3905: Raios-X de estrela recém-nascida fornecem pistas dos primeiros dias do nosso Sol

CIÊNCIA/ASTRONOMIA

Ilustração de artista de HOPS 383.
Crédito: raios-X NASA/CXC/Universidade de Aix-Marseille/N. Grosso et al.; ilustração – NASA/CXC/M. Weiss

Ao detectar um surto de raios-X de uma estrela muito jovem com o Observatório de raios-X Chandra da NASA, investigadores redefiniram a linha temporal de quando estrelas como o Sol começam a libertar radiação altamente energética para o espaço. Isto é significativo porque pode ajudar a responder a algumas perguntas sobre os primeiros dias do nosso Sol e também sobre o Sistema Solar de hoje.

A ilustração de artista mostra o objecto onde os astrónomos descobriram o surto de raios-X. HOPS 383 é chamada uma “proto-estrela” jovem porque está na fase inicial da evolução estelar que ocorre logo após o início do colapso de uma grande nuvem de gás e poeira. Uma vez amadurecida, HOPS 383, localizada a cerca de 1400 anos-luz da Terra, terá uma massa equivalente a mais ou menos metade da massa do Sol.

A ilustração mostra HOPS 383 rodeada por um casulo de material com a forma de um donut (castanho escuro) – contendo cerca de metade da massa da proto-estrela – que está a cair em direcção à estrela central. Grande parte da luz da estrela bebé em HOPS 383 é incapaz de perfurar este casulo, mas os raios-X do surto (azul) são poderosos o suficiente para o fazer. A radiação infravermelha emitida por HOPS 383 é espalhada pelo interior do casulo (branco e amarelo). Uma versão da ilustração com uma região do casulo recortada mostra o surto brilhante de raios-X de HOPS 383 e um disco de material caindo em direcção à proto-estrela.

As observações do Chandra, em Dezembro de 2017, revelaram o surto de raios-X, que durou cerca de 3 horas e 20 minutos. A explosão pode ser vista na caixa de inserção da imagem. O rápido aumento e a lenta diminuição da quantidade de raios-X são semelhantes ao comportamento dos raios-X de estrelas jovens mais evoluídas que HOPS 383. Não foram detectados raios-X oriundos da proto-estrela fora deste período, o que implica que durante essas vezes HOPS 383 era pelo menos dez vezes mais fraca, em média, do que o surto no seu máximo. Também é 2000 vezes mais potente do que o surto de raios-X mais brilhante observado no Sol, uma estrela de meia-idade com massa relativamente baixa.

À medida que o material do casulo cai para dentro em direcção ao disco, há também um êxodo de gás e poeira. Este fluxo exterior remove momento angular do sistema, permitindo que o material caia do disco para a jovem proto-estrela em crescimento. Os astrónomos viram um fluxo deste tipo em HOPS 383 e pensam que os poderosos surtos de raios-X como o observado pelo Chandra podem retirar electrões dos átomos. Isto pode ser importante para direccionar o fluxo por forças magnéticas.

Além disso, quando a estrela expeliu raios-X, provavelmente também teria impulsionado fluxos energéticos de partículas que colidiram com grãos de poeira localizados na orla interna do disco de material que gira em torno da proto-estrela. Supondo que algo semelhante aconteceu no nosso Sol, as reacções nucleares provocadas por esta colisão podem explicar as abundâncias invulgares de elementos em certos tipos de meteoritos encontrados na Terra.

Não foi detectado nenhum outro surto em HOPS 383 ao longo de três observações com o Chandra, totalizando um tempo de exposição pouco inferior a um dia. Os astrónomos vão precisar de observações de raios-X mais longas para determinar a frequência de tais explosões durante esta fase inicial de desenvolvimento de estrelas como o nosso Sol.

Astronomia On-line
23 de Junho de 2020

 

spacenews

 

3264: Astrónomos descobrem uma das “fusões mais violentas” entre dois grupos de galáxias

CIÊNCIA

Chandra / NASA / CXC / SAO / E. O’Sullivan / ESA / XMM / SDSS

Uma equipa de astrónomos descobriu dois grupos de galáxias no sistema de fusão NGC 6338 a colidir a uma velocidade gritante de cerca de 6,4 milhões de quilómetros por hora.

Através dos dados fornecidos pelo Observatório de Raios-X Chandra da NASA, do XMM-Newton da ESA, do Telescópio Gigante de Metaveave e do Observatório Apache Point, uma equipa de astrónomos descobriu dois grupos de galáxias a colidir a grande velocidade –  a 6,4 milhões de quilómetros por hora. Esta pode ser a colisão mais violenta alguma vez observada entre grupos de galáxias.

As observações permitiram também concluir que os núcleos frios destes grupos de galáxias estão embutidos numa grande região de gás aquecido.

O sistema NGC 6338 mora na constelação de Draco, a cerca de 380 milhões de anos-luz do nosso planeta. A massa total deste sistema é de cerca de 100 biliões de massas solares – cerca de 83% na forma de matéria escura, 16% na forma de gás quente e 1% de estrelas.

