2718: Encontrados três buracos negros em rota de colisão

CIÊNCIA

Um trio de buracos negros localizados a mil milhões de anos-luz da Terra.
Crédito: raios-X – NASA/CXC/Universidade George Mason/R. Pfeifle et al.; ótico – SDSS & NASA/STScI

Os astrónomos descobriram três buracos negros gigantes numa colisão titânica de três galáxias. O sistema invulgar foi capturado por vários observatórios, incluindo três telescópios espaciais da NASA.

“Estávamos na altura apenas à procura de pares de buracos negros e, ainda assim, através da nossa técnica de selecção, deparámo-nos com este sistema incrível,” disse Ryan Pfeifle, da Universidade George Mason, em Fairfax, no estado norte-americano da Virgínia, primeiro autor de um novo artigo publicado na revista The Astrophysical Journal que descreve estes resultados. “Esta é a evidência mais forte já encontrada de um sistema triplo de buracos negros super-massivos activos.”

O sistema é conhecido como SDSS J084905.51+111447.2 (ou, abreviando, SDSS J0849+1114) e está localizado a mil milhões de anos-luz da Terra.

Para descobrir este grupo raro, os investigadores precisaram de combinar dados de telescópios no solo e no espaço. Primeiro, o telescópio SDSS (Sloan Digital Sky Survey), que varre grandes faixas do céu no visível, situado no estado norte-americano do Novo México, fotografou SDSS J0849+1114. Com a ajuda de cientistas cidadãos que participam num projecto chamado Galaxy Zoo, foi rotulado como um sistema de galáxias em colisão.

Então, dados da missão WISE (Wide-field Infrared Survey Explorer) da NASA revelaram que o sistema brilhava intensamente no infravermelho durante uma fase na fusão galáctica em que se espera que mais do que um dos buracos negros estivesse a alimentar-se rapidamente. Para acompanhar estas pistas, os astrónomos voltaram-se para o Chandra e para o LBT (Large Binocular Telescope) no Arizona.

Os dados do Chandra revelaram fontes de raios-X – um sinal revelador de material a ser consumido pelos buracos negros – nos centros brilhantes de cada galáxia em fusão, exactamente onde os cientistas esperam que os buracos negros super-massivos residam. O Chandra e o NusTAR (Nuclear Spectroscopic Telescope Array) da NASA também encontraram evidências de grandes quantidades de gás e poeira em torno de um dos buracos negros, típico de um sistema de buracos negros em fusão.

Entretanto, dados no visível do SDSS e do LBT mostraram assinaturas espectrais características de material sendo consumido pelos três buracos negros super-massivos.

“Os espectros ópticos contêm muitas informações sobre uma galáxia”, disse a co-autora Christina Manzano-King da Universidade da Califórnia, em Riverside. “São usados frequentemente para identificar buracos negros super-massivos em acreção activa e podem reflectir o impacto que têm nas galáxias que habitam.”

Uma das razões pelas quais é difícil encontrar um trio de buracos negros super-massivos é que provavelmente estão envoltos em gás e poeira, bloqueando grande parte da sua luz. As imagens infravermelhas do WISE, os espectros infravermelhos do LBT e as imagens de raios-X do Chandra ignoram este problema, porque a luz infravermelha e os raios-X penetram nuvens de gás com muito mais facilidade do que a luz óptica.

“Com a utilização destes importantes observatórios, descobrimos uma nova maneira de identificar buracos negros super-massivos triplos. Cada telescópio dá-nos uma pista diferente do que está a acontecer nestes sistemas,” disse Pfeifle. “Esperamos ampliar o nosso trabalho para encontrar mais triplos usando a mesma técnica.”

“Os buracos negros duplos e triplos são extremamente raros,” disse Shobita Satyapal, também da Universidade George Mason, “mas estes sistemas são na verdade uma consequência natural das fusões galácticas, que pensamos ser como as galáxias crescem e evoluem.”

Três buracos negros super-massivos em fusão comportam-se de maneira diferente de apenas um par. Quando existem três buracos negros em interacção, um par deve fundir-se num buraco negro maior muito mais depressa do que se os dois estivessem sozinhos. Esta pode ser uma solução para um enigma teórico chamado “problema do parsec final”, no qual dois buracos negros super-massivos podem aproximar-se alguns anos-luz um do outro, mas precisariam de uma força extra para se fundirem devido ao excesso de energia que transportam nas suas órbitas. A influência de um terceiro buraco negro, como em SDSS J0849+1114, poderá finalmente reuni-los.

