2502: Exoplaneta rochoso e do tamanho da Terra não tem atmosfera

Esta impressão de artista mostra o exoplaneta LHS 3844b, com 1,3 vezes a massa da Terra e em órbita de uma estrela anã M. De acordo com observações pelo Telescópio Espacial Spitzer da NASA, a superfície do planeta pode estar coberta sobretudo por rocha vulcânica escura, sem nenhuma atmosfera aparente.
Crédito: NASA/JPL-Caltech/R. Hurt (IPAC)

Um novo estudo usando dados do Telescópio Espacial Spitzer da NASA fornece um raro vislumbre das condições à superfície de um planeta rochoso que orbita uma outra estrela que não o Sol. O estudo, publicado esta semana na revista Nature, mostra que a superfície do planeta poderá ser semelhante à da Lua ou à de Mercúrio: o planeta provavelmente tem pouca ou nenhuma atmosfera e pode estar coberto pelo mesmo material vulcânico refrigerado encontrado nas áreas escuras da superfície da Lua, chamadas mares.

Descoberto em 2018 pela missão TESS (Transiting Exoplanet Satellite Survey) da NASA, o planeta LHS 3844b está localizado a 48,6 anos-luz da Terra e tem 1,3 vezes o raio da Terra. Orbita uma estrela pequena e fria, chamada anã M – especialmente interessante porque, dado que é o tipo estelar mais comum e duradouro da Via Láctea, as anãs M podem albergar uma alta percentagem do número total de planetas da nossa Galáxia.

O TESS encontrou o planeta através do método de trânsito, que envolve a detecção de quando a luz observada de uma estrela-mãe escurece por causa de um planeta que orbita entre a estrela e a Terra. A detecção da luz vinda directamente da superfície do planeta – outro método – é difícil porque a estrela é muito mais brilhante e abafa a luz do planeta.

Mas durante observações de acompanhamento, o Spitzer foi capaz de detectar a luz da superfície de LHS 3844b. O planeta completa uma órbita em torno da sua estrela hospedeira em apenas 11 horas. Com uma órbita tão íntima, LHS 3844b tem muito provavelmente “bloqueio de marés”, ou seja, um lado do planeta está permanentemente virado para a estrela. O lado diurno tem uma temperatura de aproximadamente 170º C. Sendo extremamente quente, o planeta irradia muita luz infravermelha e o Spitzer é um telescópio infravermelho. A estrela-mãe do planeta é relativamente fria (embora ainda seja muito mais quente do que o planeta), o que faz com que a observação directa do lado diurno de LHS 3844b seja possível.

Esta observação assinala a primeira vez que os dados do Spitzer foram capazes de fornecer informações sobre a atmosfera de um mundo terrestre em torno de uma anã M.

A busca pela vida

Ao medir as diferenças de temperatura entre o lado quente e o lado frio do planeta, a equipa descobriu que existe uma quantidade insignificante de calor sendo transferido entre os dois. Se existisse uma atmosfera, o ar quente do lado diurno expandir-se-ia naturalmente, produzindo ventos que transferiam calor em redor do planeta. Num mundo rochoso com pouca ou nenhuma atmosfera, como a Lua, não existe ar para transferir calor.

“O contraste de temperatura neste planeta é quase tão grande quanto possível,” disse Laura Kreidberg, investigadora do Centro Harvard-Smithsonian para Astrofísica em Cambridge, no estado norte-americano de Massachusetts, autora principal do novo estudo. “Isto combina maravilhosamente com o nosso modelo de um planeta rochoso sem atmosfera.”

A compreensão dos factores que podem preservar ou destruir atmosferas planetárias é parte de como os cientistas planeiam procurar ambientes habitáveis para lá do nosso Sistema Solar. A atmosfera da Terra é a razão pela qual a água líquida pode existir à superfície, permitindo que a vida prospere. Por outro lado, a pressão atmosférica de Marte é agora inferior a 1% da da Terra e os oceanos e rios que outrora polvilharam a superfície do Planeta Vermelho desapareceram.

“Nós temos muitas teorias sobre o comportamento das atmosferas planetárias em torno de anãs M, mas não temos conseguido estudá-las empiricamente,” disse Kreidberg. “Agora, com LHS 3844b, temos um planeta terrestre fora do nosso Sistema Solar onde, pela primeira vez, podemos determinar observacionalmente que uma atmosfera não está presente.”

Em comparação com estrelas parecidas com o Sol, as anãs M emitem altos níveis de radiação ultravioleta (embora menos luz no geral), o que é prejudicial à vida e pode erodir a atmosfera de um planeta. São particularmente violentas na sua juventude, expelindo um grande número de proeminências, ou surtos de radiação e partículas que podem arrancar as atmosferas planetárias em desenvolvimento.

