3539: Sobre a origem das estrelas massivas

CIÊNCIA/ASTRONOMIA

Esta imagem mostra uma região do espaço chamada LHA 120-N 150. É uma subestrutura da gigantesca Nebulosa da Tarântula. Esta última é o maior berçário estelar conhecido do Universo Local. A nebulosa está situada a mais de 160.000 anos-luz de distância na Grande Nuvem de Magalhães, uma galáxia anã irregular vizinha que orbita a Via Láctea.
Crédito: ESA/Hubble, NASA, I. Stephens

Esta cena de criação estelar, capturada pelo Telescópio Espacial Hubble da NASA/ESA, fica perto dos arredores da famosa Nebulosa da Tarântula. Esta nuvem de gás e poeira, assim como as muitas estrelas jovens e massivas que a rodeiam, é o laboratório perfeito para estudar a origem das estrelas massivas.

A nuvem rosa brilhante e as jovens estrelas que a circundam nesta imagem captada com o Telescópio Espacial Hubble da NASA/ESA têm o nome pouco inspirador LHA 120-N 150. Esta região do espaço está localizada nos arredores da Nebulosa da Tarântula, que é o maior berçário estelar conhecido do Universo local. A nebulosa está situada a mais de 160.000 anos-luz de distância na Grande Nuvem de Magalhães, uma galáxia anã irregular vizinha que orbita a Via Láctea.

A Grande Nuvem de Magalhães teve um ou mais encontros próximos no passado, possivelmente com a Pequena Nuvem de Magalhães. Estas interações desencadearam um episódio de energética formação estelar na nossa pequena vizinha – parte do qual é visível como a Nebulosa da Tarântula.

Também conhecida como 30 Dourado ou NGC 2070, a Nebulosa da Tarântula deve o seu nome ao arranjo de manchas brilhantes que se assemelham às pernas de uma tarântula. Mede quase 1000 anos-luz de diâmetro. A sua proximidade, a inclinação favorável da Grande Nuvem de Magalhães e a ausência de poeira interveniente tornam a Nebulosa da Tarântula um dos melhores laboratórios para estudar a formação estelar, em particular estrelas massivas. Esta nebulosa tem uma concentração excepcionalmente alta de estrelas massivas, geralmente chamados de super-enxames de estrelas.

Os astrónomos estudaram LHA 120-N 150 para aprender mais sobre o ambiente no qual as estrelas massivas se formam. Os modelos teóricos da formação das estrelas massivas sugerem que se formam em aglomerados de estrelas; mas as observações indicam que até dez por cento delas também se formam isoladamente. A gigantesca Nebulosa da Tarântula, com as suas numerosas subestruturas, é o laboratório perfeito para resolver este puzzle, pois podem ser aí encontradas estrelas massivas tanto como membros de enxames como isoladamente.

Com a ajuda do Hubble, os astrónomos tentam descobrir se as estrelas isoladas visíveis na nebulosa realmente se formaram sozinhas ou simplesmente se afastaram das suas irmãs estelares. No entanto, este estudo não é uma tarefa fácil; estrelas jovens, antes de serem totalmente formadas – especialmente as massivas – parecem muito semelhantes a densos nós de poeira.

LHA 120-N 150 contém várias dúzias destes objectos. São uma mistura de fontes não classificadas – provavelmente alguns objectos estelares jovens e provavelmente outros amontoados de poeira. Somente as análises e observações detalhadas vão revelar a sua verdadeira natureza e isso ajudará a finalmente resolver a questão ainda sem resposta da origem das estrelas massivas.

O Hubble já observou a Nebulosa da Tarântula e as suas subestruturas no passado – sempre se interessando pela formação e evolução das estrelas.

Astronomia On-line
7 de Abril de 2020

 

spacenews

 

687: Estrelas massivas podem obrigar-nos a rever toda a história do Universo

ESO/IDA/Danish 1.5 m/R. Gendler, C. C. Thöne, C. Féron, and J.-E. Ovaldsen
A assustadora Nebulosa de Tarântula, ou NGC 2070, uma das galáxias mais próximas de nós

Para entender os padrões que deram forma às galáxias, é necessário estudar estrelas. Ao estudá-las, astrónomos e cientistas conseguem analisar as suas massas, nascimentos e mortes para melhor compreender a história do universo.

O Observatório Europeu do Sul acaba de anunciar que um grupo de astrónomos descobriu que tanto as galáxias do universo primordial como uma galáxia próxima contêm uma proporção de estrelas massivas muito maior do que as encontrada em galáxias até então.

