3827: A cumprir o distanciamento, galáxia KK 246 está isolada num vazio cósmico

CIÊNCIA/ASTRONOMIA

NASA/ESA/Hubble/E. Shaya et al.
A galáxia KK 246

Em tempos de distanciamento social, parece que esta pequena galáxia está a dar o exemplo, encontrando-se sozinha no meio de um vazio cósmico.

Segundo o site Universe Today, a KK 246, também conhecida como ESO 461-036, é uma galáxia irregular anã e, embora pareça estar serena, a verdade é que está a ser lançada a altas velocidades para fora desta vasta região vazia do Espaço chamada Local Void.

Não é muito comum ver galáxias isoladas como esta. Aliás, de acordo com o mesmo site, a KK 246 / ESO 461-36 é a única galáxia conhecida que se encontra dentro da Local Void.

A maioria das galáxias está cercada por um enxame de galáxias satélites e estão elas próprias incorporadas em agregados maiores chamados grupos ou aglomerados. Essas grandes concentrações de galáxias fazem parte de estruturas numa escala ainda maior do Universo – filamentos e folhas galácticos que contêm milhões de galáxias.

Entre essas enormes paredes de galáxias, encontram-se regiões muito pouco povoadas, conhecidas como vazios cósmicos, como é o caso da Local Void. Adjacente ao Grupo Local, esta região tem pelo menos 150 milhões de anos-luz.

Quanto maior e mais vazia é esta região, mais fraca é a sua gravidade, o que faria com que qualquer coisa dentro dela fugisse para concentrações de matéria.

Em 2019, um estudo científico mostrou que a KK 246 está a fugir muito rapidamente, a 350 quilómetros por segundo. No entanto, há quem especule que áreas de energia escura concentrada estão a puxá-la para longe em alta velocidade.

ZAP //

Por ZAP
11 Junho, 2020

– Não estás só KK 246, eu também estou num distanciamento e vazio cósmico absoluto…

 

spacenews

 

Astrónomos encontram agulha cósmica “enterrada” durante duas décadas; descoberta lança luz sobre o famoso anel de Einstein

CIÊNCIA/ASTRONOMIA

Determinados a encontrar uma agulha num “palheiro cósmico”, dois astrónomos “viajaram no tempo” através de arquivos de dados do Observatório W. M. Keck em Mauna Kea, Hawaii, e dados antigos do Observatório de raios-X Chandra da NASA para desvendar um mistério em torno de um quasar brilhante, mas muito obscurecido, que sofre efeito de lente gravitacional.

Este objecto celeste, uma galáxia activa que emite enormes quantidades de energia devido a um buraco negro que devora material, é excitante. Encontrar um que sofre o efeito de lente gravitacional, fazendo com que pareça maior e mais brilhante, é ainda mais excitante. Embora sejam conhecidos pouco mais de 200 quasares que sofrem efeitos de lentes gravitacionais, o número de quasares obscurecidos e que sofrem efeitos de lentes gravitacionais ainda é inferior a 10. Isto porque o buraco negro activo agita gás e poeira, encobrindo o quasar e dificultando a detecção em levantamentos ópticos.

Os cientistas não somente encontraram um quasar deste tipo, como também chegaram à conclusão que o objecto é o primeiro anel de Einstein descoberto, chamado MG 1131+0456, observado em 1987 com o VLA (Very Large Array) no estado norte-americano do Novo México. Notavelmente, embora amplamente estudado, a distância ou desvio para o vermelho do quasar permanecia por descobrir.

Imagem rádio de MG 1131+0456, o primeiro anel de Einstein conhecido observado em 1987 usando o VLA (Very Large Array).
Crédito: VLA

“À medida que estudámos o objecto, ficámos surpresos por uma fonte tão famosa e brilhante nunca ter tido a sua distância medida,” disse Daniel Stern, cientista sénior do JPL da NASA e autor do estudo. “A distância é um primeiro passo necessário para todos os tipos de estudos adicionais, como por exemplo usar a lente como ferramenta para medir a história da expansão do Universo e como sonda para a matéria escura.”

Stern e o co-autor Dominic Walton, do Instituto de Astronomia da Universidade de Cambridge (Reino Unido), são os primeiros a calcular a distância do quasar, que está a 10 mil milhões de anos-luz (ou um desvio para o vermelho de z=1,849).

O resultado foi publicado na edição de 1 Junho da revista The Astrophysical Journal Letters.

“Todo este trabalho foi um pouco nostálgico para mim, fazendo com que me debruçasse nos artigos do início da minha carreira, quando ainda era estudante. O Muro de Berlim ainda estava em pé quando este anel de Einstein foi descoberto, e todos os dados apresentados no nosso artigo são do milénio passado,” disse Stern.

Metodologia

Na altura da sua investigação, os telescópios de todo o mundo estavam encerrados devido à pandemia de coronavírus (o Observatório Keck reabriu a 16 de maio); Stern e Walton aproveitaram o seu tempo em casa para continuar a fazer ciência de modo criativo, vasculhando os dados do WISE (Wide-field Infrared Survey Explorer) da NASA para procurar quasares muito obscurecidos e que sofriam efeitos de lentes gravitacionais. Embora a poeira oculte as galáxias mais ativas em levantamentos ópticos, essa poeira obscurante torna as fontes muito brilhantes em levantamentos infravermelhos, como os fornecidos pelo WISE.

