2619: Colossal radiotelescópio da China acabou de ouvir um sinal bizarro no espaço

CIÊNCIA

Chama-se FAST e é um colossal radiotelescópio que foi criado pela China. Custou quase 200 milhões de euros e demorou mais de cinco anos para entrar em funcionamento. Este telescópio esférico tem um prato fixo de 500 metros de abertura. Situa-se na cadeia de montanhas na província Guizhou do sudoeste Chinês e é apelidado com uma verdadeira maravilha da tecnologia.

Segundo informações, o maior radiotelescópio completo da Terra detectou um sinal de rádio notoriamente estranho que irradia pelo espaço.

China ajuda a detectar intrigantes Rajadas Rápidas de Rádio

De vez em quando, os radiotelescópios na Terra detectam sinais poderosos de fontes desconhecidas. Estas Rajadas Rápidas de Rádio (em inglês FRB), são frequentemente flashes singulares, mas alguns deles têm sido observados a aparecer repetidamente em intervalos aparentemente aleatórios.

Um sinal em particular, conhecido como FRB 121102, é conhecido por aparecer várias vezes. Agora, o novo colossal radiotelescópio da China ouviu-o alto e claro.

Sinais estranhos e que se desconhece a origem

Ninguém sabe realmente o que cria os FRBs, e isso faz parte do que os torna tão excitantes para os cientistas. Pelo facto de que a maioria deles são explosões únicas, mas que outros como o FRB 121102 continuam a repetir torna o processo que os impulsiona ainda os torna mais misteriosos.

O equipamento da China está pronto para uma revisão final do projecto concluído no final deste mês. Dessa forma, os cientistas dizem que já usaram o telescópio para detectar um sinal de rádio notoriamente estranho que viaja pelo espaço.

Uma vez aprovada a revisão ao radiotelescópio, o FAST torna-se num telescópio aceite para explorar o Universo. O Fast tem sido aberto aos astrónomos chineses desde Abril de 2019. Posteriormente, após a Aceitação Nacional de Construção, ele será aberto a astrónomos de todo o mundo.

Referiu, em comunicado, Jiang Peng, engenheiro responsável do FAST.

FRB 121102 é um fenómeno detectado há pouco tempo

Pese o facto desta rajada, FRB 121102, ter sido identificada pela primeira vez em 2012 pelo Observatório Arecibo em Porto Rico, só voltou a ser detectada recentemente pelo FAST. Mais concretamente foi no dia 30 de Agosto. Posteriormente, deu-se uma repetição a 3 de Setembro, quando mais de 20 pulsos foram registados. Isso caracteriza este sinal como particularmente persistente.

Este evento particular foi especialmente significativo. Isto porque nenhum outro telescópio na Terra alguma vez detectou tantas repetições do sinal num período de tempo tão curto, Desa forma, este feito do novo telescópio da China poderá ajudar a desvendar os segredos do sinal.

Portanto, olhando para o futuro, o FAST terá as suas mãos cheias, com investigadores à espera de o poder usar na contínua procura por pulsares distantes, elementos como o hidrogénio e, é claro, Rajadas Rápidas de Rádio adicionais.

2490: Descobertas oito novas fontes de Explosões Rápidas de Rádio vindas do Espaço

CIÊNCIA

CHIME
O radiotelescópio CHIME permitiu descobrir 8 novas fontes de FRBs

As Explosões Rápidas de Rádio (Fast Radio Bursts, FRBs) são dos enigmas mais intrigantes da astronomia moderna. Estes sinais de rádio, por norma, duram milésimos até desaparecer, mas alguns repetem-se de forma irregular.

Desde a descoberta das primeiras explosões rápidas de rádio em 2007, dezenas de sinais foram detectados. A maioria destes FRBs são de eventos pontuais, mas em 2015 a origem de uma explosão foi identificada no local de outra explosão, detectada em 2012.

Desde então, esta fonte, conhecida como FRB 121102, emitiu mais de cem sinais desconcertantes, que se repetem em ciclos irregulares. Durante anos o FRB 121102 era a única fonte conhecida destes sinais, mas em Janeiro uma segunda fonte foi descoberta — seguida por uma terceira em Junho.

Mas agora, uma equipa de astrónomos da McGill University, no Canadá, descobriu nada menos que oito novas fontes de FRBs. A descoberta foi apresentada num artigo publicado em Maio na revista Astrophysical Journal Letters.

Através do radiotelescópio CHIME (Experiência Canadiana de Mapeamento de Intensidade de Hidrogénio), os investigadores conseguiram observar duas explosões de seis fontes, enquanto outras emitiram três explosões.

De acordo com a New Atlas, a fonte que mais chamou a atenção dos cientistas, foi a que lançou 10 explosões no período de quatro meses de observação.

Um dos maiores enigmas dos FRBs é perceber quão próximos os sinais de repetição e os de não repetição são, e se estes vêm do mesmo tipo de objetos ou ambientes.

Ao comparar os novos sinais com os já conhecidos, a equipa de investigadores reparou que as medidas de dispersão — que explicam como é que o sinal fica “esticado” enquanto viaja pelo cosmos — parecem estar ao mesmo alcance para os dois tipos de fonte FRBs.

Com isto, os sinais de repetição tendem a durar mais do que os sinais de não repetição. E ainda, depois do fenómeno das 10 explosões, alguns dos novos sinais também foram encontrados a emitir sub-explosões mais fracas.

Os investigadores concluíram que os fenómenos podem ser oriundos de fontes diferentes ou, pelo menos, de fontes semelhantes em condições diferentes.

Os sinais do FRB 121102 foram encontrados completamente distorcidos, o que significa que a sua origem pode estar muito próxima de um buraco negro, de uma nebulosa ou de uma remanescente de super-nova. Nem todas as repetições podem viver nestas condições extremas, o que pode mudar os seus sinais.

