1122: Telescópio espacial Hubble avaria e aponta para direções erradas

O telescópio espacial Hubble sofreu uma avaria e começou a apontar para direcções erradas impossibilitando as observações aos cientistas

Telescópio Hubble
© Direitos reservados

A NASA já esperava que o telescópio Hubble, há 28 anos no espaço, tivesse alguma avaria este ano, mas foi surpreendida com uma falha súbita no aparelho de observação. O telescópio começou a apontar para direcções erradas e os cientistas ficaram impossibilitados de prosseguir com as observações do cosmos.

O Hubble já tinha tido problemas giratórios e em 2009, numa missão de manutenção, os astronautas da NASA substituíram três dos seus dispositivos. Kenneth Sembach, director do Instituto de Ciência do Telescópio Espacial, que opera o Hubble. citado pelo jornal britânico TheGuardian, admite: “O facto de termos alguns problemas de giroscópio, é uma longa tradição com o observatório”.

Giroscópios

Os giroscópios são necessários para manter o Hubble, que está a 540 quilómetros da Terra, a apontar na direcção certa durante as observações. Os astrónomos usam o telescópio para analisar profundamente o cosmos e descobrir sistemas solares distantes, bem como galáxias e buracos negros. Na semana passada foi, aliás, anunciada uma descoberta através do Hubble, a primeira lua fora do nosso sistema solar.

Desde o seu lançamento em 1990, o Hubble fez mais de 1,3 milhões de observações, Neste momento, dois dos seus giroscópios funcionam bem, segundo Kenneth Sembach, mas o terceiro é que falhou. O telescópio usa três giroscópios, mas pode ser adaptado para funcionar apenas com dois, mas nesta situação Há pouca margem para falhas. Mas o director do Instituto de Ciência do Telescópio Espacial mostra-se confiante que o Hubble “tem muitos anos de boa ciência pela frente.”

Diário de Notícias
Paula Sá
09 Outubro 2018 — 08:37

 

1057: HUBBLE ENCONTRA CARACTERÍSTICAS NUNCA ANTES VISTAS EM REDOR DE ESTRELA DE NEUTRÕES

Uma invulgar emissão de radiação infravermelha, de uma estrela de neutrões próxima, detectada pelo Telescópio Espacial Hubble da NASA, pode indicar novas características nunca antes vistas. Uma possibilidade é que existe um disco poeirento em redor da estrela de neutrões; outra, que existe um vento energético expelido do objecto que choca com gás no espaço interestelar através do qual a estrela de neutrões atravessa.

Embora as estrelas de neutrões sejam geralmente estudadas em emissões de rádio e de alta energia, como raios-X, este estudo demonstra que informações novas e interessantes sobre as estrelas de neutrões também podem ser obtidas através do seu estudo infravermelho.

A observação, por uma equipa de investigadores da Universidade Estatal da Pensilvânia, da Universidade Sabanci, Istambul, Turquia, e da Universidade do Arizona, pode ajudar os astrónomos a entender melhor a evolução das estrelas de neutrões – os remanescentes incrivelmente densos formados depois da explosão de uma estrela massiva como super-nova. As estrelas de neutrões também são chamadas pulsares porque a sua rotação muito rápida (normalmente fracções de segundo, neste caso 11 segundos) provoca emissão variável no tempo a partir das regiões emissores de luz.

O artigo que descreve a investigação e as duas possíveis explicações para o achado invulgar foi publicado na edição de 17 de Setembro de 2018 da revista The Astrophysical Journal.

“Esta estrela de neutrões em particular pertence a um grupo de sete pulsares de raios-X próximos – apelidados ‘Os Sete Magníficos’ – que são mais quentes do que deviam ser tendo em conta as suas idades e o reservatório de energia disponível fornecido pela perda de energia rotacional,” comenta Bettina Posselt, professora associada de astronomia e astrofísica na Universidade Estatal da Pensilvânia, autora principal do artigo. “Nós observámos uma extensa área de emissões infravermelhas em torno desta estrela de neutrões – de nome RX J0806.4-4123 – cujo tamanho total se traduz em aproximadamente 200 unidades astronómicas (1 unidade astronómica, ou UA, corresponde à distância média Terra-Sol, aproximadamente 150 milhões de quilómetros) à distância presumida do pulsar.”

Esta é a primeira estrela de neutrões em que um sinal estendido foi observado apenas no infravermelho. Os cientistas sugeriram duas possibilidades que podem explicar o sinal infravermelho prolongado visto pelo Hubble. A primeira é que existe um disco de material – possivelmente na sua maioria poeira – envolvendo o pulsar.

“Uma teoria é que poderá existir o que é conhecido como ‘disco de retorno’ de material que coalesceu em torno da estrela de neutrões após a super-nova,” explica Posselt. “Tal disco seria composto de matéria da estrela massiva progenitora. A sua interacção subsequente com a estrela de neutrões poderá ter aquecido o pulsar e diminuído a sua rotação. Se confirmado como um disco de retorno de super-nova, este resultado pode mudar a nossa compreensão geral da evolução das estrelas de neutrões.”

A segunda possível explicação para a emissão infravermelha estendida desta estrela de neutrões é uma “nebulosa de vento pulsar”.

“Uma nebulosa de vento pulsar exigiria que a estrela de neutrões exibisse um vento pulsar,” realça Posselt. “Um vento pulsar pode ser produzido quando as partículas são aceleradas no campo eléctrico produzido pela rápida rotação de uma estrela de neutrões com um forte campo magnético. À medida que a estrela de neutrões viaja pelo meio interestelar a velocidades maiores que a do som, forma-se um choque onde o meio interestelar e o vento pulsar interagem. As partículas chocadas emitiriam radiação de sincrotrão, provocando o sinal infravermelho estendido que vemos. Normalmente, as nebulosas de vento pulsar são observadas em raios-X e uma nebulosa de vento pulsar, somente infravermelha, seria muito invulgar e emocionante.”

Com o Telescópio Espacial James Webb da NASA, os astrónomos poderão explorar ainda mais esse espaço recém-aberto de descoberta no infravermelho, a fim de melhor compreender a evolução das estrelas de neutrões.

