Um “Jekyll e Hyde” cósmico

CIÊNCIA/ASTRONOMIA

Nesta nova imagem de Terzan 5 (direita), os raios-X fracos, médios e altamente energéticos detectados pelo Chandra têm a cor vermelha, verde e azul, respectivamente. À esquerda, uma imagem do Telescópio Espacial Hubble mostra o mesmo campo no visível.
Credito: raios-X – NASA/CXC/Universidade de Amesterdão/N. Degenaar, et al.; óptico – NASA, ESA

De acordo com observações do Observatório de raios-X Chandra da NASA e do VLA (Karl F. Jansky Very Large Array) da NSF (National Science Foundation), um sistema estelar binário tem vindo a alternar entre dois alter-egos. Usando quase uma década e meia de dados do Chandra, os investigadores notaram que um par estelar se comporta como um tipo de objecto antes de mudar a sua identidade e depois regressa ao seu estado original ao fim de alguns anos. Este é um exemplo raro de um sistema estelar que altera o seu comportamento desta maneira.

Os astrónomos encontraram esta volátil estrela dupla, ou sistema binário, numa densa colecção de estrelas, o enxame globular Terzan 5, localizado a mais ou menos 20.000 anos-luz da Terra, na Via Láctea. Esta dupla estelar, conhecida como Terzan 5 CX1, tem uma estrela de neutrões (o remanescente extremamente denso deixado para trás por uma explosão de super-nova) em órbita íntima com uma estrela semelhante ao Sol, mas com menos massa.

Em sistemas binários como Terzan 5 CX1, a estrela de neutrões mais pesada puxa o material da companheira de massa inferior para um disco circundante. Os astrónomos podem detectar estes denominados discos de acreção graças à sua brilhante radiação em raios-X e referem-se a estes objectos como “binários de raios-X de baixa massa.”

O material giratório no disco cai sobre a superfície da estrela de neutrões, acelerando a sua rotação. A estrela de neutrões pode girar cada vez mais depressa até que a esfera com aproximadamente 16 km de diâmetro, com mais massa do que o Sol, gira centenas de vezes por segundo. Eventualmente, a transferência de matéria diminui e o material restante é varrido pelo campo magnético giratório da estrela de neutrões, que se torna num pulsar de milissegundo. Os astrónomos detectam pulsos de ondas de rádio destes pulsares de milissegundo enquanto o feixe de ondas de rádio da estrela de neutrões aponta para a Terra durante cada rotação.

Embora os cientistas esperem que a evolução completa de um binário de raios-X de baixa massa para um pulsar de milissegundo ocorra ao longo de vários milhares de milhões de anos, existe um período de tempo em que o sistema pode alternar rapidamente entre estes dois estados. As observações de Terzan 5 CX1 pelo Chandra mostram que estava a agir como um binário de raios-X de baixa massa em 2003, porque era mais brilhante em raios-X do que qualquer uma das dezenas de outras fontes no enxame globular. Isto era um sinal de que a estrela de neutrões provavelmente estava a acumular matéria.

Nos dados do Chandra obtidos de 2009 a 2014, Terzan 5 CX1 havia se tornado cerca de dez vezes mais fraco em raios-X. Os astrónomos também o detectaram como uma fonte de rádio com o VLA em 2012 e 2014. A quantidade de emissão de rádio e raios-X e os espectros correspondentes (a quantidade de emissão em diferentes comprimentos de onda) concordam com as expectativas de um pulsar de milissegundo. Embora os dados rádio usados não permitam uma busca por pulsos de milissegundo, estes resultados implicam que Terzan 5 CX1 passou por uma transformação, passando a comportar-se como um pulsar de milissegundo e que estava a ejectar material. Quando o Chandra observou Terzan 5 CX1 novamente em 2016, tornou-se mais brilhante em raios-X e voltou a agir novamente como um binário de raios-X de baixa massa.

