3430: Descolagem do Solar Orbiter, a missão da ESA que olhará o Sol de frente

CIÊNCIA/ASTRONOMIA

Lançamento da missão Solar Orbiter da ESA/NASA, com o objectivo de estudar o Sol, a partir da Estação da Força Aérea de Cabo Canaveral, no estado norte-americano da Florida.
Crédito: Jared Frankie

A missão Solar Orbiter da ESA descolou num Atlas V 411, a partir do Cabo Canaveral, Florida, às 05:03 CET de 10 de Fevereiro, na sua missão de estudar o Sol sob novas perspectivas.

Os sinais da aeronave foram recebidos na estação terrestre New Norcia às 06:00 CET, após a separação do estágio superior do lançador em baixa órbita terrestre.

De frente para o sol

A Solar Orbiter, uma missão liderada pela ESA com forte participação da NASA, fornecerá as primeiras imagens das regiões polares desconhecidas do Sol, fornecendo uma visão sem precedentes de como a nossa estrela-mãe funciona.

Investigará também como a radiação intensa e as partículas energéticas que são expelidas do Sol e transportadas pelo vento solar através do Sistema Solar afectam o nosso planeta natal, para melhor entender e prever períodos de “clima espacial” tempestuoso. As tempestades solares têm o potencial de derrubar redes eléctricas, interromper o tráfego aéreo e as telecomunicações e colocar em risco os astronautas que andam no espaço, por exemplo.

“Como seres humanos, sempre estivemos familiarizados com a importância do Sol para a vida na Terra, observando-o e investigando em detalhe como este funciona; mas também sabemos, há muito tempo, que tem o potencial de atrapalhar a vida quotidiana se estivermos na mira de uma poderosa tempestade solar”, afirma Günther Hasinger, Diretor de Ciências da ESA.

“No final da nossa missão Solar Orbiter, saberemos mais do que nunca sobre a força oculta responsável pelas mudanças de comportamento do Sol e a sua influência no nosso planeta natal.”

“O Solar Orbiter fará coisas incríveis. Combinado com as outras missões da NASA recentemente lançadas para estudar o Sol, estamos a adquirir novos conhecimentos sem precedentes sobre a nossa estrela,” disse Thomas Zurbuchen, administrador associado de Ciências da NASA na sede da agência em Washington DC.

“Juntamente com os nossos parceiros europeus, estamos a entrar numa nova era da heliofísica que transformará o estudo do Sol e ajudará a tornar os astronautas mais seguros enquanto viajam nas missões do programa Artemis até a Lua.”

No ponto mais próximo, o Solar Orbiter enfrentará o Sol dentro da órbita de Mercúrio, a aproximadamente 42 milhões de quilómetros da superfície solar. A tecnologia de ponta do escudo de calor garantirá que os instrumentos científicos da aeronave estejam protegidos, já que o escudo de calor suportará temperaturas de até 500ºC – até 13 vezes o calor experienciado pelos satélites na órbita da Terra.

“Após cerca de vinte anos desde o início, seis anos de construção e mais de um ano de testes, juntamente com os nossos parceiros industriais, estabelecemos novas tecnologias de alta temperatura e concluímos o desafio de construir uma aeronave pronta para enfrentar o Sol e estudá-lo de perto”, acrescenta César García Marirrodriga, Director de Projectos do Solar Orbiter da ESA.

Novas perspectivas sobre a nossa estrela-mãe

O Solar Orbiter levará pouco menos de dois anos para alcançar a sua órbita operacional inicial, usando sobrevoos com auxílio da gravidade da Terra e Vénus para entrar numa órbita altamente elíptica ao redor do Sol. O satélite usará a gravidade de Vénus para lançar-se fora do plano eclíptico do Sistema Solar, que abriga as órbitas planetárias, e aumentará a inclinação da sua órbita para nos dar novas imagens, até agora desconhecidas, das regiões polares da nossa estrela-mãe.

Os pólos estão fora do campo de visão da Terra e de outras naves espaciais, mas os cientistas pensam que são essenciais para entender a actividade do Sol. Ao longo da sua missão, projectada para cinco anos, o Solar Orbiter alcançará uma inclinação de 17º acima e abaixo do equador solar. A missão estendida proposta alcançaria 33º de inclinação.

“Operar um satélite nas proximidades do Sol é um enorme desafio,” diz Sylvain Lodiot, Director de Operações do Solar Orbiter da ESA.

“A nossa equipa terá de garantir a pontaria contínua e precisa do campo de protecção para evitar possíveis danos causados pela radiação e pelo fluxo térmico do Sol. Ao mesmo tempo, teremos de garantir uma resposta rápida e flexível às solicitações dos cientistas para adaptar as operações dos seus instrumentos de acordo com as observações mais recentes da superfície solar.”

O Solar Orbiter usará uma combinação de 10 instrumentos in situ e de deteção remota para observar a superfície solar turbulenta, a atmosfera externa quente do Sol e as mudanças no vento solar. As cargas úteis de detecção remota concretizarão imagens de alta resolução da atmosfera do Sol – a coroa – e também do disco solar. Os instrumentos in situ medirão o vento solar e o campo magnético solar nas proximidades do satélite.

“A combinação de instrumentos de detecção remota, que olham para o Sol e medições in situ, que sentem o seu poder, permitir-nos-ão juntar os pontos entre o que vemos no Sol e o que experienciamos enquanto absorvemos o vento solar”, diz Daniel Müller, Cientista do Projecto Solar Orbiter da ESA.

“Isto fornecerá informações sem precedentes sobre como a nossa estrela-mãe trabalha em termos do seu ciclo de actividade solar de 11 anos e como o Sol cria e controla a bolha magnética – a heliosfera – na qual o nosso planeta reside.”

