actividade é mais alta – máximo solar – aparecem várias manchas na superfície do Sol. O último evento deste tipo aconteceu em 2014.

Por contraste, o mínimo solar é registado quando a actividade decai, fazendo com que apareçam menos manchas na superfície do Sol.

Em Abril, uma equipa de investigadores da Administração Oceânica e Atmosférica Nacional dos Estados Unidos previu que a chegada do mínimo solar seria muito semelhante com o último ciclo. Em comunicado, Lisa Upton afirmou que o próximo ciclo solar seria muito parecido com o anterior, com um máximo fraco e um “longo e profundo mínimo“.

A cientista acrescentou, no entanto, que não existiam indicações de que nos estaríamos a aproximar de um mínimo solar como o último grande mínimo registado – conhecido como Mínimo de Maunder.

O Mínimo de Maunder ocorreu entre 1650 e 1715, quando a actividade solar foi extremamente baixa. Este período de tempo é muitas vezes associado a um período de arrefecimento global, uma vez que as temperaturas eram cerca de um grau centígrado mais baixas em comparação com o começo da Revolução Industrial.

À Newsweek, Mathew Owens, professor de Física Espacial da Universidade de Reading, no Reino Unido, começou por explicar que entrar num mínimo solar não é algo incomum, mas o nível de actividade solar actual é fora do padrão.

“O Sol não tem apresentado manchas durante uma grande parte do ano, o que é mais calmo do que o comum”, descreveu o cientista.

O investigador espera que este período de “calmaria” do Sol termine em breve. “Com base nos ciclos solares anteriores, eu esperaria um aumento da actividade nos próximos meses. No entanto, o Sol pode sempre surpreender-nos.”

Crise de meia idade? O Sol está (muito) mais calmo do que as suas estrelas-irmãs

O nosso Sol está a comportar-se de uma forma estranha em comparação com os seus pares cósmicos. A estrela está…

ZAP //

Por ZAP
22 Maio, 2020

 

spacenews

 

3643: Crise de meia idade? O Sol está (muito) mais calmo do que as suas estrelas-irmãs

CIÊNCIA/ASTRONOMIA

Infelizmente, tive de recorrer a um editor de vídeo e a efectuar uma captura de écran dado que o vídeo publicado no ZAP não continha qualquer link para poder inserir.

O nosso Sol está a comportar-se de uma forma estranha em comparação com os seus pares cósmicos. A estrela está muito menos activa do que as suas “irmãs”, o que faz com que os astrónomos pensem que possa estar a passar uma espécie de período de transição.

Numa investigação sobre o Sol e 369 outras estrelas que partilham as suas propriedades, os astrónomos do Instituto Max Planck descobriram que o Sol é muito menos activo do que as outras. A principal explicação é que o Sol pode estar a passar uma espécie de “crise da meia idade”.

“Queríamos ver se o Sol é de alguma forma diferente”, disse Timo Reinhold, investigador do Instituto Max Planck, em declarações ao Inverse. “As pessoas alegam que é mais silencioso do que outras estrelas, enquanto outras alegam que é igualmente activo, por isso queríamos resumir essa amostra muito solar, muito parecida com o Sol”.

Nos últimos quatro anos, o brilho das outras estrelas flutuou descontroladamente, enquanto o Sol permaneceu relativamente constante, de acordo com o estudo publicado na semana passada na revista científica Science. De facto, a diferença entre os momentos mais brilhantes e mais fracos do Sol é um quinto das outras estrelas.

“Esta variabilidade é causada por manchas escuras na superfície da estrela que giram dentro e fora”, disse Reinhold, em declarações à agência Reuters. “Uma medida directa da actividade solar é o número de manchas solares na superfície”.

Os cientistas prestaram atenção especial ao período de rotação, porque a velocidade com que uma estrela gira em torno do seu próprio eixo influencia a criação do seu campo magnético. Os investigadores também estudaram 2.500 outras estrelas parecidas com o Sol, com períodos de rotação desconhecidos, determinando que o seu brilho flutuava muito menos do que os do outro grupo.

É possível que o Sol esteja apenas num estágio diferente de algum tipo de padrão cíclico do que as outras estrelas. No entanto, como também está na metade da expectativa de vida útil de nove mil milhões de anos, é possível que o nosso Sol esteja no meio de um ponto intermediário particularmente tranquilo da sua vida. “Outra explicação é que o Sol está numa crise de meia idade“, disse Reinhold.

De acordo com o New York Post, esta monotonia solar pode ser uma boa notícia. “Um sol muito mais activo também pode ter afectado a Terra em escalas de tempo geológicas – paleo-climatologia. Uma estrela muito activa mudaria as condições de vida no planeta, por isso viver com uma estrela bastante chata não é a pior opção”, disse Reinhold.

Estes resultados permitem duas interpretações, explica o Phys. Poderia haver uma diferença fundamental ainda inexplicável entre estrelas com período de rotação conhecido e desconhecido. Isso significaria que o Sol tem sido invulgarmente fraco nos últimos nove mil anos e que, em escalas de tempo muito grandes, também são possíveis fases com flutuações muito maiores.

Não há, no entanto, motivo de preocupação. No futuro próximo, não há indicação dessa “hiperactividade” solar. Pelo contrário: durante a última década, o Sol tem mostrado-se bastante fraco, mesmo com os seus padrões baixos. As previsões de actividade para os próximos onze anos indicam que isso não mudará em breve.

A actividade solar depende parcialmente do campo magnético do Sol. O brilho do Sol reflete sobre as mudanças nos campos magnéticos, nas quais as mudanças nos campos magnéticos da estrela levam a flutuações no brilho.

Quando morrer, o Sol vai emitir radiação que pulverizará os asteróides no Sistema Solar

Daqui a seis mil milhões de anos, o Sol vai ficar sem combustível e vai expandir-se massivamente, bombeando uma poderosa…

O campo magnético do Sol pode ser responsável pelo seu misterioso ciclo de 11 anos. A cada 11 anos, o campo magnético do Sol passa por um ciclo periódico no qual os pólos sul e norte alternam os pontos. No final deste ciclo, a actividade do Sol começa a aumentar, com mais explosões solares e materiais a explodir no espaço.

ZAP //

Por ZAP
6 Maio, 2020

 

spacenews

 

3632: O Sol, em comparação com outras estrelas, é monótono

CIÊNCIA/ASTRONOMIA

Não muito activo: comparação das variações de brilho do Sol com aquelas de uma estrela parecida com o Sol.
Crédito: MPS/hormesdesign.de

O Sol é uma estrela em constante mudança: às vezes, inúmeras manchas solares cobrem a sua superfície visível; por outras, a superfície está completamente “vazia”. No entanto, pelos padrões cósmicos, o Sol é extraordinariamente monótono. Este é o resultado de um novo estudo apresentado por investigadores sob a liderança do Instituto Max Planck para Investigação do Sistema Solar na edição mais recente da revista Science. Pela primeira vez, os cientistas compararam o Sol com centenas de outras estrelas com períodos de rotação semelhantes e outras propriedades fundamentais. A maioria delas apresentou variações muito mais fortes. Isto levanta a questão de saber se a monotonia do Sol é uma característica básica ou se a nossa estrela está apenas a passar por uma fase invulgarmente calma há já vários milénios.

A extensão com que a actividade solar (e, portanto, o número de manchas solares e o brilho solar) varia pode ser reconstruida usando vários métodos – pelo menos durante um certo período de tempo. Desde 1610, por exemplo, há registos confiáveis de manchas solares que cobrem o Sol; a distribuição de variedades radioactivas de carbono e berílio em anéis de árvores e núcleos de gelo permite-nos tirar conclusões sobre o nível da actividade solar nos últimos 9000 anos. Durante este período de tempo, os cientistas encontram flutuações regularmente recorrentes de força comparável, como nas últimas décadas. “No entanto, quando comparados com toda a vida útil do Sol, 9000 anos é como um piscar de olhos,” diz o Dr. Timo Reinhold, cientista do Instituto Max Planck e autor principal do estudo. Afinal, a nossa estrela tem quase 4,6 mil milhões de anos. “É concebível que o Sol esteja a passar por uma fase silenciosa com a duração de milhares de anos e, portanto, tenhamos uma imagem distorcida da nossa estrela,” acrescenta.