Para confirmar este padrão de comportamento “Jekyll e Hyde”, os astrónomos precisam de detectar pulsos de rádio enquanto Terzan 5 CX1 é fraco em termos de raios-X. Estão planeadas mais observações no rádio e em raios-X para procurar este comportamento, além de pesquisas sensíveis de pulsos nos dados existentes. Apenas se conhecem três exemplos confirmados destes sistemas que mudam de identidade, o primeiro descoberto em 2013 usando o Chandra e vários outros telescópios de raios-X e rádio.

O estudo do binário “Jekyll e Hyde” foi liderado por Arash Bahramian do ICRAR (International Center for Radio Astronomy Research), Austrália, e publicado na edição de 1 de Setembro de 2018 da revista The Astrophysical Journal.

Dois outros estudos recentes usaram observações de Terzan 5 pelo Chandra para estudar como as estrelas de neutrões de dois diferentes binários de raios-X de baixa massa se recuperam depois de terem recebido grandes quantidades de material despejado na superfície por uma estrela companheira. Tais estudos são importantes para entender a estrutura da camada externa de uma estrela de neutrões, conhecida como crosta.

Num destes estudos, o do binário de raios-X de baixa massa Swift J174805.3–244637 (T5 X-3 para abreviar), o material despejado na estrela de neutrões durante uma explosão de raios-X detectada em 2012 pelo Chandra aqueceu a crosta da estrela. A crosta da estrela de neutrões então arrefeceu, levando cerca de cem dias para voltar à temperatura observada antes da explosão. O ritmo de arrefecimento está de acordo com um modelo de computador deste processo.

Num estudo separado de outro binário de raios-X de baixa massa em Terzan 5, IGR J17480–2446 (T5 X-2 para abreviar), a estrela de neutrões ainda estava a arrefecer quando a sua temperatura foi registada cinco anos e meio depois de se saber ter tido um surto. Estes resultados mostram que a capacidade da crosta desta estrela de neutrões em transferir ou conduzir calor pode ser menor do que a que os astrónomos encontraram noutras estrelas de neutrões a arrefecer ou em binários de raios-X de baixa massa. Esta diferença na capacidade de conduzir calor pode estar relacionada com o facto de T5 X-2 ter um campo magnético maior em comparação com outras estrelas de neutrões em arrefecimento, ou ser muito mais jovem do que T5 X-3.

O trabalho sobre a estrela de neutrões de arrefecimento rápido, liderado por Nathalie Degenaar da Universidade de Amesterdão, Países Baixos, foi publicado na edição de Junho de 2015 da revista Monthly Notices of the Royal Astronomical Society. O estudo da estrela de neutrões de arrefecimento lento, liderado por Laura Ootes, na altura da Universidade de Amesterdão, foi publicado na edição de Julho de 2019 da revista Monthly Notices of the Royal Astronomical Society.

Astronomia On-line
3 de Março de 2020

 

spacenews

 

3141: Misterioso sinal de rádio pode ser um novo tipo de sistema estelar

CIÊNCIA

Centre de Données astronomiques de Strasbourg / SIMBAD / DECaPS
Estrela TYC 8332-2529-1

Uma equipa de astrónomos detectaram uma emissão de rádio cuja origem é totalmente desconhecida. Os investigadores suspeitam de que o sinal tenha sido emitido por um novo tipo de sistema estelar.

Uma equipa internacional de astrónomos detectou uma emissão de rádio de um objecto localizado a, aproximadamente, 1.800 anos-luz da Terra, nas proximidades da Constelação de Ara. Para esta observação, os cientistas contaram com a ajuda do radiotelescópio MeerKAT, no deserto de Karoo, na África do Sul.

A explosão incomum é proveniente de um sistema estelar binário, ou seja, duas estrelas que orbitam entre elas, dificultando a explicação da emissão de rádio.

Os astrónomos utilizaram dados de mais de 18 anos de observações da estrela fornecidas por outros telescópios, o que contribuiu para determinar uma estrela gigante de massa aproximadamente duas vezes e meia maior do que a do Sol – TYC 8332-2529-1. Além disso, o brilho da estrela muda num período de 21 dias, o que origina as grandes manchas, semelhantes às manchas solares.