DR, ZAP //

Por DR
22 Agosto, 2019

 

2332: Não há explosões suficientes no Espaço que expliquem os estranhos sinais de rádio

CIÊNCIA

OzGrav, Swinburne University of Technology

Muitos dos mais brilhantes e estranhos fenómenos no espaço vêm de eventos cataclísmicos, como explosões ou colisões.

As rajadas rápidas de rádio são um dos fenómenos mais intrigantes de todo o Universo. Estes sinais cósmicos são extremamente poderosos, podendo mesmo gerar tanta energia como centenas de milhões de sóis. Apesar da sua energia, estas emissões são breves e pontuais, sendo, por isso, difícil de as detectar e estudar directamente.

Ou seja, os cientistas não conseguem “prever” a observação destes fenómenos. A menos que um radiotelescópio – com um campo de visão relativamente estreito – esteja direccionado exactamente na área exacta do céu em que essa explosão é dispara, o sinal cósmico é perdido.

FRBs são rajadas de milissegundos de poderosas ondas de rádio que vêm das profundezas do espaço. Já se pensou ter diversas fontes diferentes, desde fusões de estrelas de neutrões a naves espaciais alienígenas, mas nenhuma explicação está, para já, confirmada.

Os astrónomos falaram pela primeira vez da existência de misteriosos explosões rápidas de rádio (FRB) em 2007, quando foram descobertas acidentalmente enquanto se observavam os pulsares de rádio com o Telescópio Parks na Austrália.

Nos anos subsequentes, os cientistas encontraram vestígios de mais três dezenas de tais explosões, cuja comparação mostrou que poderiam ser de origem artificial, e até mesmo ser potenciais sinais de civilizações extraterrestres, por causa da periodicidade inexplicável da sua estrutura.

Todas elas tinham uma coisa em comum – a potência extremamente elevada e a distância invulgarmente longa até às suas fontes. Assim, os astrónomos assumiram inicialmente que tais rajadas surgem durante a fusão de estrelas de neutrões ou de outros objectos compactos que se transformam num buraco negro.

A maioria dos FRBs que encontramos aparecem apenas uma vez, mas três parecem repetir-se, enviando várias ondas de rádio pelo espaço. Esses três não podem vir de eventos cataclísmicos como colisões de estrelas de neutrões ou super-novas que destroem seus progenitores.

Agora, Vikram Ravi, do Instituto de Tecnologia da Califórnia, calculou que o resto dos sinais provavelmente também não virá desses eventos. O cientista usou algumas das FRBs não repetitivas mais próximas para calcular um limite inferior de frequência com que ocorrem e comparou essa taxa com as taxas de eventos cataclísmicos no universo próximo.

“A taxa de FRBs parece ser maior do que a taxa de qualquer coisa que podemos realmente pensar que pode fazer uma FRB apenas uma vez”, disse Ravi, de acordo com o New Scientist. Isso significa que um único tipo de explosão ou colisão não pode contabilizar todos os FRBs.

É possível que todas as propostas de fontes cataclísmicas sejam simultaneamente corretas, mas talvez seja mais provável que a maioria – ou mesmo todas – das FRBs sejam, na verdade, repetidoras.

Dessa forma, cada fonte produz várias explosões ao longo da sua vida útil. Podemos não estar a detectar todas as explosões repetidas porque são mais lentas ou mais fracas do que as fontes repetidas.

“Não acho que podemos descartar que haja várias classes de coisas que surgem no céu da rádio”, afirmou Victoria Kaspi, da McGill University, em Montreal, Canadá. “Suspeitamos e temos alguma evidência de que existem várias classes e que fracção pertence a cada classe é desconhecida.” Como nenhum dos modelos actuais se encaixam bem, a cientista diz que também é possível que os FRBs se formam através de eventos que nunca vimos .

“Precisamos de dizer muito especificamente de que tipo de galáxias FRBs vêm e de onde vêm essas galáxias”, disse Ravi. Apenas três foram localizados até agora. “Se estamos a fazer o nosso trabalho correctamente, devemos conseguiu descobrir isso nos próximos cinco anos.”

ZAP //

Por ZAP
19 Julho, 2019

[vasaioqrcode]

 

2304: Novo método pode resolver a dificuldade de medir a expansão do Universo

Impressão de artista da explosão e do surto de ondas gravitacionais emitidas quando um par de estrelas de neutrões super-densas colidem. Novas observações com radiotelescópios mostram que estes eventos podem ser usados para medir o ritmo de expansão do Universo.
Crédito: NRAO/AUI/NSF

Usando radiotelescópios da NSF (National Science Foundation), os astrónomos demonstraram como uma combinação de observações de ondas gravitacionais e rádio, juntamente com uma modelagem teórica, pode transformar as fusões de pares de estrelas de neutrões numa “régua cósmica” capaz de medir a expansão do Universo e resolver uma questão pendente sobre o seu ritmo.

Os astrónomos usaram o VLBA (Very Long Baseline Array), o VLA (Karl G. Jansky Very Large Array) e o GBT (Robert C. Byrd Green Bank Telescope) para estudar as consequências da colisão de duas estrelas de neutrões que produziram ondas gravitacionais detectadas em 2017. Este evento fornece uma nova maneira de medir o ritmo de expansão do Universo, conhecido pelos cientistas como a Constante de Hubble. O ritmo de expansão do Universo pode ser usado para determinar o seu tamanho e idade, além de servir como uma ferramenta essencial para interpretar observações de objectos noutras partes do Universo.

Dois métodos principais de determinação da Constante de Hubble usam as características da radiação cósmica de fundo em micro-ondas, radiação remanescente do Big Bang, ou um tipo específico de explosões de super-nova, de nome super-novas do Tipo Ia, no Universo distante. No entanto, estes dois métodos fornecem resultados diferentes.

“A fusão de estrelas de neutrões dá-nos uma nova maneira de medir a constante de Hubble e, esperançosamente, de resolver o problema,” disse Kunal Mooley, do NRAO (National Radio Astronomy Observatory) e do Caltech.