Somos todos satélites solares

O Solar Orbiter será uma das duas naves complementares que estudam o Sol nas proximidades: juntar-se-á à sonda Parker Solar da NASA, que já está ocupada na sua missão.

O Solar Orbiter e a sonda Parker Solar têm objetivos diferentes, se complementares, e foram projetados e colocados numa órbita única para atingir os seus objetivos diferentes, se complementares. A sonda Parker Solar ‘toca’ a nossa estrela a distâncias muito mais próximas que o Solar Orbiter, para estudar como o vento solar se origina – mas não possui câmaras para ver o Sol diretamente; enquanto o Solar Orbiter voa a uma distância ideal para alcançar uma perspectiva abrangente da nossa estrela, incluindo imagens remotas e medições in situ e visualizará, pela primeira vez, as regiões polares do Sol.

Além de atingir os seus próprios objectivos científicos, o Solar Orbiter fornecerá informações contextuais para melhorar o entendimento das medições da sonda Parker Solar. Ao trabalharem juntas dessa maneira, as duas aeronaves colectarão conjuntos de dados complementares que permitirão que mais ciência seja destilada das duas missões do que estas poderiam gerir por conta própria.

“O Solar Orbiter é a mais nova adição ao Observatório do Sistema Heliofísico da NASA, juntando-se à sonda Parker Solar numa aventura extraordinária para desvendar os maiores mistérios do Sol e da sua atmosfera alargada,” diz Holly Gilbert, Cientista do Projecto Solar Orbiter da NASA.

“A poderosa combinação destas duas missões e os seus impressionantes avanços tecnológicos impulsionarão o nosso conhecimento para novos patamares.

O Solar Orbiter baseia-se no legado de missões, tais como o Ulysses e o Observatório Solar e Heliofísico (SOHO) da ESA/NASA, para nos dar a visão mais avançada da nossa estrela e a sua influência na Terra.

Astronomia On-line
11 de Fevereiro de 2020

 

spacenews

 

3373: Portuguesa Zita Martins participa em missão espacial inédita que vai interceptar cometa primitivo

CIÊNCIA

Uma missão espacial europeia, com a participação da astro-bióloga portuguesa Zita Martins, vai procurar interceptar pela primeira vez um cometa primitivo, inalterado pela radiação do Sol, para obter respostas sobre a origem da vida na Terra.

© Orlando Almeida / Global Imagens

A missão da Agência Espacial Europeia (ESA) “Comet Interceptor” (Interceptor de Cometa, em tradução livre) tem lançamento previsto para 2028 e será a primeira a recolher informação sobre um cometa que nunca se aproximou do Sol e, por isso, se manteve inalterado desde a sua formação.

“Apanhar” tais cometas tem sido difícil, uma vez que só podem ser detectados quando se aproximam do Sol pela primeira vez, deixando pouco tempo para planear e enviar uma missão espacial na sua direcção.

A missão “Comet Interceptor”, que conta com a colaboração da agência espacial japonesa (JAXA), vai colocar uma sonda a 1,5 milhões de quilómetros da Terra, na direcção contrária ao Sol.

Em conjunto com telescópios terrestres, um deles a ser construído no Chile, o aparelho irá permitir detectar um cometa proveniente da Nuvem de Oort, região nos confins do Sistema Solar, e eventualmente corpos interestelares que entraram no Sistema Solar pela primeira vez e estão na trajectória de aproximação ao Sol.

Assim posicionada, a sonda, a principal, será um “ponto de espera” a um desses cometas, disse à Lusa Zita Martins, especialista no estudo da origem da vida na Terra e a única cientista portuguesa que integra a equipa internacional que vai analisar os dados recolhidos na missão.

Depois de identificar o cometa até então desconhecido, a sonda viajará durante meses ou anos pelo espaço para estar no sítio e no momento certos para interceptar o cometa quando este cruzar o plano da elíptica, o plano da órbita da Terra em relação ao Sol.

Duas sondas mais pequenas serão libertadas da sonda principal antes de se aproximarem do cometa. São estes dois aparelhos que vão circundar o cometa e recolher o máximo de informação possível, incluindo sobre a composição da sua superfície, a forma e estrutura.

Todos os dados obtidos serão transmitidos para telescópios terrestres através da sonda principal com a qual comunicam.

Para Zita Martins, professora no Instituto Superior Técnico, em Lisboa, interceptar um cometa primitivo é como entrar na “máquina do tempo”, uma vez que possibilitará desvendar quais “as moléculas orgânicas” disponíveis no início da formação do Sistema Solar e, assim, dar pistas mais concretas sobre a origem da vida na Terra.

Os cometas, vulgarmente descritos como “bolas de gelo sujas”, têm na sua composição, além de gelo, poeira, fragmentos rochosos, gás e compostos orgânicos (estes últimos terão chegado à Terra fruto do impacto dos cometas na superfície terrestre).

Missões espaciais anteriores estudaram cometas que entraram várias vezes no Sistema Solar e passaram perto do Sol, que produziu alterações na sua superfície, escondendo a sua aparência original.

A sonda europeia Rosetta orbitou durante dois anos, entre 2014 e 2016, o cometa 67P/Churyumov-Gerasimenko, que viaja entre as órbitas da Terra e de Júpiter. Foi a primeira vez que uma sonda orbitou um cometa e teve um módulo robótico na sua superfície.

A missão “Comet Interceptor” será lançada à boleia de uma outra, a Ariel, também da ESA, que vai estudar a composição química da atmosfera de exoplanetas (planetas fora do Sistema Solar) já descobertos e que conta também com a participação de cientistas portuguesas.

Diário de Notícias

DN/Lusa

spacenews