Estudos anteriores indicaram a presença de regiões de gás frio, que emitem raios X em torno dos centros de ambos os grupos de galáxias – conhecidos como “núcleos frios”. Esta descoberta ajudou os cientistas a reconstruir a geometria deste sistema, revelando que a colisão entre os grupos de galáxias aconteceu quase ao longo da linha de visão da Terra. Esta descoberta foi confirmada neste novo estudo.

“Os novos dados mostram que o gás à esquerda e à direita dos núcleos frios, e entre eles, parece ter sido aquecido por frentes de choque formadas pela colisão“, adiantou Ewan O’Sullivan, do Harvard-Smithsonian Center for Astrophysics, nos Estados Unidos, citado pelo Sci-News.

Este padrão de gás aquecido por choque foi previsto em simulações de computador, mas o sistema NGC 6338 pode ser a primeira fusão de grupos de galáxias a demonstrar este fenómeno. Por sua vez, o aquecimento impedirá que parte do gás quente arrefeça para formar novas estrelas.

“Uma segunda fonte de calor comummente encontrada em grupos e aglomerados de galáxias é a energia fornecida por explosões e jactos de partículas de alta velocidade geradas por buracos negros super-massivos”, explicaram os astrónomos. Esta fonte de calor parece estar inactiva em NGC 6338.

“Esta ausência pode explicar os filamentos de gás de arrefecimento detectados em raios X e dados ópticos em torno da grande galáxia no centro do núcleo frio no sul”. O artigo científico foi publicado recentemente na Monthly Notices of the Royal Astronomical Society.

ZAP //

Por ZAP
25 Dezembro, 2019

 

spacenews

 

782: RAIOS-X PODEM SER AS PRIMEIRAS EVIDÊNCIAS DE UMA ESTRELA A DEVORAR UM PLANETA

Esta impressão de artista ilustra a destruição de um planeta jovem, que os cientistas podem ter testemunhado pela primeira vez.
Crédito: NASA/CXC/M. Weiss

Há já quase um século que os astrónomos investigam a curiosa variabilidade de jovens estrelas que residem na região de Touro-Cocheiro a cerca de 450 anos-luz da Terra. Uma estrela em particular chamou a atenção dos cientistas. A cada poucas décadas, a luz da estrela diminui brevemente antes de aumentar novamente.

Nos últimos anos, os astrónomos observaram a estrela a diminuir de brilho com mais frequência, e por períodos mais longos, levantando a questão: o que é obscurece repetidamente a estrela? A resposta, pensam os astrónomos, pode lançar luz sobre alguns dos processos caóticos que ocorrem no início do desenvolvimento de uma estrela.

Agora, físicos do MIT e de outras instituições observaram a estrela, de nome RW Aur A, com o Observatório de raios-X Chandra da NASA. Eles encontraram evidências do que pode ter provocado o seu mais recente evento de escurecimento: uma colisão entre dois corpos planetários infantis, que produziu no seu rescaldo uma densa nuvem de gás e poeira. Quando esses destroços planetários caíram na estrela, formaram um véu espesso, obscurecendo temporariamente a luz da estrela.

“As simulações de computador prevêem há muito que os planetas podem cair para uma estrela jovem, mas nunca tínhamos observado isso antes,” comenta Hans Moritz Guenther, investigador do Instituto kavli para Astrofísica e Investigação Espacial do MIT, que liderou o estudo. “Se a nossa interpretação dos dados estiver correta, esta será a primeira vez que observamos directamente uma estrela jovem a devorar um planeta ou planetas.”

Os anteriores eventos de escurecimento da estrela podem ter sido provocados por colisões similares, quer seja entre dois corpos planetários, quer seja entre remanescentes maiores de colisões passadas que se encontraram de frente e depois se separaram novamente.

“É especulação, mas se temos uma colisão entre dois fragmentos, é provável que depois ganhem órbitas perigosas, o que aumenta a probabilidade de que atinjam outra vez outros objectos,” realça Guenther.

Guenther é o autor principal de um artigo que divulga os resultados do grupo, publicado na revista The Astronomical Journal. Os co-autores são David Huenemoerder e David Principe do MIT, investigadores do Centro Harvard-Smithsonian para Astrofísica e colaboradores na Alemanha e Bélgica.

Um encobrimento estelar

Os cientistas que estudam o desenvolvimento inicial de estrelas frequentemente observam as Nuvens Escuras de Touro-Cocheiro, uma concentração de nuvens moleculares nas constelações de Touro e Cocheiro que abrigam berçários estelares com milhares de estrelas infantis. As estrelas jovens formam-se a partir do colapso gravitacional de gás e poeira no interior destas nuvens. As estrelas muito jovens, ao contrário do nosso Sol comparativamente maduro, ainda estão rodeadas por um disco giratório de detritos, incluindo gás, poeira e aglomerados de material que variam em tamanho, desde pequenos grãos de poeira a pedregulhos, e possivelmente até planetas bebés.