A técnica é semelhante à que usa explosões de super-nova. Pensa-se que as explosões de super-nova do Tipo Ia tenham todas um brilho intrínseco que pode ser calculado com base na velocidade com que crescem e diminuem de brilho. A medição deste brilho, a partir da Terra, indica-nos a distância da explosão de super-nova. A medição do desvio Doppler da luz da galáxia hospedeira indica a velocidade a que a galáxia se está a afastar da Terra. A velocidade, dividida pela distância, produz a constante de Hubble. Para obter um valor preciso, têm que ser feitas muitas medições a distâncias diferentes.

Quando duas estrelas de neutrões colidem, produzem uma explosão e um surto de ondas gravitacionais. A forma do sinal da onda gravitacional diz aos cientistas quão “brilhante” foi esse surto de ondas gravitacionais. A medição do “brilho”, ou intensidade das ondas gravitacionais recebidas na Terra, pode fornecer a distância.

“Este é um meio completamente independente de esclarecermos o verdadeiro valor da Constante de Hubble,” disse Mooley.

No entanto, há uma reviravolta. A intensidade das ondas gravitacionais varia com a sua orientação em relação ao plano orbital das duas estrelas de neutrões. As ondas gravitacionais são mais fortes na direcção perpendicular ao plano orbital e mais fracas se o plano orbital estiver de lado, visto da perspectiva da Terra.

“A fim de usar as ondas gravitacionais para medir a distância, precisávamos de conhecer essa orientação,” explicou Adam Deller, da Universidade de Tecnologia de Swinburne, na Austrália.

Durante um período de meses, os astrónomos usaram os radiotelescópios para medir o movimento de um jacto super-rápido de material ejectado da explosão. “Nós usámos estas medições, juntamente com simulações hidrodinâmicas detalhadas, para determinar o ângulo de orientação, permitindo assim a utilização das ondas gravitacionais para descobrir a distância,” disse Ehud Nakar da Universidade de Tel Aviv.

Os cientistas dizem que esta única medição, de um evento a cerca de 130 milhões de anos-luz da Terra, ainda não é suficiente para resolver a incerteza, mas a técnica agora pode ser aplicada a futuras fusões de estrelas de neutrões detectadas com ondas gravitacionais.

“Pensamos que mais 15 eventos deste tipo, que podem ser observados tanto com ondas gravitacionais quanto em grande com radiotelescópios, podem resolver o problema,” disse Kenta Hotokezaka, da Universidade de Princeton. “Este seria um avanço importante na nossa compreensão de um dos aspectos mais importantes do Universo,” acrescentou.

A equipa científica internacional liderada por Hotokezaka divulgou os seus resultados num artigo publicado na revista Nature Astronomy.

Astronomia On-line
12 de Julho de 2019

[vasaioqrcode]

 

2189: Astrónomos descobrem uma misteriosa “ponte intergaláctica” gigante

INAF

Uma equipa internacional de astrónomos descobriu uma “ponte intergaláctica”, uma misteriosa corrente de ondas de rádio que abrange dez milhões de anos-luz e conecta dois aglomerados de galáxias que estão em processo de colisão lenta.

No Universo, a matéria é distribuída na forma de uma “teia cósmica”, que consiste de estruturas filamentosas cujas intersecções formam concentrações colossais de milhares de galáxias chamadas aglomerados.

Os investigadores, liderados por Federica Govoni, do Instituto Nacional de Astrofísica de Cagliari, em Itália, estudaram dois grupos denominados Abell 0399 e Abell 0401, usando a rede de radiotelescópios LoFar.

Os aglomerados de galáxias são os maiores objectos ligados gravitacionalmente no universo. Estes aumentam lentamente em massa, capturando gás nas proximidades e fundindo-se com outros aglomerados. Estão em pontos cruciais da distribuição de matéria no universo.

Observações anteriores descobriram um filamento que ligava as enormes concentrações de galáxias. O novo estudo, publicado na revista Science, determinou pela primeira vez que este filamento tem um campo magnético.

Os dois aglomerados localizam-se a cerca de 330 milhões de anos-luz da Terra. Um filamento de gás que conecta os dois aglomerados contém partículas carregadas electricamente aceleradas, emitindo radiação sincrotrão e produzindo um sinal de rádio caracteristicamente difuso (muitas vezes chamado de halo). Os próprios aglomerados de galáxias possuem esses halos.

“Normalmente observamos esse mecanismo de emissão em acção em galáxias individuais e até mesmo em aglomerados de galáxias, mas nunca antes foi observada uma emissão de rádio a conectar dois desses sistemas”, explicou Matteo Murgia, do Instituto Nacional de Astrofísica, em comunicado.

“A presença desse filamento despertou a nossa curiosidade e levou-nos a investigar se o campo magnético poderia estender-se além do centro dos aglomerados, permeando o filamento da matéria que os conecta. Com grande satisfação, a imagem obtida com o radiotelescópio LOFAR confirmou a nossa intuição, mostrando o que pode ser definido como uma espécie de “aurora” em escalas cósmicas”, continuou Govoni.

Agora, o objectivo é entender “se esse filamento magnetizador é um fenómeno comum na rede cósmica”.

ZAP //

Por ZAP
18 Junho, 2019

[vasaioqrcode]

1835: Foto do buraco negro: é como ler em Paris um jornal exposto em Nova Iorque

Veja o vídeo que demonstra bem a dimensão do feito.

https://www.dn.pt/vida-e-futuro/interior/observar-um-buraco-negro-e-como-ler-em-paris-um-jornal-exposto-em-nova-iorque-10782782.html?jwsource=cl

A capacidade de observação da rede de radiotelescópios com a qual foi obtida a primeira ‘fotografia’ de um buraco negro, hoje divulgada, equivale a ler um jornal exposto em Nova Iorque a partir de um café em Paris.