Tendo em conta que não há como descobrir como o Sol era nos tempos primitivos, os cientistas só podem recorrer às estrelas: juntamente com colegas da Universidade de Nova Gales do Sul, Austrália, e da Escola de Pesquisa Espacial na Coreia do Sul, os investigadores do Instituto Max Planck investigaram se o Sol se comporta “normalmente” em comparação com outras estrelas. Isto pode ajudar a classificar a sua actividade actual.

Para esse fim, os investigadores seleccionaram estrelas candidatas que se parecem com Sol em termos de propriedades decisivas. Além da temperatura da superfície, da idade e da proporção de elementos mais pesados do que o hidrogénio e hélio, os cientistas observaram, sobretudo, o período de rotação. “A velocidade com que uma estrela gira em torno do seu próprio eixo é uma variável crucial,” explica o Dr. Sami Solanki, director do Instituto Max Planck e co-autor da nova publicação. A rotação de uma estrela contribui para a criação do seu campo magnético num processo de dínamo no seu interior. “O campo magnético é a força motriz responsável por todas as flutuações na actividade,” diz Solanki. O estado do campo magnético determina com que frequência o Sol emite radiação energética e lança partículas velozes para o espaço em erupções violentas, quão numerosas as manchas solares escuras e regiões brilhantes à sua superfície são – e, portanto, também com que intensidade o Sol brilha.

Um catálogo compreensivo que contém os períodos de rotação de milhares de estrelas está disponível há apenas alguns anos. Tem por base dados de medição do Telescópio Espacial Kepler da NASA, que registou as flutuações de brilho de aproximadamente 150.000 estrelas de sequência principal (ou seja, aquelas que estão a meio das suas vidas) de 2009 a 2013. Os investigadores vasculharam esta enorme amostra e seleccionaram as estrelas que completam uma rotação em 20 a 30 dias. O Sol completa uma volta sob si próprio a cada mais ou menos 24,5 dias. Os investigadores conseguiram refinar ainda mais esta amostra usando dados do Telescópio Espacial Gaia da ESA. No final, restaram 369 estrelas, que também se assemelham ao Sol noutras propriedades fundamentais.

A análise exacta das variações de brilho destas estrelas, de 2009 a 2013, revelam uma imagem clara. Enquanto entre as fases activas e inactivas a irradiação solar flutuou em média apenas 0,07%, as outras estrelas apresentaram variações muito maiores. As suas flutuações eram tipicamente cerca de cinco vezes mais fortes. “Ficámos muito surpreendidos que a maioria das estrelas semelhantes ao Sol sejam muito mais activas que o Sol,” diz o Dr. Alexander Shapiro do Instituto Max Planck, que chefia o grupo de investigação “Ligando as Variabilidades Solar e Estelares”.

No entanto, não é possível determinar o período de rotação de todas as estrelas observadas pelo telescópio Kepler. Para fazer isso, os cientistas têm que encontrar certas quedas que reaparecem periodicamente na curva de luz da estrela. Estas diminuições de brilho podem ser rastreadas até às manchas estelares que escurecem a superfície solar, que giram para fora do campo de visão do telescópio e que depois reaparecem após um período fixo de tempo. “Para muitas estrelas, estes escurecimentos periódicos não podem ser detectados; perdem-se no ruído dos dados medidos e nas flutuações de brilho subjacentes,” explica Reinhold. Visto através do telescópio Kepler, nem mesmo o Sol conseguiria revelar o seu período de rotação.

Assim sendo os cientistas também estudaram mais de 2500 estrelas parecidas com o Sol com períodos de rotação desconhecidos. O seu brilho flutuou muito menos do que o do outro grupo.

Estes resultados permitem duas interpretações. Poderá haver uma diferença fundamental ainda inexplicável entre estrelas com períodos de rotação conhecidos e desconhecidos. “É igualmente concebível que estrelas com períodos de rotação conhecidos e parecidos ao do Sol nos mostrem as flutuações fundamentais na actividade de que o Sol é capaz,” diz Shapiro. Isso significaria que a nossa estrela tem permanecido invulgarmente fraca ao longo dos últimos 9000 anos e que em escalas de tempo muito grandes também sejam possíveis fases com flutuações muito maiores.

Não há, no entanto, motivo de preocupação. No futuro próximo, não há indicação de tal “hiperactividade” solar. Pelo contrário: durante a última década, o Sol tem-se mostrado bastante fraco, mesmo pelos seus próprios baixos padrões. As previsões de actividade para os próximos 11 anos indicam que isso não mudará em breve.

Astronomia On-line
5 de Maio de 2020

 

spacenews

 

3458: Ponham os óculos de sol!

CIÊNCIA/ASTRONOMIA

Pode parecer um monte de pipocas, mas na realidade esta é a mais clara imagem do Sol que alguma vez conseguimos!

O Sol é a nossa estrela mais próxima, e já viveu aproximadamente metade da sua vida. Brilha no centro do Sistema Solar há cerca de 5 mil milhões de anos, e espera-se que continue a fazê-lo ao longo de outros 4.5 mil milhões.

Esta imagem foi obtida por um telescópio solar, situado no topo de um vulcão no Havai. Mostra o padrão do gás “a ferver” na superfície do Sol. Cada uma das bolhas que se veem nela tem mais ou menos o tamanho do Texas, o maior estado dos EUA (à excepção do Alasca). É através delas que o calor e a energia vindos das profundezas do Sol chegam à superfície. As áreas mais brilhantes da imagem correspondem aos cimos das bolhas, onde o calor é maior. As linhas escuras nos bordos de cada uma delas são as zonas onde o material arrefece e se afunda para o interior do Sol.

Tal como a Terra, o Sol passa por períodos de “mau tempo”, com ventos poderosos e chuva forte. Porém, no Sol a chuva não é composta por água como nas frequentes tempestades do nosso planeta, e sim por gás super-aquecido e carregado electricamente, a que se dá o nome de plasma. Quando uma tempestade magnética no Sol envia material da estrela na direcção do nosso planeta isso pode ter efeitos nas viagens aéreas, perturbar as comunicações por satélite e prejudicar as redes de energia, levando a demoradas faltas de electricidade e a danos em tecnologias como o GPS.

Estas áreas luminosas podem ajudar os cientistas a perceber como e porque é que a camada externa gasosa do Sol, chamada corona, está a uma temperatura superior a um milhão de graus!

Facto curioso: Só podemos ver a coroa do Sol durante um eclipse solar total, altura em que ela aparece como uma auréola prateada em torno da estrela.

Crédito da imagem: NSO/AURA/NSF

Space Scoop original (em inglês): http://www.spacescoop.org/en/scoops/2005/put-on-your-sunglasses/

Portal do Astrónomo
José Saraiva
22 Fevereiro, 2020

 

spacenews

 

3432: Satélite de observação do sol com tecnologia portuguesa vai ser lançado esta segunda-feira

CIÊNCIA/ASTRONOMIA

Satélite europeu vai permitir obter as primeiras imagens dos pólos do Sol. Vai ser lançado esta segunda-feira, nos Estados Unidos da América, e tem tecnologia portuguesa.

O satélite europeu que vai permitir obter as primeiras imagens dos pólos do Sol, o Solar Orbiter, vai ser lançado esta segunda-feira e leva a bordo tecnologia portuguesa, das empresas Critical Software, Active Space Technologies e Deimos Engenharia.

