2161: Planck não encontra evidências novas de anomalias cósmicas

As anisotropias do fundo cósmico de micro-ondas, observadas pela missão Planck da ESA.
É um instantâneo da luz mais antiga do nosso cosmos, impresso no céu quando o Universo tinha apenas 380.000 anos. Mostra pequenas flutuações de temperatura que correspondem a regiões com densidades ligeiramente diferentes, representando as “sementes” de todas as estruturas futuras: as estrelas e galáxias de hoje.
A primeira imagem da sequência mostra as anisotropias na temperatura da CMB à mais alta resolução obtida pelo Planck. Na segunda, as anisotropias de temperatura foram filtradas para mostrar principalmente o sinal detectado em escalas que rondam os 5º no céu. A terceira imagem da sequência mostra as anisotropias de temperatura filtradas com uma indicação da direcção da fracção polarizada da CMB.
Uma pequena fracção da CMB é polarizada – vibra numa direcção preferida. Este é o resultado do último encontro desta luz com electrões, antes de começar a sua viagem cósmica. Por esta razão, a polarização da CMB retém informação acerca da distribuição da matéria no Universo inicial, e o seu padrão no céu segue o padrão das pequenas flutuações observadas na temperatura da CMB.
Estas imagens são baseadas em dados da divulgação de Legado do Planck, a divulgação final de dados da missão, publicada em Julho de 2018.
Crédito: ESA/Colaboração Planck

O satélite Planck da ESA não encontrou novas evidências para as intrigantes anomalias cósmicas que apareceram no seu mapa de temperatura do Universo. O estudo mais recente não exclui a potencial relevância das anomalias, mas significa que os astrónomos precisam de trabalhar ainda mais duro para entender a origem destas intrigantes características.

Os últimos resultados do Planck vêm de uma análise da polarização da Radiação Cósmica de Fundo em Micro-ondas (CMB – Cosmic Microwave Background) – a luz mais antiga da história cósmica, libertada quando o Universo tinha apenas 380.000 anos.

A análise inicial do satélite, divulgada em 2013, concentrou-se na temperatura dessa radiação no céu. Isto permite que os astrónomos investiguem a origem e evolução do cosmos. Embora tenha confirmado em grande parte a imagem padrão de como o nosso Universo evolui, o primeiro mapa do Planck também revelou uma série de anomalias que são difíceis de explicar dentro do modelo padrão da cosmologia.

As anomalias são características ténues no céu que aparecem em grandes escalas angulares. Não são definitivamente artefactos produzidos pelo comportamento do satélite ou pelo processamento de dados, mas são fracas o suficiente para que possam ser variações estatísticas – flutuações que são extremamente raras, mas não totalmente descartadas pelo modelo padrão.

Alternativamente, as anomalias podem ser um sinal de “nova física”, o termo usado para processos naturais ainda não reconhecidos que estenderiam as leis conhecidas da física.

Para investigar ainda mais a natureza das anomalias, a equipa do Planck analisou a polarização da CMB, que foi revelada após uma análise cuidadosa de dados multi-frequência, desenhada para eliminar fontes de emissão de micro-ondas no plano da frente, incluindo gás e poeira da nossa própria Via Láctea.

Este sinal é a melhor medição, até à data, dos chamados modos-E de polarização da CMB e remonta ao tempo dos primeiros átomos formados no Universo e à libertação da CMB. Foi produzido pela forma como a luz se espalhou através das partículas de electrões pouco antes de os electrões se unirem em átomos de hidrogénio.

A polarização fornece uma visão quase independente da CMB, de modo que se as anomalias também aí aparecessem, isto aumentaria a confiança dos astrónomos de que podem ser provocadas por nova física, em vez de serem falhas estatísticas.

Embora o Planck não tenha sido originalmente construído para se concentrar na polarização, as suas observações foram usadas para criar os mapas mais precisos, até ao momento, da polarização da CMB. Estes foram publicados em 2018, melhorando consideravelmente a qualidade dos primeiros mapas de polarização do Planck, divulgados em 2015.