As observações do Spitzer descartam uma atmosfera com mais de 10 vezes a pressão da da Terra (medida em bares, a pressão atmosférica da Terra, ao nível do mar, ronda 1 bar). Uma atmosfera entre 1 e 10 bares, em LHS 3844b, foi também quase totalmente descartada, embora os autores notem que poderá haver uma pequena chance de existir caso algumas propriedades estelares e planetárias satisfaçam determinados critérios muito específicos e improváveis. Eles também argumentam que, com o planeta tão perto da estrela, uma atmosfera fina seria arrancada pela intensa radiação e pelo fluxo da estrela (frequentemente chamado “vento estelar”).

“Ainda estou esperançosa que outros planetas em torno de anãs M consigam segurar as suas atmosferas,” disse Kreidberg. “Os planetas terrestres no nosso Sistema Solar são extremamente diversos e espero que o mesmo seja verdadeiro para os sistemas exoplanetários.”

Uma rocha despida

O Spitzer e o Telescópio Espacial Hubble já reuniram informações sobre as atmosferas de vários planetas gasosos, mas LHS 3844b parece ser o mais pequeno para o qual os cientistas usaram a luz vinda da sua superfície para aprender mais sobre a sua atmosfera (ou falta dela). O Spitzer usou anteriormente o método de trânsito para estudar os sete mundos rochosos em torno da estrela TRAPPIST-1 (também uma anã M) e para aprender mais sobre a sua possível composição geral; por exemplo, alguns provavelmente contêm água gelada.

Os autores do novo estudo deram um passo em frente, usando o albedo da superfície de LHS 3844b (a sua reflectividade) para tentar inferir a sua composição.

O estudo publicado na Nature mostra que LHS 3844b é “bastante escuro”, de acordo com o co-autor Renyu Hu, cientista do JPL da NASA em Pasadena, no estado norte-americano da Califórnia, que administra o Telescópio Espacial Spitzer. Ele e os seus co-autores pensam que o planeta está coberto por basalto, um tipo de rocha vulcânica. “Sabemos que os mares da Lua são formados por vulcanismo antigo,” explicou Hu, “e postulamos que isso pode ter sido o que aconteceu neste planeta.”

Astronomia On-line
23 de Agosto de 2019

 

2390: Missão TESS completa primeiro ano de observações, vira-se para o céu do hemisfério norte

Ilustração de L 98-59b, o exoplaneta mais pequeno descoberto pelo TESS da NASA.
Crédito: Centro de Voo Espacial Goddard da NASA/Ravyn Cullor

O satélite TESS (Transiting Exoplanet Survey Satellite) da NASA descobriu 21 planetas para lá do nosso Sistema Solar e capturou dados sobre outros eventos interessantes ocorridos no céu do hemisfério sul durante o seu primeiro ano de ciência. O TESS voltou agora a sua atenção para o hemisfério norte para completar a mais abrangente expedição de caça exoplanetária já realizada.

O TESS começou a caçar exoplanetas (ou mundos em órbita de estrelas distantes) no céu do hemisfério sul em Julho de 2018, enquanto também recolhia dados sobre super-novas, buracos negros e outros fenómenos na sua linha de visão. Juntamente com os planetas descobertos pelo TESS, a missão já identificou mais de 850 candidatos a exoplaneta que aguardam confirmação por telescópios terrestres.

“O ritmo e a produtividade do TESS, no seu primeiro ano de operações, ultrapassaram em muito as nossas esperanças mais optimistas para a missão,” disse George Ricker, investigador principal do TESS no Instituto de Tecnologia de Massachusetts, em Cambridge, EUA. “Além de encontrar um conjunto diversificado de exoplanetas, o TESS também descobriu um tesouro de fenómenos astrofísicos, incluindo milhares de violentos objectos estelares variáveis.”

Para procurar exoplanetas, o TESS usa quatro grandes câmaras para observar uma secção de 24 por 96 graus no céu durante 27 dias de cada vez. Algumas destas secções sobrepõem-se, de modo que algumas partes do céu são observadas durante quase um ano. O TESS está a concentrar-se em estrelas a menos de 300 anos-luz do nosso Sistema Solar, procurando trânsitos, quedas periódicas no brilho provocado por um objecto, como um planeta, passando em frente à estrela.

No dia 18 de Julho, foi concluída a porção sul da pesquisa e a nave virou as suas câmaras para o norte. Quando completar a secção norte em 2020, o TESS terá mapeado mais de três-quartos do céu.