O engenho, cujo lançamento chegou a ser apontado para 05, 06 e 08 de Fevereiro, será enviado para o espaço a partir da base de Cabo Canaveral, nos Estados Unidos, às 23:03 de domingo na hora local (04:03 de segunda-feira em Portugal), de acordo com o mais recente calendário divulgado pela Agência Espacial Europeia (ESA), que conduz a missão em conjunto com a congénere norte-americana NASA.

A Critical Software concebeu vários sistemas de ‘software’ do satélite, como os sistemas centrais de comando e controlo, de detecção e recuperação de falhas e de gestão de comportamento térmico, segundo informação da empresa.

A Active Space Technologies fabricou componentes em titânio para o braço de suporte e orientação da antena de comunicação do satélite com a Terra e canais igualmente de titânio, para a passagem de luz, que atravessam o escudo térmico do aparelho, adiantou a companhia à Lusa.

A Deimos Engenharia, braço português da componente tecnológica do grupo espanhol de engenharia e construção de infra-estruturas Elecnor, trabalhou na definição e implementação da estratégia para testar os sistemas de voo do Solar Orbiter.

A missão do Solar Orbiter (Orbitador Solar) vai permitir obter as primeiras imagens dos pólos do Sol, considerados a chave para se compreender a actividade e o ciclo solares.

Por outro lado, salienta a ESA, será o primeiro satélite europeu a entrar na órbita de Mercúrio e a explorar a conexão entre o Sol e a Terra para entender melhor o clima extremo no espaço.

O aparelho, que estará a 42 milhões de quilómetros do Sol na sua maior aproximação, o equivalente a um quarto da distância que separa a estrela da Terra, está equipado com dez instrumentos para observar a superfície turbulenta do Sol, a sua atmosfera exterior e as alterações no vento solar (emissão contínua de partículas energéticas a partir da coroa, a camada mais externa da atmosfera solar).

O Solar Orbiter, preparado para enfrentar temperaturas de 500ºC, trabalhará em complemento com a sonda norte-americana Parker Solar Probe, em órbita desde 2018, e que tem quatro instrumentos para estudar o campo magnético do Sol, o plasma, as partículas energéticas e o vento solar.

Os cientistas esperam obter com este satélite respostas sobre o que leva à aceleração das partículas energéticas, o que acontece nas regiões polares por acção do campo magnético, como é que o campo magnético é gerado no Sol e como se propaga através da sua atmosfera e pelo espaço, como a radiação e as emissões de plasma (gás ionizado formado a elevadas temperaturas) da coroa afectam o Sistema Solar e como as erupções solares produzem as partículas energéticas que conduzem ao clima espacial extremo próximo da Terra.

Observador

Agência Lusa
Texto
10 Fev 2020, 00:18

 

 

spacenews

 

3429: Descolagem do Solar Orbiter, a missão da ESA que olhará o Sol de frente

CIÊNCIA/ASTRONOMIA

Lançamento da missão Solar Orbiter da ESA/NASA, com o objectivo de estudar o Sol, a partir da Estação da Força Aérea de Cabo Canaveral, no estado norte-americano da Florida.
Crédito: Jared Frankie

A missão Solar Orbiter da ESA descolou num Atlas V 411, a partir do Cabo Canaveral, Florida, às 05:03 CET de 10 de Fevereiro, na sua missão de estudar o Sol sob novas perspectivas.

Os sinais da aeronave foram recebidos na estação terrestre New Norcia às 06:00 CET, após a separação do estágio superior do lançador em baixa órbita terrestre.

De frente para o sol

A Solar Orbiter, uma missão liderada pela ESA com forte participação da NASA, fornecerá as primeiras imagens das regiões polares desconhecidas do Sol, fornecendo uma visão sem precedentes de como a nossa estrela-mãe funciona.

Investigará também como a radiação intensa e as partículas energéticas que são expelidas do Sol e transportadas pelo vento solar através do Sistema Solar afectam o nosso planeta natal, para melhor entender e prever períodos de “clima espacial” tempestuoso. As tempestades solares têm o potencial de derrubar redes eléctricas, interromper o tráfego aéreo e as telecomunicações e colocar em risco os astronautas que andam no espaço, por exemplo.

“Como seres humanos, sempre estivemos familiarizados com a importância do Sol para a vida na Terra, observando-o e investigando em detalhe como este funciona; mas também sabemos, há muito tempo, que tem o potencial de atrapalhar a vida quotidiana se estivermos na mira de uma poderosa tempestade solar”, afirma Günther Hasinger, Diretor de Ciências da ESA.

“No final da nossa missão Solar Orbiter, saberemos mais do que nunca sobre a força oculta responsável pelas mudanças de comportamento do Sol e a sua influência no nosso planeta natal.”

“O Solar Orbiter fará coisas incríveis. Combinado com as outras missões da NASA recentemente lançadas para estudar o Sol, estamos a adquirir novos conhecimentos sem precedentes sobre a nossa estrela,” disse Thomas Zurbuchen, administrador associado de Ciências da NASA na sede da agência em Washington DC.

“Juntamente com os nossos parceiros europeus, estamos a entrar numa nova era da heliofísica que transformará o estudo do Sol e ajudará a tornar os astronautas mais seguros enquanto viajam nas missões do programa Artemis até a Lua.”

No ponto mais próximo, o Solar Orbiter enfrentará o Sol dentro da órbita de Mercúrio, a aproximadamente 42 milhões de quilómetros da superfície solar. A tecnologia de ponta do escudo de calor garantirá que os instrumentos científicos da aeronave estejam protegidos, já que o escudo de calor suportará temperaturas de até 500ºC – até 13 vezes o calor experienciado pelos satélites na órbita da Terra.

“Após cerca de vinte anos desde o início, seis anos de construção e mais de um ano de testes, juntamente com os nossos parceiros industriais, estabelecemos novas tecnologias de alta temperatura e concluímos o desafio de construir uma aeronave pronta para enfrentar o Sol e estudá-lo de perto”, acrescenta César García Marirrodriga, Director de Projectos do Solar Orbiter da ESA.

Novas perspectivas sobre a nossa estrela-mãe

O Solar Orbiter levará pouco menos de dois anos para alcançar a sua órbita operacional inicial, usando sobrevoos com auxílio da gravidade da Terra e Vénus para entrar numa órbita altamente elíptica ao redor do Sol. O satélite usará a gravidade de Vénus para lançar-se fora do plano eclíptico do Sistema Solar, que abriga as órbitas planetárias, e aumentará a inclinação da sua órbita para nos dar novas imagens, até agora desconhecidas, das regiões polares da nossa estrela-mãe.

Os pólos estão fora do campo de visão da Terra e de outras naves espaciais, mas os cientistas pensam que são essenciais para entender a actividade do Sol. Ao longo da sua missão, projectada para cinco anos, o Solar Orbiter alcançará uma inclinação de 17º acima e abaixo do equador solar. A missão estendida proposta alcançaria 33º de inclinação.

“Operar um satélite nas proximidades do Sol é um enorme desafio,” diz Sylvain Lodiot, Director de Operações do Solar Orbiter da ESA.

“A nossa equipa terá de garantir a pontaria contínua e precisa do campo de protecção para evitar possíveis danos causados pela radiação e pelo fluxo térmico do Sol. Ao mesmo tempo, teremos de garantir uma resposta rápida e flexível às solicitações dos cientistas para adaptar as operações dos seus instrumentos de acordo com as observações mais recentes da superfície solar.”

O Solar Orbiter usará uma combinação de 10 instrumentos in situ e de deteção remota para observar a superfície solar turbulenta, a atmosfera externa quente do Sol e as mudanças no vento solar. As cargas úteis de detecção remota concretizarão imagens de alta resolução da atmosfera do Sol – a coroa – e também do disco solar. Os instrumentos in situ medirão o vento solar e o campo magnético solar nas proximidades do satélite.