Simulações de computador mostraram que 16% dos pares de buracos negros super-massivos em galáxias em colisão terão interagido com um terceiro buraco negro super-massivo antes de se fundirem. Tais fusões terão produzido ondulações no espaço-tempo chamadas ondas gravitacionais. Estas ondas terão frequências mais baixas do que o LIGO (Laser Interferometer Gravitational-Wave Observatory) da NSF e o detector europeu de ondas gravitacionais Virgo podem detectar. No entanto, podem ser detectáveis com observações rádio de pulsares, bem como com observatórios espaciais futuros, como o LISA (Laser Interferometer Space Antenna) da ESA, que detectará buracos negros com até um milhão de massas solares.

Astronomia On-line
27 de Setembro de 2019

 

2584: Elemento químico potássio detectado em atmosfera exoplanetária

CIÊNCIA

Impressão de artista de um Júpiter quente (direita) e da sua estrela fria hospedeira.
Crédito: AIP/Kristin Riebe

Desde as primeiras previsões teóricas, há 20 anos atrás, que se esperava que os elementos químicos potássio e sódio fossem detectáveis nas atmosferas de “Júpiteres quentes”, planetas gasosos com temperaturas na ordem dos milhares de graus Kelvin que orbitam perto de estrelas distantes. Enquanto o sódio foi detectado com observações de alta resolução bastante cedo, o potássio não o foi, o que criou um quebra-cabeças para a química e física atmosféricas.

Os elementos podem ser descobertos analisando o espectro de luz da estrela quando o planeta passa à sua frente, a partir do ponto de vista da Terra. Diferentes elementos provocam sinais de absorção específicos no espectro, linhas escuras que sugerem a composição química da atmosfera. No entanto, a presença de nuvens nas atmosferas dos Júpiteres quentes enfraquece fortemente qualquer característica de absorção espectral e, portanto, dificulta a sua detecção.

Até para HD 189733b, o Júpiter quente mais bem estudado, até agora os cientistas possuíam apenas um conhecimento muito vago e impreciso da absorção do potássio. O exoplaneta, situado a 64 anos-luz de distância e com aproximadamente o tamanho de Júpiter, orbita a sua estrela – uma anã com 0,8 vezes a massa do Sol – em 53 horas e está 30 vezes mais próxima da sua estrela do que a Terra do Sol.

Foi necessária a capacidade de captação de luz do LBT (Large Binocular Telescope) de 2×8,4 m e a alta resolução espectral do PEPSI (Potsdam Echelle Polarimetric and Spectroscopic Instrument) para medir, definitivamente, o potássio pela primeira vez em alta resolução nas camadas atmosféricas acima das nuvens.

Com estas novas medições, os cientistas podem agora comparar os sinais de absorção de potássio e sódio e, assim, aprender mais sobre processos como condensação ou fotoionização nessas atmosferas exoplanetárias.

A técnica aplicada neste estudo com o LBT é denominada espectroscopia de transmissão. Exige que o exoplaneta transite a estrela hospedeira. “Obtivemos uma série temporal de espectros de luz durante o trânsito e comparámos a profundidade de absorção,” disse o autor principal do estudo, Engin Keles, estudante de doutoramento do Instituto Leibniz para Astrofísica em Potsdam e do grupo de Física Estelar e Exoplanetas. “Durante o trânsito, detectámos a assinatura do potássio, que desapareceu antes e depois do trânsito como esperado, o que indica que a absorção é induzida pela atmosfera planetária.”

As investigações de outras equipas já tinham tentado detectar potássio no mesmo exoplaneta; no entanto, nada foi encontrado ou o que foi encontrado era muito fraco para ser estatisticamente significativo. Até agora, não havia uma detecção significativa de potássio em observações de alta resolução para qualquer exoplaneta.

“As nossas observações claramente conseguiram alcançar este feito,” enfatiza o co-líder do projecto, o Dr. Matthias Mallonn, vice-investigador principal do PEPSI, atrás do professor Klaus Strasseier: “O PEPSI está adequado para esta tarefa devido à sua alta resolução espectral que permite recolher mais fotões por pixel de linhas espectrais muito estreitas do que qualquer outra combinação telescópio-espectrógrafo.”

“Tanto como espectrógrafo quando espectropolarímetro, o PEPSI já fez contribuições significativas para a física estelar,” acrescenta Christian Veillet, Diretor do Observatório LBT. “Esta forte detecção de potássio na atmosfera de um exoplaneta estabelece o PEPSI como uma ferramenta incrível para a caracterização dos exoplanetas, bem como um recurso único para a comunidade do LBT.”

A equipa incluiu colegas da Dinamarca, Países Baixos, Suíça, Itália e Estados Unidos e apresentou os resultados na revista Monthly Notices of the Royal Astronomical Society.

Astronomia On-line
6 de Setembro de 2019