A analogia é feita em comunicado pelo Observatório Europeu do Sul (OES) e pelo Event Horizon Telescope (EHT), uma rede à escala planetária de oito radiotelescópios em solo que foi formada sob colaboração internacional para capturar as primeiras imagens de um buraco negro, objecto no universo completamente escuro do qual nada pode escapar, nem mesmo a luz.

Um dos radiotelescópios usados foi o ALMA, do OES, composto por 66 antenas e que está localizado no planalto de Chajnantor, nos Andes Chilenos, a 5.000 metros de altitude, no norte do Chile.

Da equipa de mais de 200 investigadores que participaram na observação do buraco negro super-maciço e da sua sombra, que se situa no centro da galáxia M87, faz parte o astrofísico português Hugo Messias, do observatório ALMA. O Observatório Europeu do Sul é uma organização astronómica da qual Portugal faz parte.

As observações do EHT foram feitas a partir de uma técnica conhecida como “interferometria de linha de base muito longa”, que sincroniza os diversos telescópios colocados em diferentes pontos do mundo e “explora a rotação” da Terra para formar “um enorme telescópio do tamanho da Terra”.

A técnica permitiu à rede de oito radiotelescópios ter “a maior resolução angular alguma vez atingida”, ou seja, “o suficiente para se ler um jornal colocado em Nova Iorque”, nos Estados Unidos, “a partir de um café em Paris”, em França.

A resolução angular, que determina o desempenho de instrumentos de observação como os telescópios, é a capacidade de se distinguir dois objectos cujas imagens estão muito próximas.

Ao contrário de um telescópio óptico, que produz imagens a partir da luz visível, um radiotelescópio, como os oito utilizados para registar o buraco negro da M87, capta as ondas de rádio emitidas por corpos celestes através de uma ou várias antenas de grandes dimensões.

As observações feitas a alta altitude pelos oito radiotelescópios – um deles localizado na Serra Nevada, em Espanha, e outro na Antárctida – decorreram numa campanha em 2017.

A foto histórica
© Event Horizon Telescope (EHT)/National Science Foundation/via REUTERS

Apesar de os instrumentos não estarem fisicamente ligados, os seus dados foram sincronizados através de relógios atómicos, que deram o tempo exacto das observações.

Cada telescópio gerou “enormes quantidades de dados”, cerca de 350 ‘terabytes’ por dia, que foram guardados em discos rígidos com hélio, que pesam menos e têm maior capacidade de armazenamento.

Os dados foram migrados para supercomputadores do Instituto Max Planck, na Alemanha, e do Instituto de Tecnologia de Massachusetts, nos Estados Unidos, e convertidos numa imagem através de “ferramentas computacionais inovadoras”.

“Calibrações múltiplas e métodos de obtenção de imagens” revelaram, no final, “uma estrutura semelhante a um disco com uma região central escura – a sombra do buraco negro – que se manteve em várias observações independentes do EHT”. A sombra de um buraco negro “é o mais próximo” da imagem do buraco negro propriamente dito, uma vez que este é totalmente escuro.

Dada a sua enorme massa (6,5 mil milhões de vezes superior à do Sol) e a relativa proximidade (55 milhões de anos-luz da Terra), os cientistas vaticinaram que o buraco negro da galáxia M87 fosse um dos maiores que pudesse ser visto da Terra, “o que o tornou um excelente alvo” para o Event Horizon Telescope.

A presença de buracos negros, os objectos cósmicos mais extremos que foram previstos em 1915 pelo físico Albert Einstein na Teoria da Relatividade Geral, deforma o espaço-tempo e sobreaquece o material em seu redor.

Até à ‘fotografia’ hoje divulgada, as imagens de um buraco negro eram meramente concepções artísticas.

Os resultados do trabalho do Event Horizon Telescope são descritos em seis artigos publicados hoje num número especial da revista da especialidade The Astrophysical Journal Letters.

A mesma rede de radiotelescópios também se propõe obter a primeira imagem do buraco negro super-maciço Sagitário A, localizado no centro da Via Láctea.

Diário de Notícias
DN/Lusa
10 Abril 2019 — 18:19

[vasaioqrcode]

 

1728: A nova geração de telescópios vai descobrir vida extraterrestre?

Portugal e mais seis países assinam em Roma acordo para a construção do maior radiotelescópio do mundo

© Expresso Expresso

Em 1961, o astrofísico norte-americano Frank Drake inventou uma equação que estima o número de civilizações extraterrestres na Via Láctea. N = R*× fp × ne × fl × fi × fc × L ficou conhecida por Equação Drake e parece uma fórmula demasiado complexa para o cidadão comum, mas é relativamente simples. Assim, “N” representa o número de civilizações extraterrestres, “R*” a taxa de formação de novas estrelas na nossa galáxia, “fp” a fracção de estrelas que possuem planetas em órbita, “ne” o número de planetas que potencialmente permitem a emergência de vida, “fl” a fracção destes planetas que realmente têm vida, “fi” a fracção dos planetas com vida inteligente, “fc” a fracção destes planetas que quer e tem meios para comunicar com outras civilizações, e “L” o tempo esperado de vida de uma civilização deste tipo.

Mas em 1961 os astrofísicos não sabiam qual era o valor destes sete parâmetros, apenas podiam fazer conjecturas. Os avanços da ciência permitiram, entretanto, chegar a números consistentes para os primeiros três parâmetros da famosa equação. Graças aos mais potentes telescópios espaciais e terrestres, já foram identificados 4000 planetas extras-solares na Via Láctea e 47 são parecidos com a Terra. Sabemos ainda que há mais planetas do que estrelas e que pelo menos 25% destes planetas têm a dimensão da Terra e situam-se na zona habitável da sua estrela, que permite a emergência de água no estado líquido. Como a nossa galáxia tem pelo menos 100 mil milhões de estrelas há, certamente, uma imensidão de planetas potencialmente com vida.