“A combinação de instrumentos de detecção remota, que olham para o Sol e medições in situ, que sentem o seu poder, permitir-nos-ão juntar os pontos entre o que vemos no Sol e o que experienciamos enquanto absorvemos o vento solar”, diz Daniel Müller, Cientista do Projecto Solar Orbiter da ESA.

“Isto fornecerá informações sem precedentes sobre como a nossa estrela-mãe trabalha em termos do seu ciclo de actividade solar de 11 anos e como o Sol cria e controla a bolha magnética – a heliosfera – na qual o nosso planeta reside.”

Somos todos satélites solares

O Solar Orbiter será uma das duas naves complementares que estudam o Sol nas proximidades: juntar-se-á à sonda Parker Solar da NASA, que já está ocupada na sua missão.

O Solar Orbiter e a sonda Parker Solar têm objetivos diferentes, se complementares, e foram projetados e colocados numa órbita única para atingir os seus objetivos diferentes, se complementares. A sonda Parker Solar ‘toca’ a nossa estrela a distâncias muito mais próximas que o Solar Orbiter, para estudar como o vento solar se origina – mas não possui câmaras para ver o Sol diretamente; enquanto o Solar Orbiter voa a uma distância ideal para alcançar uma perspectiva abrangente da nossa estrela, incluindo imagens remotas e medições in situ e visualizará, pela primeira vez, as regiões polares do Sol.

Além de atingir os seus próprios objectivos científicos, o Solar Orbiter fornecerá informações contextuais para melhorar o entendimento das medições da sonda Parker Solar. Ao trabalharem juntas dessa maneira, as duas aeronaves colectarão conjuntos de dados complementares que permitirão que mais ciência seja destilada das duas missões do que estas poderiam gerir por conta própria.

“O Solar Orbiter é a mais nova adição ao Observatório do Sistema Heliofísico da NASA, juntando-se à sonda Parker Solar numa aventura extraordinária para desvendar os maiores mistérios do Sol e da sua atmosfera alargada,” diz Holly Gilbert, Cientista do Projecto Solar Orbiter da NASA.

“A poderosa combinação destas duas missões e os seus impressionantes avanços tecnológicos impulsionarão o nosso conhecimento para novos patamares.

O Solar Orbiter baseia-se no legado de missões, tais como o Ulysses e o Observatório Solar e Heliofísico (SOHO) da ESA/NASA, para nos dar a visão mais avançada da nossa estrela e a sua influência na Terra.

Astronomia On-line
11 de Fevereiro de 2020

 

spacenews

 

3414: Nova missão da ESA para estudar o Sol

CIÊNCIA/ASTRONOMIA

Animação da Solar Orbiter observando o Sol através de aberturas no seu escudo de calor.
Crédito: ESA/ATG medialab

A sonda Solar Orbiter vai orbitar a nossa estrela mais próxima, o Sol, observando-a de perto. Capturará as primeiras imagens directas dos seus pólos, enquanto estuda a heliosfera interna – a região em forma de bolha em redor do Sol criada pelo fluxo de partículas carregadas e energizadas libertadas no vento solar.

No seu ponto mais próximo, a Solar Orbiter estará a cerca de 42 milhões de quilómetros do Sol: mais perto do que o escaldante planeta Mercúrio, pouco mais de um-quarto da distância média entre a Terra e o Sol, e mais perto do que qualquer sonda europeia na história.

Para a colocar nesta órbita única no centro do Sistema Solar, aproximando-se dos pólos do Sol em vez de orbitar num plano “achatado”, como os planetas, as equipas no controlo da missão em Darmstadt, Alemanha, planearam um percurso complexo.

Implantação solar

A Solar Orbiter tem lançamento previsto para as 04:03 GMT de dia 10 de Fevereiro, a partir de Cabo Canaveral, Florida, EUA, a bordo de um foguetão Atlas V 411 fornecido pela NASA. Uma vez separada do veículo de lançamento, ocorre uma sequência de activação automática de 22 minutos, após a qual a equipa de controlo assume as rédeas da fase LEOP (Launch and Early Orbit Phase).

Estes momentos iniciais da vida de uma missão são críticos. É agora que a nave acorda, estende os seus painéis solares e as equipas no solo verificam a sua saúde após os rigores do lançamento.

Alguns elementos dos instrumentos científicos da Solar Orbiter estão localizados ao longo de uma “vara” metálica com 4,4 metros, que os mantém afastados do corpo principal da espaço-nave e de qualquer possível interferência. Esta haste deverá ser implantada antes que certos propulsores químicos sejam disparados, com potencial para contaminar os instrumentos durante as manobras.

Quando os sistemas e instrumentos da Solar Orbiter estiverem em funcionamento, entrará na “fase de cruzeiro”, que durará até Novembro de 2021. Durante este período, realizará duas assistências gravitacionais em torno de Vénus e uma em torno da Terra para alterar a trajectória da sonda, guiando-a para as regiões mais internas do Sistema Solar.

A primeira passagem solar ocorrerá no final de Março de 2022, a cerca de um-terço da distância entre a Terra e o Sol. Neste ponto, o orbitador estará numa órbita elíptica que inicialmente leva 180 dias para ser concluída, aproximando-o do Sol a cada seis meses.

Uma órbita com vista

O percurso da Solar Orbiter fará com que saia do “plano da eclíptica”. Assim sendo, em vez de orbitar no mesmo plano achatado em redor do Sol que os planetas, luas e outros corpos menores do Sistema Solar, vai “saltar” do equador solar, fornecendo perspectivas nunca antes vistas das regiões polares do Sol.

Para tal, a Solar Orbiter não vai viajar numa órbita “fixa”. Em vez disso, a sonda seguirá um caminho elíptico em constante mudança que será continuamente inclinado e espremido, cada vez mais alto e mais próximo dos pólos do Sol.

Assim sendo, a órbita da espaço-nave foi escolhida para estar em “ressonância” com Vénus, o que significa que regressará à vizinhança do planeta a cada poucas órbitas e que poderá usar novamente a gravidade do planeta para alterar ou inclinar a sua órbita.

Embora a Solar Orbiter vá orbitar inicialmente no mesmo plano “achatado” que os planetas do Sistema Solar, cada encontro com Vénus aumentará a sua inclinação. Isto significa que de cada vez que a Solar Orbiter encontrar o Sol, vai observá-lo de uma perspectiva diferente.

Até ao final de 2021, a sonda vai alcançar a sua primeira órbita nominal para ciência, que deverá durar quatro anos. Durante este período, a Solar Orbiter alcançará 17º de inclinação, permitindo que a sonda capture pela primeira vez imagens de alta resolução dos pólos do Sol.

Durante a sua fase de missão estendida proposta, a Solar Orbiter poderá elevar-se para uma órbita ainda mais inclinada. A 33º acima do equador solar, as regiões polares aparecerão ainda mais directamente.

Os dados recolhidos pela Solar Orbiter serão armazenados na sonda e depois transmitidos para a Terra durante janelas de comunicação de oito horas, através da estação terrestre de 35 metros de Malargüe, na Argentina.

Outras estações na Austrália e na Espanha podem servir como “backups”.

Lidando com o calor

Para sobreviver à tão pequena distância da nossa estrela, que a poderá aquecer a uma temperatura máxima de 520º Celsius e receber uma “enxurrada” de radiação intensa, o corpo principal e os instrumentos vitais da Solar Orbiter estão protegidos por um escudo térmico de titânio que estará sempre voltado para o Sol.