A análise também revelou que a estrela possui um campo magnético, que orbita outra estrela a cada 21 dias. Tudo indica que esta segunda estrela pode ser mais fraca do que a grande estrela – com cerca de 1,5 vezes a massa do Sol.

A explosão de rádio também poderia ter sido causada pela actividade magnética da grande estrela, tal como acontece nas explosões solares, que são mais brilhantes e energéticas.

Ainda assim, não é descartada a hipótese de um sistema estelar formado a partir de uma estrela gigante e de uma estrela semelhante ao Sol, onde a actividade magnética cede lugar às explosões, explica a Sputnik News.

“Devido ao facto de as propriedades não se encaixarem facilmente no nosso conhecimento actual das estrelas binárias, este sistema pode representar uma classe completamente nova”, afirmou Ben Stappers, um dos autores do estudo, publicado na Monthly Notices of the Royal Astronomical Society, sugerindo um novo tipo de sistemas binários.

Durante os próximos quatro anos, a equipa manter-se-á atenta à fonte das emissões e à estrela gigante, de modo a solucionar este mistério.

ZAP //

Por ZAP
5 Dezembro, 2019

spacenews

 

1320: Um sistema estelar na Via Láctea ameaça morrer com uma colossal explosão

ESO/Callingham et al.

Pela primeira vez, astrónomos encontraram um sistema estelar na Via Láctea que pode produzir uma explosão de raios gama – um dos fenómenos conhecidos mais brilhantes e energéticos do Universo.

O sistema estelar é oficialmente chamado 2XMM J160050.7-514245, mas os investigadores apelidaram-no de “Apep“, em homenagem à divindade egípcia do caos.  O nome relaciona-se com o facto de o sistema estar cercado de longos “cata-ventos” de matéria lançados no espaço.

Estes cata-ventos têm origem num par de estrelas binárias “Wolf-Rayet” que orbitam no centro do sistema. Estão tão perto um do outro que parecem uma única luz brilhante, abaixo da terceira estrela do sistema, mais fraca e mais distante.

As estrelas de Wolf-Rayet são sóis ultra-massivos que atingiram o fim das suas vidas e queimaram todo o seu hidrogénio. Portanto, fundem elementos mais pesados, girando rapidamente e lançando material para o espaço.

Estas estrelas são brilhantes o suficiente para que os astrónomos possam detectar a sua presença – mesmo quando residem noutras galáxias. Quando os seus núcleos entram em colapso, provocando super-novas, os astrónomos acreditam que podem criar longas explosões de raios gama, às vezes detectadas vindas do espaço profundo.

Num artigo publicado a 19 de Novembro na revista Nature Astronomy, investigadores relatam que a Apep é uma boa candidata para este tipo de explosão, tornando-se o primeiro sistema estelar do género descoberto na Via Láctea.

Os longos cata-ventos resultam de ventos estelares que se afastam do sistema binário a cerca de 3.400 quilómetros por segundo. As estrelas Wolf-Rayet devem estar a girar extraordinariamente rápido para atirar toda a matéria – quase rápido o suficiente para se separar, segundo o estudo.

Explosões de raios gama podem explicar porque (ainda) não encontrámos extraterrestres

Há finalmente uma explicação científica para o facto de os humanos não terem encontrado até ao momento vida extraterrestre. Não, não…

740: ATÉ ESTRELAS DE NEUTRÕES FENOMENALMENTE DENSAS CAEM COMO UMA PENA

Impressão de artista do sistema triplo PSR J0337+1715, localizado a mais ou menos 4200 anos-luz da Terra. Este sistema fornece um laboratório natural para testar teorias fundamentais da gravidade.
Crédito: NRAO/AUI/NSF; S. Dagnello

Aproveitando a extraordinária sensibilidade do GBT (Green Bank Telescope) da NSF (National Science Foundation), os astrónomos fizeram o teste mais rigoroso, até agora, de uma das previsões de Einstein sobre a gravidade. Ao rastrear precisamente as trajectórias de três estrelas num único sistema – duas estrelas anãs brancas e uma estrela de neutrões ultra-densa – os investigadores determinaram que até as estrelas de neutrões fenomenalmente compactas “caem” da mesma maneira que as suas homólogas menos densas, um aspecto da natureza chamado de “Princípio da Equivalência Forte” de Einstein.