Mas isto não chega para calcular a Equação Drake. Há que esperar pela próxima geração de super-telescópios. A começar pelo SKA (Square Kilometer Array), o maior radiotelescópio do mundo, um projecto literalmente astronómico — considerado a maior infra-estrutura do planeta — que terá 2500 antenas instaladas na África do Sul e na Austrália. Vai estudar as ondas gravitacionais e a evolução do Universo, testar as teorias de Einstein, mapear centenas de milhões de galáxias e procurar sinais de vida extraterrestre.

Investir €2000 milhões

A convenção para construir o SKA foi assinada esta semana em Roma por Portugal, Holanda, Itália, Reino Unido, China, África do Sul e Austrália. E a Índia e a Suécia vão aderir em breve. O projecto envolve 1000 investigadores e engenheiros em 20 países de três continentes, 270 centros de investigação e empresas e um investimento de 2000 milhões de euros. Domingos Barbosa, investigador do Instituto de Telecomunicações e coordenador português do SKA, diz que “vai ser a máquina que mais dados irá produzir nos próximos 20 anos — dez vezes mais dados do que o tráfego global da Internet”. E Philip Diamond, director-geral da Organização SKA, salienta que “tal como o telescópio de Galileu no seu tempo, o SKA irá revolucionar a maneira como compreendemos o Universo e o nosso lugar nele”.

O Observatório Europeu do Sul (ESO), organização a que Portugal pertence, está também a construir o maior telescópio ótico do mundo, o E-ELT (European Extremely Large Telescope), no Deserto de Atacama, no Chile. Terá imagens 15 vezes mais nítidas do que as obtidas pelo telescópio espacial óptico Hubble e permitirá, entre outras coisas, estudar e caracterizar planetas extras-solares rochosos com a mesma massa da Terra, procurando indícios de vida. Há ainda outros projectos em curso com o mesmo objectivo, como os telescópios espaciais James Webb e WFIRST, da NASA.

Mas como se podem detectar sinais de vida num planeta extras-solar? Através da luz da estrela que este orbita, quando é reflectida por ele ou atravessa a sua atmosfera, porque os gases que a compõem absorvem diferentes comprimentos de onda dessa luz. Se estes corresponderem ao dióxido de carbono, metano ou oxigénio, a vida existe.

msn notícias
Virgílio Azevedo
16/03/2019

[vasaioqrcode]

 

1694: Revelada origem de misteriosos sinais extra-galácticos

NASA

Novos achados lançam luz sobre a origem do misterioso fenómeno espacial FIRST J141918.9 e revelam que representa uma explosão longa de raios gama “órfã”.

Usando um conjunto de radiotelescópios, astrónomos europeus estudaram o FIRST J141918.9+394036 e chegaram a várias hipóteses para a origem do fenómeno misterioso.

Um transiente de rádio é uma substância extra-galáctica de evolução lenta cujo brilho tem diminuído gradualmente nos últimos anos. O recente estudo revelou que este fenómeno poderia ser um resplendor no rescaldo de uma poderosa explosão de raios gama.

Entretanto, descobriu-se que os raios gama emitidos são indetectáveis na Terra, o que dá o nome ao fenómeno – a primeira explosão “órfã” de raios gama na história, de acordo com o novo estudo publicado no arXiv.

A emissão de rádio proveniente do FIRST J1419+3940 também poderia ser explicada por uma nebulosa recém-nascida alimentada por uma jovem magnetar, caracterizada por um campo magnético extremamente forte.

Como o transiente tem características e galáxia hospedeira semelhantes à fonte de rádio associada às primeiras rajadas rápidas de rádio repetidas FRB 12102, alguns astrónomos supuseram que FIRST J1419+3940 é uma magnetar relativamente nova que gira rapidamente.

Os astrónomos confiaram numa rede de telescópios para descobrir qual das duas hipóteses é a mais plausível: “Para distinguir estas hipóteses, realizamos observações de rádio usando a Rede Europeia de Interferometria de Longa Linha de Base em 1,6 GHz para resolver a emissão de forma espacial e encontrar rajadas de rádio com duração de milissegundos”, informaram os astrónomos liderados por Benito Marcote.

A equipe de Marcote acredita que o FIRST J1419+3940 é uma pequena fonte de rádio com uma densidade de fluxo ao nível de 620 microjansky. Com uma distância de luminosidade de cerca de 283 milhões de anos-luz, o tamanho da fonte foi estimado em cerca de 5,2 anos-luz.

Paralelamente, as observações não detectaram explosões de duração ao nível de milissegundos de origem astrofísica a partir deste objeto e confirmaram que a emissão de rádio proveniente dele não é térmica.

Os investigadores notaram que o FIRST J1419+3940 ainda poderia produzir rajadas rápidas de rádio, admitindo que é necessário realizar mais estudos do local.

ZAP // Phys

Por ZAP
10 Março, 2019

[vasaioqrcode]

 

1629: Astrónomos estão a pedir às crianças para os ajudarem a entrar em contacto com extraterrestres

David Broad / Wikimedia
Observatório Arecibo, em Porto Rico

Cientistas do Observatório Arecibo, em Porto Rico, estão a pedir ajuda para o seu próximo grande projecto – e, para isso, estão a recorrer aos mais novos.

É no Observatório Arecibo, em Porto Rico, que encontramos um gigantesco radiotelescópio que é a principal ferramenta de vários cientistas na procura de extraterrestres. É lá que, segundo a Visão, trabalham alguns dos astrónomos e físicos mais inteligentes e reconhecidos do mundo.

No entanto, para o seu próximo grande projecto, estes profissionais não querem trabalhar sozinhos: para isso, pediram ajuda aos mais novos.

Em 1974, o enorme radiotelescópio foi usado para enviar uma transmissão de rádio, cuidadosamente pensada e elaborada, para o Espaço. A mensagem baseava-se em zeros e outros algarismos e tinha o principal objectivo de alertar os alienígenas para a nossa existência. No entanto, não deu grande resultado. Os cientistas não receberam quaisquer notícias de extraterrestres.