Até os painéis solares da nave, construídos para captar energia do Sol, precisarão de ser protegidos. À medida que a Solar Orbiter se aproxima da bola gigante de calor e radiação, os seus painéis – esticando-se de ambos os lados da sonda e dando-lhe 18,9 metros de comprimento – vão precisar de estar inclinados para longe do Sol, limitando a quantidade de luz que recebem para garantir que não sobreaquecem.

Astronomia On-line
4 de Fevereiro de 2020

spacenews

 

3411: Reveladas as imagens mais detalhadas da superfície turbulenta do Sol

CIÊNCIA/SOL

spacenews

 

3369: Sonda espacial revela dados da atmosfera do Sol. Nunca se tinha chegado lá

CIÊNCIA/ASTRONOMIA

NASA divulgou os primeiros resultados da viagem da sonda Parker, a primeira a entrar na atmosfera solar por onde irá passar mais vezes nos próximos seis anos.

Sonda Parker estará no espaço mais seis anos
© NASA

Nunca uma sonda espacial tinha chegado tão perto da atmosfera solar como fez a Parker, uma sonda da NASA que procura recolher dados sobre o Sol. Lançada em Agosto de 2018, a sonda tem uma viagem prevista de sete anos e os investigadores que tratam os dados recolhidos revelaram esta quarta-feira os primeiros resultados obtidos pela Parker.

A primeira amostra de dados oferece pistas sobre mistérios de longa data, incluindo o motivo que leva a atmosfera do sol, conhecida como coroa, a ser centenas de vezes mais quente do que a sua superfície, bem como as origens exactas do vento solar.

“O obtivemos até agora é espectacular”, disse o professor Stuart Bale, físico da Universidade da Califórnia, em Berkeley, que liderou a análise. “Podemos ver a estrutura magnética da coroa, que nos diz que o vento solar emerge de pequenos orifícios. Vemos também actividade impulsiva, jactos que acreditamos estarem relacionados com a origem do vento solar.”

Nos próximos seis anos, a sonda do tamanho de um carro seguirá uma órbita cada vez mais próxima do Sol e chegará a estar tão perto que tecnicamente “tocará” o sol. A Parker consegue resistir, através de um escudo térmico, a temperaturas até 1400 graus e, na sua missão de sete anos, conta atravessar a atmosfera solar 24 vezes, a uma distância de 6,2 milhões de quilómetros da superfície do Sol.

Até agora, os cientistas observavam que o vento do sol parecia ter dois elementos principais: um “rápido” que percorre cerca de 700 km por segundo (e provém de buracos gigantes na região polar do sol) e um vento “lento”, que percorre menos de 500 km por segundo, cuja origem era desconhecida. A sonda Parker analisou o vento “lento” em volta de pequenos orifícios coronais espalhados pelo equador solar – estruturas solares que não tinham sido observadas anteriormente.

As observações também apontam para uma explicação sobre a razão de a coroa ser incrivelmente quente. “A coroa atinge um milhão de graus, mas a superfície do sol é de apenas milhares”, disse o professor Tim Horbury , co-investigador do Parker Solar Probe Fields no Imperial College de Londres. “É como se a temperatura da superfície da Terra fosse a mesma, mas a atmosfera atingisse muitos milhares de graus”, disse, citado pelo The Guardian. As recolhas da sonda Parker revelaram que as partículas do vento solar parecem ser libertadas em jactos explosivos, em vez de serem irradiadas em fluxo constante. “É bang, bang, bang”, resumiu Tim Horbury.

A sonda deve o nome a Eugene Parker que em 1958 foi o primeiro a descobrir a existência do vento solar. Na altura, os colegas cientistas desprezaram a sua teoria de que o vento solar podia forçar o plasma e outras partículas do Sol, lançando-as para a atmosfera e afectando a Terra. Mas as missões espaciais vieram dar-lhe razão. E passados 60 anos, a NASA enviou até ao Sol a sonda com o seu nome.

Diário de Notícias
DN
04 Dezembro 2019 — 22:29

spacenews

 

3228: Explosão magnética nunca antes vista pode desvendar um dos mistérios do Sol

Cientistas da NASA observaram um novo tipo de explosão magnética na camada externa da atmosfera solar, conhecida como coroa.

A explosão, conhecida como reconexão magnética forçada, é desencadeada por uma erupção no Sol que faz com que as linhas do campo magnético emaranhadas se quebrem e se realinhem, disparando partículas e energia.

Os cientistas tinham já testemunhado a reconexão magnética espontânea, que não está necessariamente ligada a erupções no Sol. Porém, as observações do Solar Dynamics Observatory (SDO) da NASA revelaram, pela primeira vez, um evento de reconexão forçada desencadeada por uma dessas erupções.

O evento foi visível claramente quando os cientistas analisaram as observações de plasma do SDO – um dos quatro estados fundamentais da matéria que consiste em partículas carregadas e super-aquecidas. Os dados do SDO revelaram uma proeminência – um grande laço de plasma – a sair da superfície visível do sol, conhecida como fotosfera. Numa série de imagens tiradas ao longo de uma hora, a proeminência pode ser vista a cair de volta na fotosfera.

Quando isso aconteceu, a proeminência interagiu com uma colecção de linhas do campo magnético, fazendo com que se reconectassem em forma de “X“, o que provocou uma explosão magnética, fazendo com que a proeminência ganhasse calor, de acordo com um estudo publicado esta semana na revista científica The Astrophysical Journal.

“Esta foi a primeira observação de um controlador externo de reconexão magnética”, disse Abhishek Srivastava, um dos autores do estudo e investigador do Instituto de Tecnologia da Índia (BHU), em comunicado. “Isto pode ser muito útil para entender outros sistemas. Por exemplo, as magnetosferas da Terra e dos planetas, outras fontes de plasma magnetizadas, incluindo experiências em escalas de laboratório, onde o plasma é altamente difusivo e muito difícil de controlar”, disse .

NASA

As últimas observações confirmam uma teoria proposta há cerca de 15 anos. Segundo os autores, os resultados podem ter implicações significativas para a previsão do clima espacial, experiências físicas de partículas na Terra e na nossa compreensão sobre a atmosfera do sol.

Por exemplo, a reconexão magnética poderia explicar um dos grandes mistérios da ciência solar – o facto de a coroa ser milhões de graus mais quente que as camadas inferiores da atmosfera solar. A proeminência ganhou calor durante o evento de reconexão forçada, que poderia ser um mecanismo possível através do qual a coroa é aquecida localmente.

O próximo passo é detectar mais eventos de reconexão forçada, o que fornecerá mais informações sobre o fenómeno.

ZAP //

Por ZAP
20 Dezembro, 2019

 

spacenews

 

3151: Parker Solar Probe lança nova luz sobre o Sol

CIÊNCIA

Impressão de artista da Parker Solar Probe.
Crédito: NASA/Laboratório de Física Aplicada da Universidade Johns Hopkins

Em Agosto de 2018, a Parker Solar Probe da NASA foi lançada para o espaço, tornando-se pouco tempo depois a sonda mais próxima do Sol. Com instrumentos científicos de ponta para medir o ambiente em torno de si própria, a Parker Solar Probe completou três das 24 passagens planeadas por partes nunca antes exploradas da atmosfera do Sol, a coroa. No dia 4 de Dezembro de 2019, quatro novos artigos científicos publicados na Nature descrevem o que os cientistas aprenderam com esta exploração sem precedentes da nossa estrela – e o que esperam aprender a seguir.

Estas descobertas revelam novas informações sobre o comportamento do material e das partículas que se afastam do Sol, aproximando os cientistas de responder a perguntas fundamentais sobre a física da nossa estrela. Na busca para proteger os astronautas e a tecnologia no espaço, as informações que a Parker Solar Probe descobriu sobre como o Sol ejecta constantemente material e energia vão ajudar a reescrever os modelos que usamos para entender e prever o clima espacial em redor do planeta e para entender o processo pelo qual as estrelas se formam e evoluem.