Astronomia On-line
21 de Setembro de 2018

See also Blogs Eclypse and Lab Fotográfico

1030: Hubble revela milhares de galáxias escondidas numa única fotografia

NASA / ESA / A. Koekemoer / M. Jauzac / C. Steinhardt / BUFFALO team

O Telescópio Espacial Hubble está a estudar os confins mais distantes do Universo através de alguns dos objectos mais massivos que existem: aglomerados de galáxias.

A incrível imagem acima ilustra, ao centro, o Abell 370, um aglomerado de algumas centenas de galáxias localizado a cerca de quatro mil milhões de anos-luz da Terra.

À sua volta, é possível observar milhares de galáxias nunca antes vistas, localizadas nas profundezas do espaço.

A razão pela qual podemos agora vê-las é precisamente o Abell 370. Este aglomerado e a sua matéria escura criam um imenso campo de gravidade e, quando a luz por trás desse campo passa por si, a força gravitacional é tão forte que a “dobra”. Isto cria um efeito de ampliação chamado de “lente gravitacional”, permitindo aos cientistas observar objectos que normalmente não estão ao seu alcance.

Qualquer objecto com massa significativa pode criar uma lente gravitacional com a qual os astrónomos podem trabalhar. Quanto maior a massa, mais poderosa é a lente. No caso do Abell 370, o efeito é tão forte que pode revelar galáxias que nem os instrumentos mais sensíveis de longo alcance do Hubble são capazes de vislumbrar.

A BUFFALO (Beyond Ultra-deep Frontier Fields And Legacy Observations) do Hubble vai examinar mais profundamente seis regiões já exploradas, concentrando-se desta vez em aglomerados de galáxias para ver o que está por trás deles.

Por exemplo, na imagem produzida graças ao Abell 370, as manchas mais brilhantes e pouco amareladas são galáxias enormes, contendo centenas de mil milhões de estrelas. As mais azuis são galáxias espirais menores, como a Via Láctea, com populações mais jovens de estrelas. E as mais escuras e amareladas são mais antigas, com populações de estrelas envelhecidas.

A mais espectacular das galáxias observadas, no canto inferior esquerdo do centro, é apelidada de “Dragão” (possivelmente pelas suas semelhanças com um dragão chinês). É composta por cinco imagens da mesma galáxia espiral, ampliadas pela lente gravitacional.

Através destas novas imagens, investigadores do Instituto Niels Bohr, na Dinamarca, e da Universidade de Durham, no Reino Unido, esperam aprender mais sobre quando as galáxias mais massivas e luminosas do Universo se formaram, e como essa formação está ligada à matéria escura.

O objectivo é descobrir a rapidez com que as galáxias se formaram nos primeiros 800 milhões de anos depois do Big Bang, e compreender mais profundamente a evolução dos aglomerados de galáxias e da matéria escura dentro deles.

O primeiro passo será mapear essa matéria escura. As lentes gravitacionais também podem ajudar com essa meta. Lentes fortes significam gravidade mais forte e, uma vez subtraída essa gravidade das galáxias, o que resta é a matéria escura.

“BUFFALO permitir-nos-á mapear com precisão a distribuição da matéria escura nesses aglomerados gigantescos e, assim, traçar a sua história evolutiva, uma informação que falta nas teorias da evolução de hoje”, disse a astrofísica Mathilde Jauzac, da Universidade de Durham.

Os cientistas planearam BUFFALO para ocorrer ao longo de 101 órbitas do Hubble, totalizando cerca de 160 horas de observação com o telescópio.

O instrumento será capaz de detectar galáxias distantes cerca de dez vezes mais efectivamente do que a sua observação anterior, a “Frontier Fields”, ampliando (literalmente) o nosso entendimento da história do Universo.

Por HS
17 Setembro, 2018

See also Blogs Eclypse and Lab Fotográfico

939: Auroras boreais extraterrestres. Saturno como nunca o viu

O telescópio espacial Hubble e a Cassini uniram esforços para estudar o fenómeno no planeta dos anéis. As imagens são de uma rara beleza e também contam novidades

© ESA/Hubble, NASA, A. Simon (GSFC) and the OPAL Team, J. DePasquale (STScI), L. Lamy (Observatoire de Paris)

O telescópio Hubble, há quase três décadas a observar o universo a partir da órbita terrestre, ainda consegue surpreender os astrónomos com as suas imagens espectaculares. É o caso destas, que mostram as auroras boreais no pólo norte de Saturno em toda a sua beleza, ao mesmo tempo que revelam a sua evolução ao longo de vários meses, proporcionado aos cientistas um conhecimento mais detalhado sobre aquele fenómeno no planeta dos anéis.

Na Terra, as auroras boreais são produzidas pelos ventos solares, que aqui chegam carregados de partículas energéticas. Quando estas partículas atingem a alta atmosfera (a ionosfera), situada entre os 80 e os 17 quilómetros de altitude, nas latitudes mais próximas dos pólos, interagem com as moléculas dos gases que aí se concentram, e produzem aquelas luzes espectaculares em tons de verde e vermelho.

Mas a Terra não é o único planeta do sistema solar com auroras boreais. Elas também se existem em Júpiter, Saturno, Úrano e Neptuno. Mas, como as atmosferas desses gigantes para lá de Marte são sobretudo compostas por hidrogénio – na Terra os gases dominantes são o azoto e o oxigénio – as auroras boreais só se tornam visíveis se forem observadas no ultravioleta do espectro electromagnético.

Esta era, por isso, a missão perfeita para o Hubble, uma vez que essa observação só pode ser feita a partir do espaço. Conjugando dados do Hubble com os da fase final da missão Cassini, que terminou em Abril do ano passado, os cientistas apontaram os dois observatórios ao alvo e mostram agora o resultado final desses registos.

A observação decorreu ao longo de sete meses, e o resultado revela, não apenas uma sucessão de imagens de rara beleza, mas também algumas novidades.