Agora, e em jeito de comemoração do 45.º aniversário dessa primeira transmissão, os astrónomos deste observatório preparam um nosso passo neste projecto.

Desta vez, lançaram um concurso à escala mundial e o objectivo é que sejam os mais novos – desde crianças do jardim de infância a jovens de 16 anos – a criarem uma nova mensagem para enviar aos extraterrestres. Como prémio, podem tornar-se o primeiro ser humano a entrar em contacto com vida alienígena.

As equipas são compostas por dez alunos de várias nacionalidades e devem inscrever-se até dia 20 de Março. A ideia é que a equipa seja o mais diversificada possível, aconselham os investigadores. Além disso, as directrizes do concurso adiantam que será uma mais valia usar todas as ferramentas possíveis, como redes sociais, para arranjar parceiros de todo o mundo.

A ideia é actualizar o tipo de formato que os humanos devem usar para comunicar com a vida alienígena. A primeira tentativa pode não ter resultado pelo simples facto de os cientistas terem partido do princípio que os extraterrestres tinham visão e, portanto, conseguiam ver o pictograma.

Para colmatar esta possível falha, pediram ajuda às crianças, por considerarem que os mais novos conseguem, muitas vezes, ultrapassar os problemas por terem uma perspectiva do mundo que os rodeia completamente nova.

Com este anúncio, os cientistas de Arecibo aproveitaram para assegurar que, apesar da devastação que o furacão Maria provocou em Porto Rico em 2017, o observatório continua a funcionar.

ZAP //

Por ZAP
23 Fevereiro, 2019

[vasaioqrcode]

 

1628: Astrónomos detectam 300 mil novas galáxias “invisíveis”

LOFAR

A descoberta foi possível graças a um dos maiores radiotelescópios do mundo – o LOFAR (Low Frequency Array), que encontrou “milhares” de novas galáxias que os cientistas nunca tinham visto antes.

Os primeiros resultados da elaboração do novo mapa do céu foram publicados pela revista científica Astronomy & Astrophysics por uma equipa de 200 astrónomos.

“Se pegarmos num radiotelescópio e olharmos para o céu, veremos principalmente a radiação que ocorre na proximidade de buracos negros super-maciços. O LOFAR ajudará a entender como estes objectos misteriosos apareceram. Além disso, estas novas galáxias podem esconder buracos que surgiram nos primeiros dias do Universo“, diz Huub Rottgering, da Universidade de Leiden, na Holanda.

O radiotelescópio europeu começou a ser construído no início dos anos 90, quando o Instituto Holandês de Radioastronomia (ASTRON) propôs criar um poderoso interferómetro para estudar as galáxias mais distantes e o Universo primordial. A sua construção terminou em Junho de 2010, tendo as observações começado em 2012.

O LOFAR tem 300 mil metros quadrados e quase 100 mil antenas localizadas em vários países europeus, que são conectadas com a ajuda de uma rede de alta velocidade e do COBALT, um dos supercomputadores mais potentes da Europa.

O recém-publicado mapa detalhado de ondas de rádio do Universo ao nosso redor é baseado nos primeiros cinco anos de observações do LOFAR.

Esse mapa contém mais de trezentos mil fontes de rádio, incluindo núcleos activos de galáxias e quasares, cerca de um terço dos quais eram anteriormente desconhecidos pelos cientistas.

Segundo os astrónomos, o estudo desta vasta colecção de buracos negros que surgiram em diferentes momentos da vida do Universo ajudará a entender quando estes objectos apareceram e o que os ajudaram a crescer a uma velocidade tão alta.

Devido à alta sensibilidade e resolução do radiotelescópio europeu, foi possível rastrear pela primeira vez as nuvens de gás quente numa galáxia distante usando ondas de rádio de baixa frequência. Além disso, provou-se que há campos magnéticos poderosos no espaço intergaláctico, cujo efeito se estende por milhões de anos-luz.

Como observado pelos investigadores, o mapa actual inclui apenas 2% da área total de céu nocturno do Hemisfério Norte. num futuro próximo, planeiam aumentar a sua cobertura em dez vezes, e nos anos subsequentes alcançar os 100%.

Os cientistas ainda esperam que estas observações ajudem a descobrir as galáxias primárias do Universo, que surgiram logo após o Big Bang.

ZAP // Sputnik News

Por SN
23 Fevereiro, 2019

[vasaioqrcode]

 

1515: Raro buraco negro com o tamanho de Júpiter pode estar a vaguear a Via Láctea

(cv) Youtube

Uma equipa de astrónomos do Observatório Astronómico Nacional do Japão (OANJ) descobriu evidências de um buraco negro do tamanho de Júpiter à deriva a cerca de 20 anos-luz do centro da Via Láctea.

Recorrendo ao radiotelescópio ALMA (Atacama Large Millimeter/Submillimeter Array), os investigadores encontraram correntes de gás molecular a orbitar o que parece ser um objeto massivo invisível. Esse movimento peculiar de gás no centro galáctico poderá ser um sinal do tipo mais elusivo de buraco negro – o de tamanho intermediário.

Uma vez que não emitem nenhuma radiação electromagnética, os buracos negros são muito difíceis de encontrar, a menos que estejam a alimentar-se activamente ou a colidir. Ou seja, isto significa que os buracos negros são invisíveis aos nosso métodos de detecção a menos que estejam a fazer algo monstruosamente perceptível.

Ainda assim, sabemos que existem buracos negros de massa estelar, formados a partir do colapso do núcleo de uma estrela massiva, com até cerca de 100 vezes a massa do Sol, bem como buracos negros supermassivos, que possuem tamanhos a partir de 100.000 vezes a massa do nosso Sol.