“Encontrámos cerca de 30% mais estrelas com massas maiores que trinta vezes a massa do Sol. Encontramos também 70% mais de estrelas com mais de 60 massas solares”, explicou Fabian Schneider, da Universidade de Oxford, na Inglaterra.

“Os nossos resultados desafiam a ideia anterior que previa um limite de 150 massas solares para a maior massa de nascimento e as conclusões até sugerem que estrelas podem ter massas iniciais de 300 massas solares!”.

As descobertas, realizadas por dois grupos de astrónomos independentes, foram publicadas em dois artigos científicos nas revistas científicas Science em Janeiro e na Nature em Junho, e podem mudar completamente as ideias actuais sobre a forma como as galáxias evoluíram.

Uma das equipas de investigação foi liderada por Schneider, que usou o Very Large Telescope do ESO para observar quase 1.000 estrelas em 30 Doradus, conhecida como a Nebulosa da Tarântula – uma região formadora de estrelas na Grande Nuvem de Magalhães, uma pequena galáxia satélite para a nossa Via Láctea

A outra equipa, liderada pelo astrónomo Zhi-Yu Zhang da Universidade de Edimburgo, recorreu ao ALMA, Atacama Large Millimeter/submillimeter Array, para investigar a proporção de estrelas massivas em 4 galáxias distintas e cheias de poeira. 

“Estas descobertas levam-nos a questionar a nossa compreensão da história cósmica”, concluiu Rob Ivison, astrónomo da Universidade de Edimburgo.

ZAP // Hype Science / SciNews

Por HS
24 Junho, 2018

[vasaioqrcode]

[SlideDeck2 id=1476]

[powr-hit-counter id=f7126031_1529850554196]

603: A assustadora Nebulosa de Tarântula foi captada em todo o seu esplendor

ESO/IDA/Danish 1.5 m/R. Gendler, C. C. Thöne, C. Féron, and J.-E. Ovaldsen
A assustadora Nebulosa de Tarântula, ou NGC 2070, uma das galáxias mais próximas de nós

Um grupo de astrónomos europeus obteve a imagem mais nítida até agora da Nebulosa de Tarântula – uma paisagem cósmica repleta de aglomerados de estrelas, nuvens brilhantes de gás e vestígios de um super-nova na Grande Nuvem de Magalhães, a 160 mil anos luz de distância do planeta Terra.

Segundo informou esta quarta-feira em comunicado o Observatório Europeu do Sul, ESO, o telescópio de rastreamento VST, instalado no Cerro Paranal, no deserto do Atacama, no Chile, conseguiu captar com grande detalhe a Nebulosa de Tarântula, que representa a região estelar mais brilhante e energética das 50 galáxias mais próximas da Via Láctea, o chamado Grupo Local.

A imagem permite definir o formato da Tarântula, uma formação estelar que se estende por mais de 1000 anos de luz dentro da Grande Nuvem de Magalhães, uma das galáxias mais próximas da Via Láctea, e que tem como centro o gigantesco e jovem aglomerado estelar NGC 2070.

O astrónomo francês Nicolas Louis de Lacaille foi o primeiro a registar o brilhante esplendor da Nebulosa de Tarântula, em 1751, da qual agora podem ser mapeados elementos como o NGC 2070, que dá nome a uma região que contém algumas das estrelas mais massivas e luminosas detectadas desde sempre.

Parte desta nebulosa é o chamado “Cavalo Marinho“, uma “gigantesca estrutura de poeira escura” com uma extensão de aproximadamente 20 anos luz, que os astrónomos preveem que desaparecerá no próximo milhão de anos como consequência da luz e dos ventos emitidos por estrelas em formação.

O telescópio conseguiu mapear também o antigo aglomerado de estrelas Hodge 301, onde se calcula que pelo menos 40 estrelas tenham explodido como super-novas, libertando grande quantidade de gás na região.

Outros elementos captados na imagem são a super-bolha SNR N157B, um remanescente de super-nova, e a famosa SN 1987A, a primeira super-nova captada com telescópios modernos, em 1987, uma das mais brilhantes desde a super-nova observada por Johannes Kepler em 1604, que brilhou com a potência de 100 milhões de sóis durante meses.

A captação desta imagem tão nítida foi possível através do uso de uma câmara OmegaCAM de 256 megapixels, com a ajuda de diversos filtros, entre os quais um filtro concebido com o objectivo de isolar o brilho vermelho do hidrogénio ionizado.

ZAP // EFE

Por ZAP
1 Junho, 2018

[vasaioqrcode]

[SlideDeck2 id=1476]

[powr-hit-counter id=a651e8f3_1527890047073]