Uma delas está relacionada com a alta velocidade do movimento de rotação de Saturno: ali, um dia completo dura apenas 11 horas, menos de metade do que na Terra, e isso influencia a variabilidade das auroras boreais.
Outra novidade é que existem dois picos de brilho nas auroras boreais no planeta dos anéis: um ao nascer do Sol e outro ao crepúsculo. Este último nunca antes tinha sido observado. E vale a pena contemplá-lo.

Diário de Notícias
Filomena Vaves
30 Agosto 2018 — 16:34

(Foram corrigidos 8 erros ortográficos ao texto original)

See also Blogs Eclypse and Lab Fotográfico

901: HUBBLE PINTA RETRATO DO UNIVERSO EM EVOLUÇÃO

Os astrónomos “pintaram” um dos retratos mais abrangentes da história evolutiva do Universo, baseado num amplo espectro de observações pelo Telescópio Espacial Hubble e por outros telescópios espaciais e terrestres. Em particular, a visão ultravioleta do Hubble abre uma nova janela no Universo em evolução, acompanhando o nascimento de estrela ao longo dos últimos 11 mil milhões de anos até ao mais movimentado período de formação estelar do cosmos, cerca de 3 mil milhões de anos após o Big Bang. Esta imagem engloba um mar de aproximadamente 15.000 galáxias – 12.000 das quais estão a formar estrelas – amplamente distribuídas no tempo e no espaço. Este mosaico tem 14 vezes a área do Hubble Ultra Violeta Ultra Deep Field, divulgado em 2014.
Crédito: NASA, ESA, P. Oesch (Universidade de Genebra) e M. Montes (Universidade de Nova Gales do Sul)

Os astrónomos que usam a visão ultravioleta do Telescópio Espacial Hubble da NASA capturaram uma das maiores imagens panorâmicas do fogo e da fúria do nascimento estelar no Universo distante. O campo apresenta aproximadamente 15.000 galáxias, das quais cerca de 12.000 estão a formar estrelas. A visão ultravioleta do Hubble abre uma nova janela no Universo em evolução, acompanhando o nascimento das estrelas ao longo dos últimos 11 mil milhões de anos, até ao mais movimentado período de formação estelar do cosmos, que teve lugar cerca de 3 mil milhões de anos após o Big Bang.

A radiação ultravioleta tem sido a peça que faltava no quebra-cabeças cósmico. Agora, combinada com dados infravermelhos e visíveis do Hubble e de outros telescópios espaciais e terrestres, os astrónomos divulgaram um dos retratos mais compreensivos, até agora, da história evolutiva do Universo.

A imagem atravessa a lacuna entre as galáxias muito distantes, que só podem ser vistas no infravermelho, e as galáxias mais próximas, que podem ser vistas através de um amplo espectro. A luz de distantes regiões de formação estelar em galáxias remotas começou por ser ultravioleta. No entanto, a expansão do Universo desviou a luz até comprimentos de onda infravermelhos. Ao comparar imagens da formação estelar no Universo distante e próximo, os astrónomos obtêm uma melhor compreensão de como as galáxias vizinhas cresceram a partir de pequenos aglomerados de estrelas jovens e quentes há muito tempo atrás.

Dado que a atmosfera da Terra filtra a maior parte da radiação ultravioleta, o Hubble pode fornecer algumas das observações ultravioletas mais sensíveis baseadas em observações espaciais.

O programa, de nome Levantamento de Legado HDUV (Hubble Deep UV), amplia e apoia-se em dados anteriores de vários comprimentos de onda com o Hubble nos campos CANDELS-Deep (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey) dentro da região central dos campos GOODS (Great Observatories Origins Deep Survey). O mosaico tem 14 vezes a área do Hubble Ultra Violet Ultra Deep Field, anunciado em 2014.

Esta imagem é uma porção do campo GOODS-Norte, localizado na constelação de Ursa Maior.

Astronomia On-line
21 de Agosto de 2018

(Foi corrigido 1 erro ortográfico no texto original)

See also Blogs Eclypse and Lab Fotográfico

817: NOVOS RETRATOS DE FAMÍLIA DE SATURNO E MARTE PELO HUBBLE

Esta imagem mostra as observações recentes dos planetas Saturno e Marte pelo Telescópio Espacial Hubble da NASA/ESA.
As primeiras observações de Marte, pelo Hubble, remontam a 1991 e a primeira observação de Saturno, pelo telescópio espacial, foi levada a cabo em 1990 – o ano do lançamento.
Crédito: Saturno – NASA, ESA, A. Simon (GSFC) e Equipa OPAL e J. DePasquale (STScI); Marte – NASA, ESA e STScI

Recentemente, os planetas Saturno e Marte estiveram, um após o outro, em oposição à Terra. Durante este tipo de evento os planetas estão relativamente próximos da Terra, permitindo com que os astrónomos os possam observar em maior detalhe. O Hubble aproveitou esta configuração e fotografou ambos os planetas, continuando a sua observação de longa data dos planetas do Sistema Solar.

Desde que o Telescópio Espacial Hubble da NASA/ESA foi lançado, que o seu objectivo tem sido sempre o de estudar não apenas objectos astronómicos distantes, mas também os planetas do nosso Sistema Solar. As imagens de alta resolução dos nossos vizinhos planetários, pelo Hubble, só podem ser superadas pelas naves que visitam realmente esses corpos. No entanto, o Hubble tem uma vantagem sobre as sondas espaciais: pode olhar para estes objectos periodicamente e observá-los durante períodos muito mais longos do que qualquer outra sonda que por lá passe.

Nos últimos meses, os planetas Marte e Saturno têm estado em oposição – as datas exactas são 27 de Junho para Saturno e 27 de Julho para Marte. Uma oposição ocorre quando o Sol, a Terra e um planeta estão alinhados, a Terra situada entre o Sol e o planeta. Durante uma oposição, um planeta está totalmente iluminado pelo Sol a partir da perspectiva da Terra, e também assinala o momento em que o planeta está mais próximo do nosso planeta, permitindo com que os astrónomos observem as características planetárias em maior detalhe (as datas de oposição e maior aproximação diferem ligeiramente; esta diferença é provocada pela órbita elíptica dos planetas e pelo facto de que as órbitas não estão exactamente no mesmo plano).