Quando a equipa do Planck analisou estes dados, não viram nenhum sinal óbvio das anomalias. Na melhor das hipóteses, a análise, publicada a semana passada na revista Astronomy & Astrophysics, revelou algumas pistas fracas de que algumas das anomalias podem estar presentes.

“As medições da polarização do Planck são fantásticas,” diz Jan Tauber, cientista do projecto Planck da ESA.

“No entanto, apesar dos excelentes dados que temos, não vemos nenhum traço significativo de anomalias.”

Assim sendo, isto parece fazer com que as anomalias sejam mais provavelmente acasos estatísticos, mas na verdade não descarta a nova física porque a natureza pode ser mais complicada do que imaginamos.

Até agora, não há hipótese convincente do novo tipo de física que pode estar a provocar as anomalias. Pode ser que o fenómeno responsável só afecte a temperatura da CMB, mas não a polarização.

Deste ponto de vista, apesar da nova análise não confirmar a ocorrência de nova física, coloca importantes restrições sobre ela.

A anomalia mais séria que apareceu no mapa de temperatura da CMB é um deficit no sinal observado em grandes escalas angulares no céu, mais ou menos 5 graus – em comparação, a Lua Cheia abrange cerca de meio grau. Nestas grandes escalas, as medições do Planck são cerca de 10% mais fracas do que o modelo padrão da cosmologia poderia prever.

O Planck também confirmou, com alta confiança estatística, outras características anómalas que haviam sido sugeridas em observações anteriores da temperatura da CMB, como uma discrepância significativa do sinal, como observado nos dois hemisférios opostos do céu, e uma chamada “mancha fria” – uma mancha grande e de baixa temperatura com um perfil de temperatura invulgarmente íngreme.

“Nós dissemos, à época, que a primeira divulgação do Planck testaria as anomalias usando os seus dados de polarização. O primeiro conjunto de mapas de polarização suficiente limpos para este propósito foi lançado em 2018, agora temos os resultados,” diz Krzysztof M. Górski, um dos autores do novo artigo, do JPL da NASA, Caltech, EUA.

Infelizmente, os novos dados não avançaram o debate, pois os resultados mais recentes não confirmam nem negam a natureza das anomalias.

“Temos alguns indícios de que, nos mapas da polarização, poderia haver uma assimetria de potência semelhante à que é observada nos mapas de temperatura, embora permaneça estatisticamente pouco convincente,” acrescenta Enrique Martínez González, também co-autor do artigo, do Instituto de Física da Cantábria em Santander, Espanha.

Embora vá haver uma análise mais profunda dos resultados do Planck, é improvável que produza resultados significativamente novos sobre este tema. O caminho óbvio é progredir para uma missão dedicada especialmente construída e optimizada para estudar a polarização da CMB, mas está pelo menos 10 a 15 anos de distância.

“O Planck deu-nos os melhores dados que teremos, pelo menos, durante uma década,” diz o co-autor Anthony Banday do Instituto de Pesquisa em Astrofísica e Planetologia em Toulouse, França.

Entretanto, o mistério das anomalias continua.

Astronomia On-line
11 de Junho de 2019

[vasaioqrcode]

1077: Universo paralelo com uma física diferente parece ter colidido com o nosso

Chingster23 / Flickr

Dados do telescópio Planck podem ter revelado colisão do nosso Universo com outro universo, com leis da física diferentes.

A conclusão é de uma análise feita por Ranga-Ram Chary, pesquisador do centro de dados americano telescópio Planck, na Califórnia, que pertence à Agência Espacial Europeia, ESA.

De acordo com as teorias cosmológicas modernas, que defendem que o universo em que vivemos é só uma bolha entre muitas outras, uma colisão entre universos é possível.

Este “multiverso” pode ser uma consequência da inflação cósmica, uma ideia amplamente aceite pela comunidade científica que diz que o universo primordial se expandiu exponencialmente após o Big Bang.

Uma vez iniciada, essa expansão exponencial não cessa, tornando inevitável uma imensidão de universos onde cada universo criado tem as suas próprias leis físicas que podem ser, ou não, diferentes daquelas que conhecemos.