A compreensão da gravidade de Einstein, conforme descrita na sua teoria geral da relatividade, prevê que todos os objectos caem à mesma proporção, independentemente da sua massa ou composição. Esta teoria passou teste após teste aqui na Terra, mas será que ainda é verdadeira para alguns dos objectos mais massivos e densos do Universo conhecido, um aspecto da natureza conhecido como o Princípio da Equivalência? Uma equipa internacional de astrónomos deu a esta persistente questão o seu teste mais rigoroso de todos os tempos. Os seus achados, publicados na revista Nature, mostram que o conhecimento de Einstein sobre a gravidade ainda prevalece, mesmo num dos cenários mais extremos que o Universo pode oferecer.

Retire todo o ar e um martelo e uma pena cairão à mesma velocidade – um conceito explorado por Galileu no final do século XVI e famosamente ilustrado na Lua pelo astronauta David Scott da Apollo 15.

Embora tivesse como base a física newtoniana, foi preciso a teoria da gravidade de Einstein para expressar como e porque é que isso acontece. As equações de Einstein passaram em todos os testes, desde cuidadosos estudos laboratoriais até observações de planetas no nosso Sistema Solar. Mas as alternativas à teoria geral da relatividade de Einstein prevêem que objectos compactos com gravidade extremamente forte, como as estrelas de neutrões, caem um pouco diferente dos objectos de menor massa. Essa diferença, prevêem as teorias alternativas, seria devido à energia de ligação gravitacional do objecto compacto – a energia gravitacional que o mantém unido.

Em 2011, o GBT da NSF descobriu um laboratório natural para testar esta teoria em condições extremas: um sistema estelar triplo chamado PSR J0337+1715, localizado a cerca de 4200 anos-luz da Terra. Este sistema contém uma estrela de neutrões numa órbita de 1,6 dias com uma estrela anã branca, e o par orbita outra anã branca mais distante a cada 327 dias.

“Este é um sistema estelar único,” afirma Ryan Lynch do GBT, no estado norte-americano da Virgínia Ocidental, co-autor do artigo. “Não sabemos de nenhum outro como ele. Isso torna-o num laboratório único para pôr à prova as teorias de Einstein.”

Desde a sua descoberta que o sistema triplo tem sido observado regularmente pelo GBT, pelo WSRT (Westerbork Synthesis Radio Telescope) nos Países Baixos e pelo Observatório de Arecibo da NSF em Porto Rico. O GBT passou mais de 400 horas a observar este sistema, obtendo dados e calculando como cada objecto se move em relação aos outros.

Como é que estes telescópios conseguiram estudar este sistema? Esta estrela de neutrões em particular é na verdade um pulsar. Muitos pulsares giram com uma consistência que rivaliza alguns dos relógios atómicos mais precisos da Terra. “Como um dos radiotelescópios mais sensíveis do mundo, o GBT está preparado para captar esses leves pulsos de ondas de rádio com o objectivo de estudar a física extrema,” acrescenta Lynch. A estrela de neutrões neste sistema pulsa (gira) 366 vezes por segundo.

“Podemos explicar cada pulso da estrela de neutrões desde que começámos as nossas observações,” explica Anne Archibald da Universidade de Amesterdão, do Instituto Holandês de Radioastronomia e autora principal do artigo. “Podemos determinar a sua posição até algumas centenas de metros. É uma determinação realmente precisa de onde a estrela de neutrões esteve e para onde está a ir.”