Um mês antes da oposição de Saturno – no dia 6 de Junho – o Hubble foi usado para observar o planeta dos anéis. Nesta altura, Saturno estava a aproximadamente 1,4 mil milhões de quilómetros da Terra. As imagens captadas mostram o magnífico sistema de anéis de Saturno perto da sua inclinação máxima em direcção à Terra, permitindo uma espectacular visão dos anéis e das divisões entre eles. Embora todos os gigantes gasosos possuam anéis, os de Saturno são os maiores e os mais belos, estendendo-se até oito vezes o raio do planeta.

Juntamente com uma espantosa imagem do sistema de anéis, a nova imagem do Hubble revela um padrão hexagonal em redor do pólo norte – uma característica estável de vento descoberta durante a passagem rasante da Voyager 1 em 1981. Para sul desta característica encontra-se uma fileira de nuvens brilhantes: remanescentes de uma tempestade em desintegração.

Enquanto observava o planeta, o Hubble também conseguiu captar imagens de seis das 62 luas conhecidas de Saturno: Dione, Encélado, Tétis, Jano, Epimeteu e Mimas. Os cientistas pensam que uma pequena lua rebelde como estas se desintegrou há 200 milhões de anos para formar o sistema de anéis de Saturno.

O Hubble obteve o segundo retrato, do planeta Marte, no dia 18 de Julho, apenas 13 dias antes de Marte alcançar a sua maior aproximação à Terra. Este ano, Marte passou a 57,6 milhões de quilómetros da terra. Foi a maior aproximação desde o Grande Evento de 2003 – há quase 60.000 anos que não estava tão perto.

Embora as imagens anteriores tenham mostrado características da superfície do planeta, esta nova imagem é dominada por uma gigantesca tempestade de areia que envolve todo o planeta. Ainda visíveis, as esbranquiçadas calotas polares, Terra Meridiani, a Cratera Schiaparelli e a Bacia Hellas – mas todas estas características estão levemente obscurecidas pela poeira atmosférica.

A comparação destas novas imagens de Marte e Saturno com dados mais antigos recolhidos pelo Hubble, por outros telescópios e até por naves espaciais, permite que os astrónomos estudem como os padrões de nuvens e as estruturas em grande escala noutros planetas do nosso Sistema Solar mudam com o decorrer do tempo.

Astronomia On-line
31 de Julho de 2018

[SlideDeck2 id=1476]

[powr-hit-counter id=326255ea_1533030909056]

769: HUBBLE E GAIA UNEM FORÇAS PARA ALIMENTAR ENIGMA CÓSMICO

Usando dois dos mais poderosos telescópios espaciais – o Hubble da NASA e o Gaia da ESA – os astrónomos fizeram as medições mais precisas, até à data, da velocidade de expansão do Universo. Este valor é calculado determinando as distâncias entre galáxias próximas usando um tipo especial de estrela chamada variáveis Cefeidas como réguas cósmicas. Através da comparação do seu brilho intrínseco, medido pelo Hubble, com o brilho aparente visto da Terra, os cientistas podem calcular as suas distâncias. O Gaia refina ainda mais esta régua medindo geometricamente as distâncias às variáveis Cefeidas dentro da nossa Galáxia, a Via Láctea. Isto permite com que os astrónomos calibrem com mais precisão as distâncias às Cefeidas noutras galáxias.
Crédito: NASA, ESA e A. Feild (STScI)

Usando o poder e a sinergia de dois telescópios espaciais, os astrónomos fizeram a medição mais precisa até à data da expansão do Universo.

Os resultados alimentam ainda mais a incompatibilidade entre as medições da expansão do Universo próximo e as do Universo distante – antes mesmo de existirem estrelas e galáxias.

Esta chamada “tensão” implica que poderá haver nova física subjacente às fundações do Universo. As possibilidades incluem a força da interacção da matéria escura, a energia escura sendo ainda mais exótica do que se pensava anteriormente, ou uma nova partícula desconhecida na tapeçaria do espaço.

Combinando observações do Telescópio Espacial Hubble da NASA e do observatório Gaia da ESA, os astrónomos refinaram ainda mais o valor anteriores da constante de Hubble, o ritmo a que o Universo se expande desde o Big Bang há 13,8 mil milhões de anos.

Mas à medida que as medições se tornam mais precisas, a determinação da constante de Hubble pela equipa tornou-se cada vez mais desfasada da de outro observatório espacial, a missão Planck da ESA, que apresenta um valor previsto diferente para a constante de Hubble.

O Planck mapeou o universo primitivo como este aparecia apenas 360.000 anos após o Big Bang. Todo o céu está impresso com a assinatura do Big Bang codificada em micro-ondas. O Planck mediu os tamanhos das ondulações nesta radiação cósmica de fundo em micro-ondas produzida por pequenas irregularidades no Big Bang. Os detalhes refinados dessas ondulações codificam quanta matéria escura e matéria comum existe, a trajectória do universo naquela época e outros parâmetros cosmológicos.

Essas medições, ainda em avaliação, permitem aos cientistas prever como o Universo inicial teria evoluído para a expansão que podemos medir hoje. No entanto, essas previsões não correspondem às novas medições do nosso Universo próximo e contemporâneo.

“Com a adição dos novos dados do Gaia e do Telescópio Espacial Hubble, temos agora uma séria tensão com os dados da radiação cósmica de fundo em micro-ondas,” afirma George Efstathiou, membro da equipa do Planck e analista pertencente ao Instituto Kavli para Cosmologia em Cambridge, Inglaterra, que não esteve envolvido no novo trabalho.

“A tensão parece ter-se transformado numa incompatibilidade total entre os nossos pontos de vista do Universo inicial e do actual,” comenta o líder da equipa e prémio Nobel Adam Riess, do STScI (Space Telescope Science Institute) e da Universidade Johns Hopkins em Baltimore, no estado norte-americano de Maryland. “Neste ponto, claramente não é apenas um erro grosseiro em qualquer das medições. É como se prevíssemos a altura de uma criança a partir de um gráfico de crescimento e depois descobríssemos que o adulto se havia tornado muito mais alto. Estamos muito perplexos.”