“Estes primeiros dados da Parker revelam a nossa estrela, o Sol, de maneiras novas e surpreendentes,” disse Thomas Zurbuchen, administrador associado para ciência na sede da NASA em Washington. “A observação do Sol de perto, e não a uma distância muito maior, está a dar-nos uma visão sem precedentes de fenómenos solares importantes e de como nos afectam na Terra, além de fornecer novas ideias relevantes para a compreensão das estrelas activas nas galáxias. É apenas o começo de um momento incrivelmente emocionante para a heliofísica com a Parker na vanguarda de novas descobertas.”

Embora possa parecer plácido para nós aqui na Terra, o Sol é tudo menos quieto. A nossa estrela é magneticamente activa, libertando poderosas explosões de luz, dilúvios de partículas que se movem perto da velocidade da luz e nuvens com milhares de milhões de toneladas de material magnetizado. Toda esta actividade afecta o nosso planeta, injectando partículas prejudiciais no espaço onde os nossos satélites e astronautas voam, interrompendo as comunicações e sinais de navegação, e mesmo – quando intensos – levando a falhas na energia eléctrica. Tem vindo a acontecer ao longo da vida útil de 5 mil milhões de anos do Sol e assim continuará a moldar os destinos da Terra e dos outros planetas no nosso Sistema Solar futuro.

“O Sol tem fascinado a humanidade durante toda a nossa existência,” disse Nour E. Raouafi, cientista do projecto Parker Solar Probe do Laboratório de Física Aplicada da Universidade Johns Hopkins em Laurel, no estado norte-americano de Maryland, que construiu e gere a missão da NASA. “Aprendemos muito sobre a nossa estrela ao longo das últimas décadas, mas realmente precisávamos de uma missão como a Parker Solar Probe para entrar na atmosfera do Sol. É só aí que podemos realmente aprender os detalhes destes processos solares complexos. E o que aprendemos apenas nestas três órbitas solares mudou muito do que sabemos sobre o Sol.”

O que acontece no Sol é fundamental para entender como molda o espaço em nosso redor. A maior parte do material que escapa do Sol faz parte do vento solar, um fluxo contínuo de material solar que banha todo o Sistema Solar. Este gás ionizado, chamado plasma, carrega consigo o campo magnético do Sol, estendendo-o através do Sistema Solar numa bolha gigante que abrange mais de 16 mil milhões de quilómetros.

O dinâmico vento solar

Observado perto da Terra, o vento solar é um fluxo relativamente uniforme de plasma, com ocasionais quedas turbulentas. Mas, a essa altura, este já percorreu quase 150 milhões de quilómetros – e as assinaturas dos mecanismos exactos do Sol para aquecer e acelerar o vento solar são apagadas. Mais perto da fonte do vento solar, a Parker Solar Probe viu uma imagem muito diferente: um sistema activo e complicado.

“A complexidade era alucinante quando começámos a analisar os dados,” disse Stuart Bale, da Universidade da Califórnia em Berkeley, líder do conjunto de instrumentos FIELDS da Parker Solar Probe, que estuda a escala e a forma dos campos eléctricos e magnéticos. “Agora, já me habituei. Mas quando os mostro a colegas pela primeira vez, ficam impressionados.” Do ponto de vista da Parker, a 24 milhões de quilómetros do Sol, explicou Bale, o vento solar é muito mais impulsivo e instável do que vemos perto da Terra.

Como o próprio Sol, o vento solar é composto por plasma, onde electrões com carga negativa se separam de iões com carga positiva, criando um mar de partículas flutuantes com carga eléctrica individual. Estas partículas flutuantes significam que o plasma carrega campos eléctricos e magnéticos, e as mudanças no plasma geralmente deixam marcas nesses campos. Os instrumentos FIELDS estudaram o estado do vento solar medindo e analisando cuidadosamente como os campos eléctricos e magnéticos em redor da nave mudavam ao longo do tempo, juntamente com a medição de ondas no plasma próximo.

Estas medições mostraram reversões rápidas no campo magnético e jactos velozes e repentinos de material – todas características que tornam o vento solar mais turbulento. Estes detalhes são essenciais para entender como o vento dispersa a energia à medida que flui para longe do Sol e por todo o Sistema Solar.

Um tipo de evento em particular chamou a atenção das equipas científicas: oscilações na direcção do campo magnético, que flui do Sol, embebido no vento solar. Estas reversões duram entre alguns segundos a vários minutos enquanto fluem pela Parker Solar Probe. Durante uma reversão, o campo magnético volta-se sob si próprio até que aponta quase directamente de volta ao Sol. Juntos, o FIELDS e o SWEAP, o conjunto de instrumentos de vento solar liderado pela Universidade de Michigan e gerido pelo Observatório Astrofísico do Smithsonian, mediu grupos de reversões nos dois primeiros “flybys” da Parker Solar Probe.

“As ondas já são vistas no vento solar desde o início da era espacial, e assumimos que eram mais fortes mais perto do Sol, mas não esperávamos vê-las organizando-se nestes picos estruturados e coerentes de velocidade,” disse Justin Kasper, investigador principal do SWEAP (Solar Wind Electrons Alphas and Protons) da Universidade de Michigan em Ann Arbor. “Estamos a detectar remanescentes de estruturas do Sol sendo lançadas para o espaço e a alterar violentamente a organização dos fluxos e o campo magnético. Isto mudará dramaticamente as nossas teorias de como a coroa e o vento solar estão a ser aquecidos.”

A fonte exacta das reversões ainda não é conhecida, mas as medições da Parker Solar Probe permitiram que os cientistas reduzissem as possibilidades.

Entre as muitas partículas que perpetuamente fluem do Sol, há um feixe constante de electrões em movimento rápido, que percorrem as linhas do campo magnético do Sol para o Sistema Solar. Estes electrões fluem sempre estritamente ao longo da forma das linhas de campo que se deslocam do Sol, independentemente do pólo norte do campo magnético nessa região específica estar apontando na direcção do Sol ou na direcção oposta. Mas a Parker Solar Probe mediu este fluxo de electrões indo na direcção contrária, voltando para o Sol – mostrando que o próprio campo magnético deve estar a curvar-se em direcção ao Sol, em vez da Parker Solar Probe encontrar apenas uma linha diferente de campo magnético do Sol que aponta na direcção oposta. Isto sugere que as reversões são dobras no campo magnético – distúrbios localizados viajando para longe do Sol, em vez de uma mudança no campo magnético à medida que emerge do Sol.

As observações das reversões pela Parker Solar Probe sugerem que estes eventos se tornarão ainda mais comuns à medida que a sonda se aproxima do Sol. O próximo encontro solar da missão, no dia 29 de Janeiro de 2020, levará a sonda mais perto do Sol do que nunca, e poderá lançar uma nova luz sobre este processo. Estas informações não só ajudam a mudar a nossa compreensão do que provoca o vento solar e o clima espacial em nosso redor, como também nos ajudam a entender um processo fundamental de como as estrelas funcionam e de como libertam energia para o seu ambiente.

A rotação do vento solar

Algumas das medições da Parker Solar Probe estão a aproximar os cientistas de respostas a perguntas com décadas. Uma dessas perguntas é como, exactamente, o vento solar flui do Sol.

Perto da Terra, vemos o vento solar fluir quase radialmente – o que significa que está a sair directamente do Sol em todas as direcções. Mas o Sol gira enquanto liberta o vento solar; antes de se libertar, o vento solar gira com ele. É um pouco como uma criança num carrossel – a atmosfera gira com o Sol da mesma forma que a parte externa do carrossel gira, mas quanto mais longe estamos do centro, mais depressa nos movemos no espaço. Uma criança na extremidade do carrossel pode saltar e, nesse ponto mover-se em linha recta para fora, em vez de continuar a girar. De maneira semelhante, há um determinado ponto entre o Sol e a Terra em que o vento solar transita de girar juntamente com o Sol para fluir directamente para fora, ou radialmente, como vemos na Terra.