“Se tivermos em consideração o nosso Sistema Solar, temos planetas e não um disco enorme em redor do Sol,” explica Guenther. “Estes discos duram talvez 5 a 10 milhões de anos e, em Touro, há muitas estrelas que já perderam o seu disco, mas algumas ainda o têm. Se quisermos saber o que acontece nos estágios finais da dispersão deste disco, Touro é um dos locais onde os podemos encontrar.”

Guenther e colegas focam-se em estrelas jovens o suficiente para ainda hospedar discos. Estava particularmente interessado em RW Aur A, que está no limite mais antigo da faixa etária das estrelas jovens, pois estima-se que tenha vários milhões de anos. RW Aur A faz parte de um sistema duplo, o que significa que orbita outra estrela jovem, RW Aur B. Ambas as estrelas têm aproximadamente a mesma massa que o Sol.

Desde 1937 que os astrónomos têm registado quedas notáveis no brilho de RW Aur A a cada poucas décadas. Cada evento de escurecimento parecia durar mais ou menos um mês. Em 2011, a estrela diminui novamente de brilho, desta vez durante aproximadamente meio ano. A estrela eventualmente aumentou de brilho, só para desvanecer outra vez em meados de 2014. Em Novembro de 2016, a estrela retornou à sua plena luminosidade.

Os astrónomos propuseram que este escurecimento é provocado por um fluxo passageiro de gás na orla externa do disco da estrela. Outros ainda teorizaram que a queda de brilho se deve a processos que ocorrem mais perto do centro da estrela.

“Nós queríamos estudar o material que cobre a estrela, que de alguma forma está provavelmente relacionado com o disco,” realça Guenther. “É uma oportunidade rara.”

Uma assinatura de ferro

Em Janeiro de 2017, RW Aur A diminui novamente de brilho e a equipa usou o Observatório de raios-X Chandra da NASA para registar a emissão de raios-X da estrela.

“Os raios-X vêm da estrela e o espectro de raios-X muda à medida que passa pelo gás no disco,” explica Guenther. “Estamos à procura de certas assinaturas que o gás imprime no espectro de raios-X.”

No total, o Chandra quase 14 horas de dados de raios-X da estrela. Depois de os analisarem, os cientistas obtiveram várias revelações surpreendentes: o disco da estrela hospeda uma grande quantidade de material; a estrela é muito mais quente do que o esperado; e o disco contém muito mais ferro do que o esperado – não tanto ferro como na Terra, mas mais do que, digamos, uma típica lua no nosso Sistema Solar (a nossa Lua, no entanto, tem muito mais ferro do que os cientistas estimaram no disco da estrela).

Este último ponto foi o mais intrigante para a equipa. Normalmente, um espectro de raios-X de uma estrela pode mostrar vários elementos, como o oxigénio, ferro, silício e magnésio, e a quantidade de cada elemento presente depende da temperatura no interior do disco de uma estrela.

“Aqui, vemos muito mais ferro, pelo menos 10 vezes mais do que antes, o que é muito invulgar, porque normalmente as estrelas activas e quentes têm menos ferro do que as outras, ao passo que esta tem mais,” salienta Guenther. “De onde vem todo este ferro?”

Os investigadores especulam que este excesso de ferro pode ter vindo de duas possíveis fontes. A primeira é um fenómeno conhecido como armadilha de pressão de poeira, na qual pequenos grãos ou partículas como ferro podem ficar presas nas “zonas mortas” de um disco. Se a estrutura do disco mudar repentinamente, como quando a estrela parceira passar perto, as forças de maré resultantes podem libertar as partículas presas, formando um excesso de ferro que pode cair para a estrela.

A segunda teoria é, para Guenther, a mais convincente. Neste cenário, o excesso de ferro é criado quando dois planetesimais, ou corpos planetários infantis, colidem, libertando uma espessa nuvem de partículas. Se um ou ambos os planetas forem compostos parcialmente de ferro, a sua colisão pode expelir uma grande quantidade de ferro para o disco e obscurecer temporariamente a luz quando o material cai na estrela.

“Existem muitos processos que ocorrem em estrelas jovens, mas estes dois cenários podem possivelmente produzir algo que se parece com o que observámos,” explica Guenther.

Ele espera fazer, no futuro, mais observações da estrela, a fim de ver se a quantidade de ferro em redor da estrela mudou – uma medição que poderá ajudar os cientistas a determinar o tamanho da fonte de ferro. Por exemplo, se for detectada a mesma quantidade de ferro, digamos, daqui a um ano, isso pode indicar que o ferro vem de uma fonte relativamente massiva, como uma grande colisão planetária, ao invés da baixa abundância de ferro no disco.

“Actualmente fazem-se muitos esforços para aprender mais sobre exoplanetas e sobre a sua formação, de modo que é obviamente muito importante ver como os planetas jovens podem ser destruídos em interacções com as suas estrelas hospedeiras e com outros planetas, e quais os factores que determinam a sua sobrevivência,” conclui Guenther.

Astronomia On-line
20 de Julho de 2018

[vasaioqrcode]

[SlideDeck2 id=1476]

[powr-hit-counter id=9a3764aa_1532077011832]

See also Blog