Em 2005, Riess e os membros da equipa SHOES (Super-nova H0 for the Equation of State) decidiram medir a expansão do Universo com uma precisão sem precedentes. Nos anos seguintes, ao refinarem as suas técnicas, esta equipa reduziu a incerteza da expansão até valores nunca antes alcançados. Agora, com o poder combinado do Hubble e do Gaia, reduziram essa incerteza até apenas 2,2%.

Dado que a constante de Hubble é necessária para estimar a idade do Universo, a resposta há muito procurada é um dos números mais importantes da cosmologia. Tem o nome do astrónomo Edwin Hubble, que há quase um século atrás descobriu que o Universo estava a expandir-se uniformemente em todas as direcções – um achado que deu origem à cosmologia moderna.

As galáxias parecem recuar da Terra proporcionalmente às suas distâncias, o que significa que quanto mais longe estão, mais rapidamente parecem estar a afastar-se. Esta é uma consequência da expansão do Universo e não um valor real da velocidade espacial. Ao medir o valor da constante de Hubble ao longo do tempo, os astrónomos podem construir uma imagem da nossa evolução cósmica, inferir a composição do Universo e descobrir pistas sobre o seu destino final.

Os dois principais métodos de medir este número fornecem resultados incompatíveis. Um método é o directo, a construção de uma “escada de distâncias cósmicas” a partir de medições de estrelas no nosso Universo local. O outro método usa a radiação cósmica de fundo em micro-ondas para medir a trajectória do Universo após o Big Bang e depois usa a física para descrever o Universo e para extrapolar a actual velocidade de expansão. Juntas, as medições devem fornecer um teste total do nosso conhecimento básico do chamado “Modelo Padrão” do Universo. No entanto, as peças não encaixam.

Usando o Hubble e dados recém-divulgados do Gaia, a equipa de Riess determinou que o actual ritmo de expansão é 73,5 km por segundo por megaparsec. Isto significa que por cada 3,3 milhões de anos-luz que uma galáxia está mais longe de nós, parece mover-se 73,5 km/s mais depressa. No entanto, os resultados do Planck prevêem que o Universo devia estar a expandir-se a apenas 67,0 km/s/Mpc. À medida que as medições das equipas se tornam cada vez mais precisas, o abismo entre elas continua a aumentar e agora é cerca de quatro vezes maior do que a sua incerteza combinada.

Ao longo dos anos, a equipa de Riess refinou o valor da constante de Hubble através da simplificação e fortalecimento da “escada de distâncias cósmicas”, usada para medir distâncias precisas de galáxias próximas e distantes. Eles compararam essas distâncias com a expansão do espaço, medida pelo esticamento da luz de galáxias próximas. Usando a velocidade aparente exterior a cada distância, calcularam a constante de Hubble.

Para medir as distâncias entre galáxias próximas, a sua equipa usou um tipo especial de estrela como “régua” cósmica. Estas estrelas pulsantes, chamadas Variáveis Cefeidas, aumentam e diminuem de brilho a ritmos que correspondem ao seu brilho intrínseco. Ao comparar o brilho intrínseco com o seu brilho aparente visto da Terra, os cientistas podem calcular as suas distâncias.

O Gaia refinou ainda mais este parâmetro, medindo geometricamente a distância de 50 Cefeidas na Via Láctea. Essas medições foram combinadas com medições precisas dos seus brilhos pelo Hubble. Isto permitiu que os astrónomos calibrassem com mais precisão as Cefeidas e depois usassem aquelas vistas para lá da Via Láctea como marcadores.

“Quando usamos Cefeidas, precisamos da distância e do brilho,” explicou Riess. O Hubble forneceu a informação do brilho e o Gaia forneceu a informação de paralaxe necessária para determinar com precisão as distâncias. A paralaxe é a aparente mudança na posição de um objecto devido a uma mudança no ponto de vista do observador. Os gregos antigos usaram esta técnica para medir a distância da Terra à Lua.

“O Hubble é realmente incrível como um observatório de propósito geral, mas o Gaia é o novo padrão de ouro para calibrar a distância. Foi construído especificamente para medir a paralaxe,” acrescentou Stefano Casertano do STScI e membro do SHOES. “O Gaia dá-nos uma nova capacidade de recalibrar todas as medidas passadas de distância, e parece confirmar o nosso trabalho anterior. Nós obtemos o mesmo valor para a constante de Hubble se substituirmos todas as calibrações anteriores da escada de distância cósmica apenas com as paralaxes do Gaia. É um cruzamento entre dois observatórios muito poderosos e precisos.”

O objectivo da equipa de Riess é trabalhar com o Gaia para atravessar o limite de refinar a constante de Hubble para um valor de apenas 1% no início da década de 2020. Entretanto, os astrofísicos vão provavelmente a continuar a lutar para revisitar as suas ideias sobre a física do Universo primitivo.

Os resultados mais recentes da equipa de Riess foram publicados na edição de 12 de Julho da revista The Astrophysical Journal.

Astronomia on-line
17 de Julho de 2018

[SlideDeck2 id=1476]

[powr-hit-counter id=19e76959_1531823002596]

See also Blog

760: PODEM AS ONDAS GRAVITACIONAIS REVELAR QUÃO DEPRESSA O UNIVERSO ESTÁ A EXPANDIR-SE?

Visualização de uma simulação feita por um supercomputador da fusão de dois buracos negros que libertam ondas gravitacionais.
Crédito: NASA/C. Henze

Desde que nasceu há 13,8 mil milhões de anos, que o Universo tem vindo a expandir-se, arrastando centenas de milhares de milhões de galáxias e estrelas, como passas numa massa que cresce rapidamente.

Os astrónomos têm apontado telescópios para certas estrelas e outras fontes cósmicas a fim de medir a sua distância à Terra e quão rapidamente se afastam de nós – dois parâmetros essenciais para estimar a constante de Hubble, uma unidade de medida que descreve o ritmo de expansão do Universo.