“O Kepler descobriu o incrível resultado que, em média, cada sistema estelar tem um planeta ou planetas em seu redor,” disse Padi Boyd, cientista do projecto TESS no Centro de Voo Espacial Goddard da NASA em Greenbelt, no estado norte-americano de Maryland. “O TESS dá o próximo passo. Se os planetas estão em toda a parte, então queremos encontrar aqueles que orbitam estrelas próximas e brilhantes, porque serão esses os que podemos agora acompanhar com telescópios terrestres e espaciais existentes, e a próxima geração de instrumentos durante as décadas seguintes.”

Aqui ficam alguns dos objectos e eventos interessantes que o TESS viu durante o seu primeiro ano.

Exoplanetas

Para se qualificar como um candidato a exoplaneta, um objecto deve fazer pelo menos três trânsitos nos dados do TESS, e passar por várias verificações adicionais para garantir que os trânsitos não são falsos positivos provocados por um eclipse ou por uma estrela companheira, mas que são, de factos, exoplanetas. Uma vez identificado um candidato, os astrónomos utilizam uma grande rede de telescópios terrestres para o confirmar.

“A equipa está focada actualmente em encontrar os melhores candidatos para confirmar por meio de acompanhamento no solo,” disse Natalia Guerrero, que administra a equipa encarregada de identificar candidatos a exoplanetas no MIT. “Mas há muitos mais candidatos potenciais a exoplaneta nos dados ainda a serem analisados, por isso estamos apenas a ver aqui a ponta do icebergue. O TESS apenas arranhou a superfície.”

Os planetas que o TESS descobriu até agora variam de um mundo com 80% do tamanho da Terra até aqueles comparáveis ou superiores aos tamanhos de Júpiter e Saturno. Tal como o Kepler, o TESS está a encontrar muitos planetas mais pequenos do que Neptuno, mas maiores do que a Terra.

Enquanto a NASA se esforça para colocar astronautas em alguns dos nossos vizinhos mais próximos – a Lua e Marte – a fim de entender mais sobre os planetas do nosso próprio Sistema Solar, observações posteriores com telescópios poderosos dos planetas que o TESS descobre vão permitir-nos entender melhor como a Terra e o Sistema Solar se formaram.

Com os dados do TESS, os cientistas que usam observatórios actuais e futuros, como o Telescópio Espacial James Webb, poderão estudar outros aspectos dos exoplanetas, como a presença e a composição de qualquer atmosfera, que afectaria a possibilidade de desenvolvimento da vida.

Cometas

Antes do início das operações científicas, o TESS captou imagens nítidas de um cometa recém-descoberto no nosso Sistema Solar. Durante um teste dos instrumentos em órbita, as câmaras do satélite obtiveram uma série de imagens que capturaram o movimento de C/2018 N1, um cometa descoberto no dia 29 de Junho pela NEOWISE (Near-Earth Object Wide-field Infrared Survey Explorer) da NASA.

O TESS também capturou dados de objectos semelhantes para lá do Sistema Solar.

Exocometas

Os dados da missão também foram usados para identificar trânsitos de cometas em órbita de outra estrela: Beta Pictoris, localizada a 63 anos-luz de distância. Os astrónomos conseguiram encontrar três cometas que eram pequenos demais para serem planetas e tinham caudas detectáveis, a primeira identificação do seu tipo no visível.

Super-novas

Dado que o TESS passa quase um mês a observar na mesma direcção, pode capturar dados sobre eventos estelares, como super-novas. Durante os seus primeiros meses de operações científicas, o TESS identificou seis super-novas em galáxias distantes que foram posteriormente descobertas por telescópios terrestres.

Os cientistas esperam usar estes tipos de observações para melhor entender as origens de um tipo específico de explosão conhecida como super-nova do Tipo Ia.

As super-novas do Tipo Ia ocorrem em sistemas estelares onde uma anã branca extrai gás de outra estrela ou quando duas anãs brancas se fundem. Os astrónomos não sabem qual dos dois casos é o mais comum mas, com os dados do TESS, terão uma compreensão mais clara das origens destas explosões cósmicas.

As super-novas do Tipo Ia pertencem a uma classe de objectos chamada “vela padrão”, o que significa que os astrónomos sabem quão luminosas são e podem usá-las para calcular parâmetros como a rapidez com que o Universo está a expandir-se. Os dados do TESS vão ajudar a compreender as diferenças entre as super-novas do Tipo Ia criadas em ambas as circunstâncias, o que poderá ter um grande impacto sobre como entendemos os eventos que ocorrem a milhares de milhões de anos-luz e, em última análise, sobre o destino do Universo.

Astronomia On-line
30 de Julho de 2019

[vasaioqrcode]