Alguns destes universos podem ser totalmente diferentes, enquanto outros podem estar cheios de partículas e regras semelhantes ou até iguais às nossas.

Esta teoria explica porque é que as constantes físicas do nosso universo parecem estar tão sintonizadas para permitir a existência de galáxias, estrelas, planetas e até a própria vida.

Como saber se existem universos vizinhos?

Infelizmente, caso estes universos existam, neste momento, são quase impossíveis de detectar. Com o espaço entre estes universos e o nosso em expansão, a velocidade da luz – a mais elevado que nós conhecemos – é demasiado lenta para levar qualquer informação entre estas diferentes regiões.

No entanto, caso as duas bolhas – os dois universos – estejam próximas o suficiente para se tocarem, podem deixar marcas uma na outra.

Em 2007, Matthew Johnson e os seus colegas da Universidade de York, no Canadá, propuseram que essa colisão de bolhas – ou universos – poderia aparecer na radiação de fundo das micro-ondas como “sinais circulares” – algo como um anel brilhante e quente de fotões.

Passado quatro anos desta ideia inicial, em 2011 a mesma equipa propôs-se investigar estes sinais nos dados das sondas WMAP da NASA, antecessor da sonda Planck. Contudo, a investigação revelou-se um fiasco quando a equipa não encontrou os sinais que eram esperados.

A nova proposta

Agora, Ranga-Ram Chary acredita que pode ter visto uma assinatura diferente naquilo que pode ser uma colisão com um universo paralelo.

Em vez de analisar a própria radiação, Chary subtraiu-a a um modelo do céu. Em seguida, retirou também tudo o resto: estrelas, gás, poeiras e todo o tipo de objectos.

O resultado deveria ser um vazio – ruído. Mas, para seu espanto, numa certa faixa de frequência, certos pedaços do céu apareceram muito mais brilhantes do que o previsto.

Estas anomalias detectadas por Ranga-Ram Chary podem ter como causa uma “pancada” cósmica: uma colisão do nosso universo com outra parte de um outro universo.

Os pontos brilhantes detectados parecem ser de algumas centenas de milhares de anos após o Big Bang, quando electrões e protões se juntaram para criar o hidrogénio.

Como essa luz é normalmente abafada pelo brilho de fundo das micro-ondas cósmicas, esse momento da história do universo – chamado de “recombinação” – era difícil de ser detectado. Porém, a análise da Chary revelou pontos 4.500 vezes mais brilhantes do que o previsto pela teoria.

Uma explicação já avançada, sugere que o responsável pela brilho anormal é o excesso de protões e electrões deixados no ponto de contacto com o outro universo. As manchas detectadas por Chary exigem, assim, que o universo do outro lado da colisão tenha aproximadamente mil vezes mais partículas do que o nosso.

As dúvidas

Apesar da proposta apresentada, existem ainda algumas ressalvas quanto à teoria e, por isso, ainda é cedo para afirmar o que é que estas manchas realmente significam.

Em 2014, uma equipa de astrónomos utilizou o telescópio BICEP2 no Polo Sul verificando um sinal fraco com grandes implicações cosmológicas: espirais de luz polarizada pareceram fornecer evidências para a inflação, mas acabou por se concluir que o sinal vinha de grãos de poeira dentro da nossa galáxia.

David Spergel, da Universidade de Princeton nos Estados Unidos, considerou que essa poeira poderia estar, novamente, a “nublar” as conclusões.

“Eu suspeito que valeria a pena olhar para as possibilidades alternativas. As propriedades da poeira cósmica são mais complicadas do que imaginávamos, e acho que essa é a explicação mais plausível”, afirmou.

Joseph Silk, da Universidade Johns Hopkins, também nos Estados Unidos, é ainda mais pessimista e considera o artigo de Chray uma boa análise às anomalias nos dados do Planck e diz que as reivindicações de um universo alternativo são “completamente implausíveis”.

Por ZAP
27 Setembro, 2018

[vasaioqrcode]

See also Blogs Eclypse and Lab Fotográfico