Mas, até à data, os esforços mais precisos basearam-se em valores muito diferentes da constante de Hubble, não oferecendo uma resolução definitiva para exactamente quão depressa o Universo cresce. Esta informação, pensam os cientistas, pode lançar luz sobre as origens do Universo, bem como sobre o seu destino, se o cosmos se expandirá indefinidamente ou se acabará num colapso.

Agora, cientistas do MIT e da Universidade de Harvard propuseram uma maneira mais precisa e independente de medir a constante de Hubble, usando ondas gravitacionais emitidas por um sistema relativamente raro: um sistema binário altamente energético composto por um buraco negro e por uma estrela de neutrões. À medida que estes objectos se aproximam um do outro, devem produzir ondas gravitacionais e um surto de luz quando finalmente colidirem.

Num artigo publicado na revista Physical Review Letters, os investigadores relatam que o flash de luz daria aos cientistas uma estimativa da velocidade do sistema, ou quão depressa se afasta da Terra. As ondas gravitacionais emitidas, se detectadas na Terra, deveriam fornecer uma medição precisa e independente da distância do sistema. Embora os sistemas constituídos por um buraco negro e por uma estrela de neutrões sejam incrivelmente raros, os investigadores calculam que a detecção de apenas alguns destes deverá render o valor mais preciso, até agora, da constante de Hubble e do ritmo de expansão do Universo.

“Os binários constituídos por um buraco negro e por uma estrela de neutrões são sistemas muito complicados, dos quais sabemos muito pouco,” comenta Salvatore Vitale, professor assistente de física no MIT e autor principal do artigo científico. “Se detectarmos um, o prémio é que podem potencialmente dar uma contribuição dramática para a nossa compreensão do Universo.”

O co-autor de Vitale é Hsin-Yu Chen de Harvard.

Constantes concorrentes

Recentemente foram feitas duas medições independentes da constante de Hubble, uma usando o Telescópio Espacial Hubble da NASA e outra usando o satélite Planck da ESA. A medição do Telescópio Espacial Hubble é baseada em observações de um tipo de estrela conhecida como variável Cefeida, bem como observações de super-novas. Ambos os objectos são considerados “velas padrão”, devido ao padrão previsível de brilho que os cientistas podem usar para estimar a distância e a velocidade da estrela.

O outro tipo de estimativa é baseado em observações das flutuações no fundo cósmico de micro-ondas – a radiação electromagnética deixada para trás no rescaldo do Big Bang, quando o Universo estava ainda na sua infância. Embora as observações por ambos os observatórios espaciais sejam extremamente precisas, as suas estimativas da constante de Hubble discordam significativamente.

“É aí que o LIGO entra em jogo,” diz Vitale.

O LIGO (Laser Interferometry Gravitational-Wave Observatory) detecta ondas gravitacionais – ondulações no espaço-tempo produzidas por fenómenos astrofísicos cataclísmicos.

“As ondas gravitacionais fornecem uma maneira muito direta e fácil de medir as distâncias das suas fontes,” explica Vitale. “O que detectamos com o LIGO é uma impressão directa da distância até à fonte, sem nenhuma análise extra.”

Em 2017, os cientistas tiveram a sua primeira oportunidade para estimar a constante de Hubble a partir de uma fonte de ondas gravitacionais, quando o LIGO e o seu homólogo italiano Virgo detectaram pela primeira vez a colisão de um par de estrelas de neutrões. A colisão libertou uma quantidade enorme de ondas gravitacionais, que os investigadores usaram para determinar a distância do sistema à Terra. A fusão também libertou um flash de luz, que os astrónomos observaram com telescópios terrestres e espaciais a fim de determinar a velocidade do sistema.

Com ambas as medições, os cientistas calcularam um novo valor para a constante de Hubble. No entanto, a estimativa veio com uma incerteza relativamente grande de 14%, muito maior que os valores calculados usando o Telescópio Espacial Hubble e o Planck.

Vitale diz que grande parte da incerteza deriva do facto de que pode ser difícil interpretar a distância de um binário de estrelas de neutrões a partir da Terra usando as ondas gravitacionais que este sistema em particular liberta.

“Nós medimos a distância observando quão ‘barulhenta’ é a onda gravitacional, ou seja, quão clara é nos nossos dados,” explica Vitale. “Se é muito clara, podemos ver quão barulhenta é e isso dá-nos a distância. Mas isso é apenas parcialmente verdade para os binários de estrelas de neutrões.”

Isto porque estes sistemas, que produzem um disco giratório de energia à medida que as duas estrelas de neutrões espiralam em direcção uma da outra, emitem ondas gravitacionais de maneira desigual. A maioria das ondas gravitacionais são disparadas para fora do centro do disco, enquanto uma fracção muito menor escapa pelos limites. Se os cientistas detectarem um sinal de uma onda gravitacional “barulhenta”, isso poderá indicar um de dois cenários: as ondas detectadas são provenientes da orla de um sistema muito próximo da Terra, ou as ondas são emanadas do centro de um sistema muito mais distante.

“Com os binários de estrelas de neutrões, é muito difícil distinguir entre essas duas situações,” realça Vitale.

Uma nova onda

Em 2014, antes do LIGO fazer a primeira detecção de ondas gravitacionais, Vitale e colegas observaram que um sistema binário composto por um buraco negro e por uma estrela de neutrões poderia fornecer uma medição mais precisa da distância, em comparação com binários de estrelas de neutrões. A equipa estava a investigar a precisão com que se pode medir a rotação de um buraco negro, já que os objectos giram sob os seus próprios eixos, de forma semelhante à Terra, mas muito mais depressa.

Os cientistas simularam uma variedade de sistemas com buracos negros, incluindo binários de buracos negros e estrelas de neutrões e binários de estrelas de neutrões. Como subproduto deste esforço, a equipa notou que eram capazes de determinar com maior precisão a distância dos binários compostos por um buraco negro e por uma estrela de neutrões, em comparação com os binários compostos por duas estrelas de neutrões. Vitale diz que isso deve-se à rotação do buraco negro em torno da estrela de neutrões, o que pode ajudar os cientistas a melhor identificar o local, no sistema, onde são emanadas as ondas gravitacionais.