Entre estes dois extremos, resta uma dúvida. Embora existam boas evidências indirectas da existência de buracos negros entre 100 e 100.000 massas solares, os buracos negros de massa intermédia, ainda é necessário confirmar a existência destes objectos.

O buraco negro candidato

“Quando verifiquei os dados do ALMA pela primeira vez, fiquei muito animada porque o gás observado mostrou movimentos orbitais óbvios, que sugerem fortemente um objeto massivo invisível à espreita”, disse a astrofísica Shunya Takekawa, do OANJ, em declarações ao portal New Scientist.

Dados similares foram observados como resultado de colisões entre nuvens de super-novas, mas o objeto – chamado HCN – 0,009–0,044 – não mostra nem a forma nem o padrão de expansão associado a uma colisão desse tipo. Além disso, pesquisas anteriores, também levadas a cabo pelo OANJ, identificaram o HCN como um possível buraco negro.

Com base na forma e no movimento dos fluxos de gás, a equipa de investigação foi capaz de inferir que o objeto tem uma massa equivalente a cerca de 32.000 sóis. Esta massa torna-o um forte candidato para o tal elo perdido no rol dos buracos negros, reunindo toda esta massa num objeto do tamanho de Júpiter.

Procura buraco negros inactivos

Além de potencialmente apontar para a descoberta de um buraco negro intermediário, a investigação revela para aquele que poderia ser um novo método de descoberta de buracos negros inactivos.

Assim como o movimento do gás, a sua ionização na parte interna da órbita sugere que, em algum momento, ocorreu fotoionização, choque dissociativo ou ambos no objeto. Estes processos são normalmente observados em buracos negros activos. Portanto, se um buraco negro estiver intermitentemente activo, pode produzir ionização capaz de ser detectada depois de já ter diminuído a sua actividade novamente.

“Os resultados fornecem evidências circunstanciais de um buraco negro de massa intermediária no centro galáctico, sugerindo também que as nuvens compactas de alta velocidade podem ser sinais de buracos negros adormecidos em abundância na nossa galáxia”, escreveram os investigadores no artigo esta semana disponibilizado para pré-visualização no arXiv.org.

De acordo com o estudo, as observações têm o potencial de aumentar o número de candidatos a buracos negros não luminosos, fornecendo uma nova perspectiva para a pesquisa destes objectos massivos.

ZAP // HypeScience

Por HS
24 Janeiro, 2019

[vasaioqrcode]

 

978: OBSERVAÇÕES RÁDIO CONFIRMAM JACTO VELOZ DE MATERIAL DE FUSÃO DE ESTRELAS DE NEUTRÕES

Rescaldo da fusão de duas estrelas de neutrões. Material ejectado da explosão original formou uma concha em redor do buraco negro formado a partir da colisão. Um jacto de material expelido de um disco em redor do buraco negro interagiu em primeiro lugar com o material ejectado para formar um “casulo” amplo. Mais tarde, o jacto conseguiu atravessar o casulo para emergir para o espaço interestelar, onde o seu movimento extremamente rápido se tornou aparente.
Crédito: Sophia Dagnello, NRAO/AUI/NSF

Medições precisas usando uma colecção continental de radiotelescópios da NSF (National Science Foundation) revelaram que um jacto estreito de partículas se movendo quase à velocidade da luz irrompeu no espaço interestelar depois que um par de estrelas de neutrões se fundiram numa galáxia a 130 milhões de anos-luz da Terra. A fusão, cujo sinal foi captado em Agosto de 2017, expulsou ondas gravitacionais pelo espaço. Foi o primeiro evento a ser detectado tanto por ondas gravitacionais como por ondas electromagnéticas, incluindo raios-gama, raios-X, luz visível e ondas de rádio.

O rescaldo da fusão, de nome GW170817, foi observado por telescópios espaciais e terrestres espalhados pelo globo. Os cientistas observaram as características das ondas recebidas a mudar com o tempo e usaram essas alterações como pistas para revelar a natureza dos fenómenos que se seguiram à fusão.

Uma questão que se destacou, mesmo meses após a fusão, era se o evento havia produzido ou não um jacto estreito e veloz de material que chegou ao espaço interestelar. É uma questão importante, porque esses jactos são necessários para produzir o tipo de explosões de raios-gama que os teóricos dizem ser provocadas pela fusão de pares de estrelas de neutrões.

A resposta surgiu quando os astrónomos usaram uma combinação do VLBA (Very Long Baseline Array) da NSF, do VLA (Karl G. Jansky Very Large Array) e do GBT (Robert C. Byrd Green Bank Telescope) e descobriram que uma região de emissão de rádio da fusão tinha-se movido e o movimento era tão rápido que apenas um jacto podia explicar a sua velocidade.

“Nós medimos um movimento aparente que é quatro vezes mais rápido do que a luz. Essa ilusão, chamada de movimento superluminal, resulta quando o jacto é apontado quase na direcção da Terra e o material no jacto aproxima-se da velocidade da luz,” comenta Kunal Mooly, do NRAO (National Radio Astronomy Observatory) e do Caltech.

Os astrónomos observaram o objecto 75 dias após a fusão e novamente 230 dias depois.

“Com base na nossa análise, este jacto é provavelmente muito estreito, no máximo com 5 graus de largura, e foi apontado a apenas 20 graus da direcção da Terra,” salienta Adam Deller, da Universidade de Tecnologia de Swinburne e anteriormente do NRAO. “Mas, para coincidir com as nossas observações, o material no jacto tem que ter sido expelido a mais de 97% da velocidade da luz,” acrescentou.

O cenário que surgiu é que a fusão inicial das duas estrelas de neutrões super-densas provocou uma explosão que impulsionou uma “concha” esférica de detritos para fora. As estrelas de neutrões colapsaram num buraco negro cuja poderosa gravidade começou a puxar o material na sua direcção. Esse material formou um disco com rotação rápida, que por sua vez gerou um par de jactos que se movem para fora dos seus pólos.