Se as alternativas à gravidade de Einstein estivessem corretas, então a estrela de neutrões e a anã branca interior cairiam de forma diferente em relação à anã branca exterior. “A anã branca interior não é tão massiva nem tão compacta quanto a estrela de neutrões e, portanto, tem menos energia de ligação gravitacional,” comenta Scott Ransom, astrónomos do NRAO (National Radio Astronomy) em Charlottesville, no estado norte-americano da Virgínia, co-autor do artigo.

Através de meticulosas observações e de cálculos cuidadosos, a equipa foi capaz de testar a gravidade do sistema usando apenas os pulsos da estrela de neutrões. Eles descobriram que qualquer diferença de aceleração entre a estrela de neutrões e a anã branca interior é pequena demais para ser detectada.

“Se houver uma diferença, não será mais do que três partes por milhão,” afirma a co-autora Nina Gusinskaia da Universidade de Amesterdão. Isto coloca severas restrições a quaisquer teorias alternativas à relatividade geral.

Este resultado é dez vezes mais preciso do que o melhor teste anterior da gravidade, tornando as evidências do Princípio da Equivalência Forte de Einstein muito mais fortes. “Estamos sempre à procura de melhores medições em novos locais, de modo que a nossa busca para aprender mais sobre novas fronteiras no Universo vai continuar,” conclui Ransom.

Astronomia On-line
6 de Julho de 2018

[vasaioqrcode]

[SlideDeck2 id=1476]

[powr-hit-counter id=78542d31_1530890014916]

See also Blog

642: CHANDRA EXPLORA SISTEMA ESTELAR MAIS PRÓXIMO EM BUSCA DE POSSÍVEIS PERIGOS

 

Na busca da Humanidade por vida para lá do nosso Sistema Solar, um dos melhores lugares considerados pelos cientistas é Alpha Centauri, um sistema que contém as três estrelas mais próximas do Sol.

Um novo estudo que envolveu a monitorização de Alpha Centauri por mais de uma década pelo Observatório de raios-X Chandra da NASA fornece notícias encorajadoras sobre um aspecto chave da habitabilidade planetária. O estudo indica que quaisquer planetas em órbita das duas estrelas mais brilhantes no sistema Alpha Cen provavelmente não serão atingidos por grandes quantidades de raios-X das suas estrelas hospedeiras. Os raios-X e os efeitos do “clima espacial” são nocivos para a vida desprotegida, directamente através de doses elevadas de radiação e indirectamente através da remoção de atmosferas planetárias (um destino que se pensa ter acontecido em Marte).

Alpha Centauri é um sistema triplo localizado a pouco mais de 4,3 anos-luz, ou cerca de 4,1 biliões de quilómetros da Terra. Embora esta seja uma grande distância em termos terrestres, o sistema está muito mais perto do que a mais próxima estrela do tipo solar.

“Por estar relativamente perto, o sistema Alpha Centauri é visto por muitos como o melhor candidato a explorar em busca de sinais de vida,” realça Tom Ayres, da Universidade do Colorado em Boulder. “A questão é, vamos encontrar planetas num ambiente propício à vida como a conhecemos?”

As estrelas no sistema Alpha Centauri incluem um par chamado “A” e “B” (abreviação AB) que orbitam relativamente perto uma da outra. Alpha Cen A é um gémeo semelhante ao nosso Sol em quase todos os sentidos, incluindo a idade, enquanto Alpha Cen B é um pouco menor e mais fraca, mas ainda bastante parecida com o Sol. O terceiro membro, Alpha Cen C (também conhecida como Proxima), é uma estrela anã vermelha muito mais pequena que viaja em redor do par AB numa órbita muito maior que a leva mais de mil vezes mais longe do par AB do que a distância Terra-Sol. Proxima actualmente detém o título de estrela mais próxima da Terra, embora AB esteja em segundo lugar.