“Graças a esta melhor medição de distância, pensei que os binários constituídos por um buraco negro e por uma estrela de neutrões podiam ser uma sonda competitiva para medir a constante de Hubble,” explica Vitale. “Desde então, muito coisa aconteceu com o LIGO e com a descoberta de ondas gravitacionais, pelo que tudo isso foi colocado em segundo plano.”

Vitale voltou recentemente à sua observação original e, neste novo artigo, propôs responder a uma questão teórica:

“O facto de que todos os sistemas binários constituídos por um buraco negro e por uma estrela de neutrões me dão uma medição melhor da distância vai compensar o facto destes, potencialmente, existirem em números muito menores no Universo do que binários de estrelas de neutrões?”

Para responder a esta pergunta, a equipa realizou simulações para prever a ocorrência de ambos os tipos de sistemas binários no Universo, bem como a precisão das suas medições de distância. A partir dos seus cálculos, concluíram que mesmo que os sistemas binários de estrelas de neutrões superem os binários compostos por um buraco negro e por uma estrela de neutrões por um factor de 50, este último tipo produziria uma constante de Hubble similar, em termos de precisão, em comparação com o primeiro.

De forma mais optimista, se os binários constituídos por um buraco negro e por uma estrela de neutrões fossem ligeiramente mais comuns, mas ainda mais raros do que os binários de estrelas de neutrões, o primeiro produziria uma constante de Hubble quatro vezes mais precisa.

“Até agora, os cientistas concentraram-se nas estrelas de neutrões binárias como forma de medir a constante de Hubble com ondas gravitacionais,” diz Vitale. “Nós mostrámos que há outro tipo de fonte de ondas gravitacionais que até agora não foi tão explorada: os buracos negros e as estrelas de neutrões que espiralam juntos. O LIGO começará a recolher dados novamente em Janeiro de 2019, e será muito mais sensível, o que significa que podemos ver objectos mais distantes. Assim sendo, o LIGO deverá ver pelo menos um binário constituído por um buraco negro e por uma estrela de neutrões, talvez no máximo 25, o que ajudará a resolver a tensão existente na medição da constante de Hubble, esperançosamente nos próximos anos.”

Astronomia On-line
13 de Junho de 2018

[SlideDeck2 id=1476]

[powr-hit-counter id=602d7c0d_1531478056857]

See also Blog

758: INVESTIGADORES DESCOBREM MATERIAL ORGÂNICO NAS GALÁXIAS ANTENA

Imagem obtida pelo Hubble das Galáxias Antena.
Crédito: ESA/Hubble & NASA

Após a realização de uma análise espectroscópica com o instrumento MUSE, no VLT (Very Large Telescope), no ESO (Chile), uma equipa liderada pela astrofísica Ana Monreal Ibero do IAC (Instituto de Astrofísicas das Canárias) provou a existência de bandas interestelares difusas nas Galáxias Antena, a 70 milhões de anos-luz da Terra. Desta forma, mostrou que há provavelmente material orgânico noutras galáxias para lá da nossa vizinhança galáctica.

O espectro electromagnético de um objecto celeste (galáxia, estrela, etc.) resulta da quebra da luz emitida nas suas cores constituintes. As características desse espectro – por exemplo, as cores dominantes ou ausentes – dizem-nos mais sobre as propriedades do objecto, como a sua velocidade em relação a nós e a sua composição química. “Além disso, e pelo mesmo preço – explica Ana Monreal – esta análise dá-nos informações sobre o material que a luz atravessa no caminho até nós e, em particular, sobre o meio interestelar. As bandas interestelares difusas são bandas escuras que aparecem nos espectros de objectos astronómicos associados com este meio e cuja origem é ainda hoje um mistério. Não podem ser explicadas pela presença de moléculas simples conhecidas e suspeita-se que sejam provocadas por material provavelmente orgânico.

A maioria dos estudos relacionados com as bandas interestelares difusas tem sido confinada a objectos na Via Láctea, uma vez que são características espectrais relativamente fracas. Existem algumas detecções de bandas interestelares difusas fora da nossa Galáxia, principalmente nas Nuvens de Magalhães, que são membros do Grupo Local de Galáxias, mas muito raramente têm sido detectadas bem para lá dos limites do Grupo Local. No entanto, quando olhamos para longe da Via Láctea, é de interesse observar como se comportam em condições interestelares altamente energéticas, como aquelas encontradas numa galáxia “starburst” (com formação estelar explosiva), onde as estrelas se formam a um ritmo muito maior do que na Via Láctea.

Estas observações para lá das galáxias que nos rodeiam podem fornecer pistas adicionais sobre a possível natureza das moléculas que provocam bandas interestelares difusas, mas também podem fornecer ferramentas para os astrónomos caracterizarem o meio interestelar ao qual pertencem.

“No nosso trabalho, explorámos o potencial da utilização de espectrógrafos de campo integral, como o HARMONI (um instrumento desenhado para o futuro telescópio de 39 metros, o E-ELT), em cuja construção o IAC participa,” esclarece Ana Monreal. E acrescenta: “Para isso, usámos o que constitui, hoje, o ‘crème de la crème’ deste tipo de instrumento, o MUSE no VLT, para obter dados do mais próximo sistema de galáxias espirais em fusão: as Galáxias Antena.”

O MUSE obtém um grande número de espectros de uma área relativamente grande do céu a partir de uma única exposição. “Com base na adição do sinal de espectros vizinhos e cuidadosamente modelando e separando a emissão devida às estrelas e ao gás ionizado no sistema, conseguimos detectar o sinal de duas das mais bem conhecidas bandas interestelares difusas e, de facto, as duas primeiras a serem identificadas, ao longo de mais de 200 e 100 linhas de visão independentes, respectivamente,” explica Monreal.

Este estudo também compara as detecções obtidas pelo grupo com outras propriedades e componentes do meio interestelar neste sistema, em particular: a atenuação (directamente relacionada com a quantidade de poeira) e a distribuição do hidrogénio atómico, do gás molecular e de algumas bandas na emissão infravermelha que também parecem estar associadas com compostos orgânicos.