À medida que o evento se desenrolava, a questão alterou-se para determinar se os jactos irromperiam da “concha” de detritos da explosão original. Os dados das observações indicaram que um jacto tinha interagido com os detritos, formando um “casulo” amplo de material que se expandia para fora. Esse casulo expande-se mais lentamente do que um jacto.

“A nossa interpretação é que o casulo dominou a emissão rádio até cerca de 60 dias após a fusão, e que depois o jacto é que dominou a emissão,” comenta Ore Gottlieb, da Universidade de Tel Aviv, um dos principais teóricos do estudo.

“Tivemos a sorte de poder observar este evento, porque se o jacto tivesse sido apontado para muito mais longe da [perspectiva da] Terra, a emissão rádio teria sido demasiado fraca para a detectarmos,” observa Gregg Hallinan do Caltech.

Os cientistas afirmaram que a detecção de um jacto veloz em GW170817 fortalece bastante a ligação entre as fusões de estrelas de neutrões e as explosões de raios-gama de curta duração. Acrescentaram também que é necessário que os jactos apontem para relativamente perto da Terra para que a explosão de raios-gama seja detectada.

“O nosso estudo demonstra que a combinação de observações do VLBA, do VLA e do GBT é um método poderoso de estudar os jactos e a física associada com os eventos de ondas gravitacionais,” realça Mooley.

“O evento de fusão foi importante por várias razões, e continua a surpreender os astrónomos com mais informações,” observa Joe Pesce, director do programa da NSF para o NRAO. “Os jactos são fenómenos enigmáticos vistos em vários ambientes, e agora estas observações extraordinárias na faixa de rádio do espectro electromagnético estão a proporcionar uma visão fascinante sobre elas, ajudando-nos a entender como funcionam.”

Mooley e colegas relataram as suas descobertas na versão online da revista Nature de dia 5 de Setembro.

Astronomia On-line
7 de Setembro de 2018

(Foram corrigidos 42 erros ortográficos ao texto original)

[vasaioqrcode]

See also Blogs Eclypse and Lab Fotográfico

977: TELESCÓPIO MAPEIA RAIOS CÓSMICOS NAS NUVENS DE MAGALHÃES

Uma composição colorida (vermelho, verde e azul) da Grande Nuvem de Magalhães feita a partir de dados de rádio a 123, 181 e 227 MHz. Nestes comprimentos de onda, é visível a emissão dos raios cósmicos e dos gases quentes que pertencem a regiões de formação estelar e remanescentes de super-nova da galáxia.
Crédito: ICRAR

Os cientistas usaram um radiotelescópio no interior da Austrália Ocidental para observar a radiação dos raios cósmicos em duas galáxias vizinhas, mostrando áreas de formação estelar e ecos de super-novas passadas.

O telescópio MWA (Murchison Widefield Array) foi capaz de mapear a Grande e a Pequena Nuvem de Magalhães em detalhes sem precedentes enquanto orbitam em torno da Via Láctea.

Ao observar o céu em frequências muito baixas, os astrónomos detectaram raios cósmicos e gás quente nas duas galáxias e identificaram manchas onde podem ser encontradas estrelas recém-nascidas e remanescentes de explosões estelares.

A investigação foi publicada esta semana na Monthly Notices of the Royal Astronomical Society, uma das principais revistas astronómicas do mundo.

O astrofísico e professor Lister Staveley-Smith, do ICRAR (International Centre for Radio Astronomy Research), disse que os raios cósmicos são partículas carregadas muito energéticas que interagem com campos magnéticos para criar radiação que podemos ver com radiotelescópios.

“Estes raios cósmicos são originários de remanescentes de super-nova – restos de estrelas que explodiram há muito tempo,” afirma.

“As explosões de super-nova de onde são originários estão relacionadas com estrelas muito massivas, muito mais massivas do que o nosso próprio Sol.

“O número de raios cósmicos produzidos depende da taxa de formação destas estrelas massivas há milhões de anos.”

A Grande e a Pequena Nuvem de Magalhães estão muito próximas da nossa Via Láctea – a menos de 200.000 anos-luz – e podem ser vistas no céu nocturno a olho nu.

A Dra. Bi-Qing For, astrónoma do ICRAR que liderou a investigação, disse que esta é a primeira vez que as galáxias foram mapeadas em detalhe a frequências de rádio tão baixas.

“A observação das Nuvens de Magalhães nestas frequências muito baixas – entre 76 e 227 MHz – significa que podemos estimar o número de novas estrelas formadas nessas galáxias,” realça.

“Descobrimos que a taxa de formação estelar na Grande Nuvem de Magalhães é aproximadamente equivalente a uma nova estrela com a massa do nosso Sol a cada 10 anos.

“Na Pequena Nuvem de Magalhães, a taxa de formação estelar é mais ou menos equivalente a uma nova estrela com a massa do nosso Sol a cada 40 anos.”

Incluídas nas observações estão 30 Dourado, uma excepcional região de formação estelar na Grande Nuvem de Magalhães que é mais brilhante do que qualquer região de formação estelar na Via Láctea, e a Super-nova 1987A, a super-nova mais brilhante desde a invenção do telescópio.

O professor Staveley-Smith disse que os resultados são um vislumbre emocionante da ciência que será possível com os radiotelescópios de próxima geração.

“São indicativos dos resultados que vamos obter com a actualização do MWA, que agora tem o dobro da resolução anterior,” acrescentou.

Além disso, o futuro SKA (Square Kilometre Array) fornecerá imagens excepcionalmente boas.

“Com o SKA, as linhas de base são novamente oito vezes mais longas, de modo que vamos conseguir fazer mais e melhor,” concluiu o professor Staveley-Smith.

Astronomia On-line
7 de Setembro de 2018

(Foram corrigidos 12 erros ortográficos ao texto original)

[vasaioqrcode]

See also Blogs Eclypse and Lab Fotográfico