Um novo estudo que envolve a monitorização a longo prazo de Alpha Centauri pelo Observatório de raios-X Chandra da NASA indica que quaisquer planetas em órbita das duas estrelas mais brilhantes não são provavelmente atingidos por grandes quantidades de raios-X. Isto é importante para a viabilidade da vida no sistema estelar mais próximo do Sistema Solar. A imagem no canto superior esquerdo foi obtida pelo Chandra no dia 2 de maio de 2017, vista em contexto com uma imagem óptica de campo largo obtida no solo. Alpha Centauri é um sistema estelar triplo localizado a pouco mais de 4 anos-luz da Terra.
Crédito: ótico – Zdenek Bardon; raios-X – NASA/CXC/Universidade do Colorado/T. Ayres et al.

Os dados do Chandra revelam que as perspectivas de vida em termos de bombardeamento actual de raios-X são na verdade melhores em torno de Alpha Cen A do que em torno do Sol, e Alpha Cen B é apenas ligeiramente pior. Proxima, por outro lado, é um tipo de estrela anã vermelha activa conhecida por libertar perigosas explosões de raios-X e provavelmente hostil à vida.

“Esta é uma notícia muito boa para Alpha Cen AB em termos da capacidade da vida (em qualquer um dos seus planetas) em sobreviver aos ataques de radiação das estrelas,” comenta Ayres. “O Chandra mostra-nos que a vida deverá ter uma chance de luta nos planetas em torno de qualquer uma destas estrelas.”

Apesar de já ter sido descoberto um planeta do tamanho da Terra em torno de Proxima, os astrónomos continuam à procura, sem sucesso, de exoplanetas em torno de Alpha Cen A e B. A caça exoplanetária em redor destas estrelas provou recentemente ser mais difícil devido à órbita do par, que aproximou as duas estrelas brilhantes uma da outra no céu na última década.

Para ajudar a determinar se as estrelas de Alpha Cen são hospitaleiras à vida, os astrónomos realizaram uma campanha de longo prazo na qual o Chandra observa as duas principais estrelas do sistema a cada seis meses desde 2005. O Chandra é o único observatório de raios-X capaz de resolver AB durante a sua actual aproximação orbital, a fim de determinar o que cada estrela está a fazer.

Estas medições a longo prazo capturaram os altos e baixos da actividade de raios-X de AB, análoga ao ciclo de 11 anos das manchas solares do Sol. Mostram que quaisquer planetas na zona habitável da estrela A receberiam uma dose mais pequena de raios-X, em média, do que planetas semelhantes em torno do Sol. Para a companheira B, a dose de raios-X para planetas na zona habitável é maior do que a do Sol, mas só por um factor de aproximadamente 5.

Em comparação, os planetas na zona habitável em torno de Proxima recebem uma dose média de raios-X cerca de 500 vezes maior que a da Terra e 50.000 vezes maior durante uma grande erupção estelar.

Além de iluminar a possível habitabilidade dos planetas de Alpha Cen, a história de raios-X do par AB, pelo Chandra, ajuda às explorações teóricas da actividade cíclica de raios-X do nosso Sol. A sua compreensão é fundamental para os perigos cósmicos como o Clima Espacial, que podem impactar a tecnologia da nossa civilização cá na Terra.

Tom Ayres apresentou estes resultados na 232.ª reunião da Sociedade Astronómica Americana em Denver, no estado norte-americano do Colorado, e alguns dos resultados foram publicados na edição de Janeiro de 2018 da revista científica Research Notes of the American Astronomical Society.

Links:

Notícias relacionadas:
NASA (comunicado de imprensa)
Observatório de raios-X Chandra (comunicado de imprensa)
Artigo científico (Research Notes of the American Astronomical Society)
Astronomy
Universe Today
Astronomy Now
PHYSORG
astrobiology web
Newsweek

Alpha Centauri:
Wikipedia

Proxima Centauri:
Wikipedia

Observatório Chandra:
Página oficial (Harvard)
Página oficial (NASA)
Wikipedia

Astronomia On-line
12 de Junho de 2018

[vasaioqrcode]

[SlideDeck2 id=1476]

[powr-hit-counter id=c70270be_1528813691880]