Astronomia On-line
13 de Julho de 2018

[SlideDeck2 id=1476]

[powr-hit-counter id=9d3d1ca1_1531473323772]

See also Blog

“PEPITAS VERMELHAS” SÃO OURO GALÁCTICO PARA OS ASTRÓNOMOS

Impressão de artista e imagem de raios-X da “pepita vermelha” MRK 1216.
Crédito: raios-X – NASA/CXC/Universidade MTA-Eötvös/N. Werner et al.; ilustração – NASA/CXC/M. Weiss

Há cerca de uma década, os astrónomos descobriram uma população de galáxias pequenas, mas massivas, a que chamaram “red nuggets” (pepitas vermelhas). Um novo estudo com o Observatório de raios-X Chandra da NASA indica que os buracos negros “esmagaram” a formação das estrelas nessas galáxias e podem ter usado parte do seu combustível estelar para crescer até proporções invulgarmente massivas.

As “pepitas vermelhas” foram descobertas pela primeira vez pelo Telescópio Espacial Hubble a grandes distâncias da Terra, correspondendo a épocas apenas três ou quatro mil milhões de anos após o Big Bang. São relíquias das primeiras galáxias massivas que se formaram apenas mil milhões de anos após o Big Bang. Os astrónomos pensam que são os antepassados das gigantescas galáxias elípticas vistas no Universo local. As massas das pepitas vermelhas são semelhantes às das galáxias elípticas gigantes, mas têm apenas mais ou menos um-quinto do seu tamanho.

Enquanto a maioria das pepitas vermelhas se fundiu com outras galáxias ao longo de milhares de milhões de anos, um pequeno número conseguiu escapar intocado ao longo da história do cosmos. Estas pepitas vermelhas ilesas representam uma oportunidade única para estudar como as galáxias, e o buraco negro super-massivo nos centros, se comportam ao longo de milhares de milhões de anos de isolamento.

Pela primeira vez, o Chandra foi usado para estudar o gás quente em duas destas pepitas vermelhas isoladas, MRK 1216 e PGC 032873. Encontra-se a apenas 295 milhões e 344 milhões de anos-luz da Terra, respectivamente, em vez de milhares de milhões de anos-luz para as primeiras pepitas vermelhas conhecidas. O gás quente emissor de raios-X contém a impressão da actividade gerada pelos buracos negros super-massivos em cada uma das duas galáxias.

“Estas galáxias existem há 13 mil milhões de anos sem nunca terem interagido com outras do seu tipo,” comenta Norbert Werner do Grupo Lendület de Investigação de Astrofísica e do Universo Quente da Universidade MTA-Eötvös em Budapeste, Hungria, que liderou o estudo. “Estamos a descobrir que os buracos negros nestas galáxias assumem o controlo e o resultado não é bom para novas estrelas que tentam formar-se.”

Os astrónomos sabem há muito que o material que cai em direcção a um buraco negro pode ser redireccionado para fora a altas velocidades devido aos intensos campos gravitacionais e magnéticos. Estes jactos velozes podem desligar a formação estelar. Isto acontece porque as explosões da vizinhança do buraco negro fornecem uma poderosa fonte de calor, impedindo que o gás interestelar quente da galáxia arrefeça o suficiente para permitir que um grande número de estrelas se forme.

A temperatura do gás quente é maior no centro da galáxia MRK 1216 em comparação com os seus arredores, mostrando os efeitos do aquecimento recente pelo buraco negro. Além disso, a emissão de rádio é observada a partir do centro da galáxia, uma assinatura de jactos de buracos negros. Finalmente, a emissão de raios-X da vizinhança do buraco negro é cerca de cem milhões de vezes menor do que o limite teórico de quão rápido um buraco negro pode crescer – chamado “limite de Eddington” – onde a pressão externa da radiação é balançada pela atracção da gravidade para o interior. Este baixo nível de emissão de raios-X é típico dos buracos negros que produzem jactos. Todos estes factores fornecem fortes evidências de que as actividades geradas pelos buracos negros super-massivos nestas galáxias pepitas vermelhas está a suprimir a formação de novas estrelas.

Os buracos negros e o gás quente podem ter outra ligação. Os autores sugerem que grande parte da massa do buraco negro pode ter-se acumulado a partir do gás quente que envolve ambas as galáxias. Os buracos negros de MRK 1216 e PGC 032873 estão entre os mais massivos conhecidos, com massas estimadas em aproximadamente 5 mil milhões de vezes a massa do Sol, com base em observações ópticas das velocidades das estrelas perto dos centros das galáxias. Além do mais, estima-se que a massa do buraco negro de MRK 1216 e possivelmente a do de PGC 032873 correspondam a uma baixa percentagem das massas combinadas de todas as estrelas nas regiões centrais das galáxias, enquanto na maioria das galáxias, a proporção é cerca de dez vezes mais pequena.

“Aparentemente, deixados à sua própria sorte, os buracos negros podem agir como ‘bullies’,” diz a co-autora Kiran Lakhchaura, também da Universidade MTA-Eötvös.

“Não apenas impedem a formação de novas estrelas,” diz o co-autor Massimo Gaspari, da Universidade de Princeton, “como também ‘pegam’ em algum desse material e usam-no como alimento.”

Em adição, o gás quente dentro e em redor de PGC 032873 é cerca de dez vezes mais fraco do que o gás quente em redor de MRK 1216. Dado que ambas as galáxias parecem ter evoluído isoladamente ao longo dos últimos 13 mil milhões de anos, esta diferença pode ter surgido no passado a partir de explosões mais ferozes do buraco negro de PGC 032873, que dissipou a maior parte do gás quente.

“Os dados do Chandra dizem-nos mais sobre como foi esta longa e solitária viagem através do tempo cósmico para estas galáxias,” afirma a co-autora Rebecca Canning da Universidade de Stanford. “Embora as galáxias não tenham interagido com outras, mostram muita agitação interna.”

O artigo que descreve estes resultados foi publicado na edição mais recente da revista científica Monthly Notices of the Royal Astronomical Society e está disponível online.

Astronomia On-line
26 de Junho de 2018

[SlideDeck2 id=1476]

[powr-hit-counter id=a90bffa5_1530010354384]