Exactamente onde o vento solar transita de um fluxo giratório para um fluxo perfeitamente radial tem implicações na maneira como o Sol liberta energia. Encontrar esse ponto pode ajudar-nos a entender melhor o ciclo de vida de outras estrelas ou a formação de discos proto-planetários, os discos densos de gás e poeira em torno de estrelas jovens que eventualmente coalescem em planetas.

Agora, pela primeira vez – ao invés de apenas ver o fluxo directo que observamos perto da Terra – a Parker Solar Probe foi capaz de observar o vento solar enquanto ainda estava em rotação. É como se a Parker Solar Probe visse o carrossel rodopiante directamente pela primeira vez, não apenas as crianças que saltam dele. O instrumento de vento solar da Parker Solar Probe detectou a rotação a começar a mais de 32 milhões de quilómetros do Sol e, à medida que a Parker se aproximava do seu ponto de periélio, a velocidade da rotação aumentava. A força da circulação era mais forte do que muitos cientistas previram, mas também transitou para um fluxo externo mais rapidamente do que o previsto, que é o que ajuda a mascarar estes efeitos onde geralmente estamos, a cerca de 150 milhões de quilómetros do Sol.

“O grande fluxo rotacional do vento solar visto durante os primeiros encontros foi uma verdadeira surpresa,” disse Kasper. “Enquanto esperávamos ver o movimento giratório mais perto do Sol, as altas velocidades que estamos a ver nestes primeiros encontros são quase dez vezes maiores do que o previsto pelos modelos padrão.”

Poeira perto do Sol

Outra questão que estamos perto de obter resposta é a elusiva zona livre de poeira. O nosso Sistema Solar está inundado de poeira – as migalhas cósmicas de colisões que formaram planetas, asteróides, cometas e outros corpos celestes há milhares de milhões de anos atrás. Os cientistas suspeitam há muito que, perto do Sol, esta poeira seria aquecida a altas temperaturas pela poderosa luz solar, transformando-se em gás e criando uma região livre de poeira em torno do Sol. Mas nunca ninguém a tinha observado.

Pela primeira vez, a Parker Solar Probe viu a poeira cósmica a começar a diminuir. Dado que o WISPR – o instrumento de imagem da Parker Solar Probe, liderado pelo Laboratório Naval de Investigação dos EUA – olha para o lado da sonda, pode ver grandes faixas da coroa e do vento solar, incluindo regiões mais próximas do Sol. Estas imagens mostram que a poeira começa a diminuir a pouco mais de 11 milhões de quilómetros do Sol, e esta diminuição na poeira continua de modo constante até aos limites actuais das medições do WISPR, a pouco mais de 6 milhões de quilómetros do Sol.

“Esta zona livre de poeira foi prevista há décadas atrás, mas nunca tinha sido vista antes,” disse Russ Howard, investigador principal do conjunto de instrumentos WISPR (Wide-field Imager for Solar Probe) no Laboratório Naval de Investigação em Washington, DC. “Estamos agora a ver o que está a acontecer com a poeira perto do Sol.”

Ao ritmo desta diminuição, os cientistas esperam ver uma zona verdadeiramente livre de poeira a pouco mais de 3,2-4,8 milhões de quilómetros do Sol – o que significa que a Parker Solar Probe poderá observar a zona livre de poeira já no início do próximo ano, quando o seu sexto “flyby” pelo Sol a levar mais perto do Sol do que nunca.

Colocando o clima espacial sob um microscópio

As medições da Parker Solar Probe deram-nos uma nova perspectiva sobre dois tipos de eventos climáticos espaciais: tempestades de partículas energéticas e ejecções de massa coronal.

Pequenas partículas – electrões e iões – são aceleradas pela atividade solar, criando tempestades de partículas energéticas. Os eventos no Sol podem ejetar estas partículas quase à velocidade da luz, o que significa que atingem a Terra em menos de meia-hora e podem afectar outros mundos em escalas de tempo igualmente curtas. Estas partículas carregam muita energia, de modo que podem danificar componentes electrónicos nas naves espaciais e até mesmo colocar em risco os astronautas, especialmente aqueles no espaço profundo, fora da protecção do campo magnético da Terra – e o curto tempo de aviso para tais partículas dificulta a sua prevenção.

É crucial entender exactamente como estas partículas são aceleradas a velocidades tão altas. Mas mesmo que alcancem a Terra em apenas alguns minutos, ainda é tempo suficiente para que as partículas percam as assinaturas dos processos que as aceleram em primeiro lugar. Ao orbitar o Sol a apenas alguns milhões de quilómetros, a Parker Solar Probe pode medir essas partículas logo após deixarem o Sol, lançando nova luz sobre como são libertadas.

Os instrumentos ISʘIS da Parker Solar Probe, liderados pela Universidade de Princeton, já mediram vários eventos de partículas energéticas nunca antes vistos – eventos tão pequenos que todos os seus vestígios são perdidos antes de chegarem à Terra ou a qualquer um dos satélites próximos da Terra. Estes instrumentos também mediram um tipo raro de explosão de partículas com um número particularmente elevado de elementos mais pesados – sugerindo que ambos os tipos de eventos podem ser mais comuns do que os cientistas pensavam anteriormente.

“É incrível – mesmo em condições do mínimo solar, o Sol produz muitos mais eventos minúsculos de partículas energéticas do que jamais imaginámos,” disse David McComas, investigador principal do ISʘIS (Integrated Science Investigation of the Sun), da Universidade de Princeton em Nova Jersey. “Estas medições vão ajudar-nos a desvendar as fontes, a aceleração e o transporte de partículas energéticas solares e, finalmente, protegerão melhor os satélites e os astronautas no futuro.”

Os dados dos instrumentos WISPR também forneceram detalhes sem precedentes sobre as estruturas da coroa e do vento solar – incluindo ejecções de massa coronal, nuvens com milhares de milhões de toneladas de material solar que o Sol envia para o Sistema Solar. As EMCs podem desencadear uma série de efeitos na Terra e noutros mundos, desde o aparecimento de auroras até à indução de correntes eléctricas que podem danificar redes de energia e oleodutos. A perspectiva única do WISPR, olhando os eventos que se afastam do Sol de lado, já recolheu novas informações sobre a variedade de eventos que a nossa estrela pode despoletar.

“Dado que a Parker Solar Probe estava a igualar a rotação do Sol, pudemos observar o fluxo de material durante dias e ver a evolução das estruturas,” disse Howard. “As observações perto da Terra fizeram-nos pensar que estruturas finas na coroa se transformam num fluxo suave e estamos a descobrir que isso não é verdade. Isto vai ajudar-nos a melhor modelar como os eventos viajam entre o Sol e a Terra.”

À medida que a Parker Solar Probe continua a sua viagem, fará mais 21 grandes aproximações ao Sol a distâncias cada vez menores, culminando em três órbitas a uns meros 6,16 milhões de quilómetros da superfície solar.

“O Sol é a única estrela que podemos examinar tão de perto,” disse Nicola Fox, director da Divisão de Heliofísica na sede da NASA. “Obter dados na fonte já está a revolucionar o nosso entendimento da nossa própria estrela e das estrelas por todo o Universo. A nossa pequena nave espacial está a enfrentar condições brutais para transmitir para casa revelações surpreendentes e emocionantes.”

Os dados dos dois primeiros encontros solares da Parker Solar Probe estão disponíveis ao público via online.

Astronomia On-line
6 de Dezembro de 2019

spacenews

 

3143: Sonda espacial revela dados da atmosfera do Sol. Nunca se tinha chegado lá

CIÊNCIA

NASA divulgou os primeiros resultados da viagem da sonda Parker, a primeira a entrar na atmosfera solar por onde irá passar mais vezes nos próximos seis anos.

Sonda Parker estará no espaço mais seis anos
© NASA

Nunca uma sonda espacial tinha chegado tão perto da atmosfera solar como fez a Parker, uma sonda da NASA que procura recolher dados sobre o Sol. Lançada em Agosto de 2018, a sonda tem uma viagem prevista de sete anos e os investigadores que tratam os dados recolhidos revelaram esta quarta-feira os primeiros resultados obtidos pela Parker.

A primeira amostra de dados oferece pistas sobre mistérios de longa data, incluindo o motivo que leva a atmosfera do sol, conhecida como coroa, a ser centenas de vezes mais quente do que a sua superfície, bem como as origens exactas do vento solar.

“O obtivemos até agora é espectacular”, disse o professor Stuart Bale, físico da Universidade da Califórnia, em Berkeley, que liderou a análise. “Podemos ver a estrutura magnética da coroa, que nos diz que o vento solar emerge de pequenos orifícios. Vemos também actividade impulsiva, jactos que acreditamos estarem relacionados com a origem do vento solar.”

Nos próximos seis anos, a sonda do tamanho de um carro seguirá uma órbita cada vez mais próxima do Sol e chegará a estar tão perto que tecnicamente “tocará” o sol. A Parker consegue resistir, através de um escudo térmico, a temperaturas até 1400 graus e, na sua missão de sete anos, conta atravessar a atmosfera solar 24 vezes, a uma distância de 6,2 milhões de quilómetros da superfície do Sol.

Até agora, os cientistas observavam que o vento do sol parecia ter dois elementos principais: um “rápido” que percorre cerca de 700 km por segundo (e provém de buracos gigantes na região polar do sol) e um vento “lento”, que percorre menos de 500 km por segundo, cuja origem era desconhecida. A sonda Parker analisou o vento “lento” em volta de pequenos orifícios coronais espalhados pelo equador solar – estruturas solares que não tinham sido observadas anteriormente.

As observações também apontam para uma explicação sobre a razão de a coroa ser incrivelmente quente. “A coroa atinge um milhão de graus, mas a superfície do sol é de apenas milhares”, disse o professor Tim Horbury , co-investigador do Parker Solar Probe Fields no Imperial College de Londres. “É como se a temperatura da superfície da Terra fosse a mesma, mas a atmosfera atingisse muitos milhares de graus”, disse, citado pelo The Guardian. As recolhas da sonda Parker revelaram que as partículas do vento solar parecem ser libertadas em jactos explosivos, em vez de serem irradiadas em fluxo constante. “É bang, bang, bang”, resumiu Tim Horbury.

A sonda deve o nome a Eugene Parker que em 1958 foi o primeiro a descobrir a existência do vento solar. Na altura, os colegas cientistas desprezaram a sua teoria de que o vento solar podia forçar o plasma e outras partículas do Sol, lançando-as para a atmosfera e afectando a Terra. Mas as missões espaciais vieram dar-lhe razão. E passados 60 anos, a NASA enviou até ao Sol a sonda com o seu nome.

Diário de Notícias

DN
04 Dezembro 2019 — 22:29

spacenews

 

2964: Raro evento astronómico ocorre na próxima semana (e só se repete em 2023)

CIÊNCIA

NASA

Na próxima segunda-feira, 11 de Novembro, Mercúrio passará entre a Terra e o Sol, protagonizando um raro evento astronómico que não se repetirá em 13 anos.

“Da nossa perspectiva da Terra, só podemos ver Mercúrio e Vénus quando [estes] estão ou passam em frente ao Sol (…) e é por isso que este é um evento raro que não quererá perder”, escreve a agência espacial norte-americana (NASA) na sua página oficial.

A AccuWeather, por sua vez, detalhou que este tipo de movimentação ocorre, aproximadamente “13 vezes a cada 100 anos“, indicando que o próximo fenómeno deste tipo acontecerá a 13 de Novembro de 2031.

De acordo com a NASA, o fenómeno poderá ser observado em quase toda a América do Norte e do Sul, bem como na Europa, África e oeste da Ásia.

Durante o espectáculo, que durará 5,5 horas, Mercúrio será visível sob a forma de um ponto negro que se move em frente ao sol. Para observar evento e tendo em conta o tamanho pequeno do planeta, serão necessários binóculos ou telescópios com filtro solar.

Neste sentido, os cientistas recordam ainda que a observação directa do Sol sem equipamentos especiais de protecção pode causar danos nos olhos e perda de visão.

A este fenómeno chama-se o trânsito de Mercúrio. Por orbitar muito próximo da sua estrela, Mercúrio é difícil de observar. O planeta, em termos de tamanho, situa-se entre a Terra e a Lua, é composto sobretudo por ferro e tem uma atmosfera extremamente fina, formada por hélio, oxigénio, hidrogénio, mas também por sódio e potássio.

Apesar da sua proximidade com o Sol, Mercúrio não é o planeta mais quente (é Vénus), mas tem a maior variação de temperatura, entre -180ºC e +450ºC. Orbita o Sol em 87,97 dias e as suas crateras fazem lembrar as da Lua.

À semelhança de Mercúrio, também Vénus pode passar entre a Terra e o Sol, o que acontece duas vezes em cada cem anos.

ZAP //

Por ZAP
5 Novembro, 2019

 

2781: O Sol é muito pequeno para acabar como buraco negro

CIÊNCIA

(CC0/PD) Buddy_Nath / Pixabay

O Sol não acabará a sua vida, tal como muitas outras estrelas, convertendo-se num buraco negro ou numa estrela de neutrões, recorda a NASA, dando conta que o seu destino final é outro: uma anã branca.

De acordo com a agência espacial norte-americana, a nossa estrelas precisaria de ser cerca de 20 vezes mais massivo para que terminasse a sua vida como buraco negro.

Segundo explica a NASA, as estrelas que nascem com este tamanho – 20 vezes a massa do Sol – ou com um tamanho maior podem explodir numa super-nova no final das suas vidas antes de desabar num buraco negro, objecto cósmico de grande força gravitacional. Nada, nem mesmo a luz, lhe pode escapar.

Algumas estrelas menores são suficientemente grandes para se tornarem super-novas, mas pequenas demais para se tornarem buracos negros. Por isso, estas entrarão em colapso em estruturas super densas – as chamadas estrelas de neutrões – depois de explodirem como uma super-nova.

O Sol também não é suficientemente grande para esse destino final: tem apenas um décimo da massa necessária para se tornar uma estrela de neutrões.

Então, o que acontecerá com o Sol? Dentro de 6 mil milhões de anos, a nossa estrela terminará como uma anã branca, um pequeno e denso remanescente de uma estrela que brilha com o excesso de calor. O processo, aponta a NASA, começará em cerca de 5.000 milhões de anos, quando o Sol começar a ficar sem combustível.

Tal como a maioria das estrelas, durante a fase principal da sua vida, o Sol cria energia através da fusão de átomos de hidrogénio no seu núcleo.  Daqui a 5.000 milhões de anos, o Sol começará a ficar sem hidrogénio, entrando assim em colapso. Esta situação permitirá ao Sol começar a fundir elementos mais pesados no núcleo, juntamente com a  fusão de hidrogénio numa concha envolvida em torno do núcleo.

Quando isso acontecer, a temperatura do Sol aumentará e as camadas externas da sua atmosfera vão expandir-se muito no Espaço, ao ponto de “engolir” a Terra – situação que tornaria a Terra inabitável para a vida tal como a conhecemos.

Esta será a fase gigante vermelha, que durará cerca de mil milhões de anos até que o Sol entre em colapso total para formar uma anã branca.

ZAP //

Por ZAP
6 Outubro, 2019