Embora os quasares geralmente estejam muito distantes, os astrónomos podem detectá-los através de lentes gravitacionais, um fenómeno que actua como uma lupa natural. Isto ocorre quando uma galáxia mais próxima da Terra age como lente e faz o quasar por trás dela parecer mais brilhante. O campo gravitacional da galáxia mais próxima distorce o próprio espaço, dobrando e amplificando a luz do quasar de fundo. Se o alinhamento for perfeito, isto cria um círculo de luz chamado anel de Einstein, previsto por Albert Einstein em 1936. Mais tipicamente, as lentes gravitacionais produzem várias imagens do objecto de fundo em torno do objecto de primeiro plano.

Assim que Stern e Walton redescobriram MG 1131+0456 com o WISE e se aperceberam que a distância permanecia um mistério, vasculharam meticulosamente os dados antigos do Arquivo do Observatório Keck e descobriram que o Observatório observou o quasar sete vezes entre 1997 e 2007 usando o instrumento LRIS (Low Resolution Imaging Spectrometer) do telescópio Keck I, bem como com o NIRSPEC (Near-Infrared Spectrograph) e com o ESI (Echellette Spectrograph and Imager) do telescópio Keck II.

“Conseguimos extrair a distância do conjunto de dados mais antigo do Keck, obtido em Março de 1997, durante os primeiros anos do observatório,” disse Walton. “Estamos gratos pelos esforços colaborativos do Keck e da NASA, de disponibilizar publicamente mais de 25 anos de dados do Keck. O nosso artigo científico não teria sido possível sem isso.”

A equipa também analisou dados de arquivo do Observatório de raios-X Chandra da NASA obtidos no ano 2000, no primeiro ano após o lançamento da missão.

Os próximos passos

Agora com a distância conhecida de MG 1131+0456, Walton e Stern foram capazes de determinar a massa da galáxia que sofre efeito de lente gravitacional com precisão requintada e de usar os dados do Chandra para confirmar com robustez a natureza obscurecida do quasar, determinando com precisão a quantidade de gás que existe entre nós e as suas regiões centrais luminosas.

“Podemos agora descrever completamente a geometria única e fortuita deste anel de Einstein,” disse Stern. “Isto permite-nos elaborar estudos de acompanhamento, por exemplo com o Telescópio Espacial James Webb, para estudar as propriedades da matéria escura da galáxia que actua como lente.”

“O nosso próximo passo é encontrar quasares que sofrem efeito de lente gravitacional ainda mais obscurecidos do que MG 1131+0456,” disse Walton. “Encontrar estas ‘agulhas’ será ainda mais difícil, mas estão lá fora, à espera de serem descobertas. Estas jóias cósmicas podem dar-nos uma compreensão mais profunda do Universo, incluindo mais informações sobre como os buracos negros super-massivos crescem e influenciam os seus arredores,” diz Walton.

Astronomia On-line
9 de Junho de 2020

3756: O Sol pode ser fruto de um acidente galáctico entre a Via Láctea e uma galáxia anã

CIÊNCIA/ASTRONOMIA

D. Minniti / VVV Survey / ESO

Uma pequena galáxia, chamada Sagitário, moldou a Via Láctea há milhares de milhões de anos: cada vez que passou perto da nossa galáxia, causou fortes explosões de formação estelar que podem até ter originado o nascimento do Sol.

A formação do Sol e do Sistema Solar ainda gera muitas dúvidas na comunidade científica, mas um novo estudo, que tem por base dados recolhidos pela central de mapas de galáxias da Agência Espacial Europeia (ESA), sugere que a nossa estrela nasceu depois de uma colisão entre a Via Láctea e a Sagitário, uma galáxia anã, há 4,7 mil milhões de anos.

As duas galáxias colidiram três vezes: a primeira há cerca de cinco ou seis mil milhões de anos; a segunda há dois mil milhões de anos; e a última há cerca de mil milhões de anos. Depois de analisarem distâncias, luminosidade e cores de estrelas, numa região de 6.500 anos-luz ao redor do Sol, os cientistas compararam com modelos de evolução estelar já existentes.

O astrónomo Tomás Ruiz-Lara, principal autor do estudo, defende a ideia de que este “acidente galáctico” deu origem ao nascimento do nosso Sol.

“No início, estamos perante uma galáxia, a Via Láctea, relativamente silenciosa. Após um período inicial de violenta formação de estrelas, parcialmente desencadeada por uma fusão anterior, a Via Láctea alcançou um estado equilibrado no qual as estrelas se formavam de maneira constante. De repente, Sagitário atrapalha o equilíbrio e faz com que todo gás e poeira anteriormente parados dentro da galáxia maior se espalhem como ondas na água”, explicou o investigador.

Em algumas áreas da Via Láctea, estas ondulações terão provocado uma maior concentração de gás e poeira. Segundo explica o New Scientist, esta densidade de material terá desencadeado a formação de novas estrelas. Aliás, segundo a equipa, a idade do Sol é consistente com uma estrela formada aquando da primeira passagem de Sagitário.

Os dados sugerem que a galáxia anã pode ter passado pelo disco da Via Láctea nos últimos 100 milhões de anos: o novo estudo constatou uma recente explosão de formação estelar, que sugere uma possível nova onda de nascimento de estrelas.

As descobertas dos astrónomos, descritas num artigo científico recentemente publicado na Nature Astronomy, foram possíveis graças ao telescópio Gaia, lançado em 2013.

ZAP //

Por ZAP
30 Maio, 2020

 

spacenews

 

3755: Northolt Branch Observatories

AT2016blu is a Luminous Blue Variable (LBV) in the galaxy NGC 4559, about 29 million light-years from Earth.

First discovered in 2012, this very massive star shows recurring outbursts every couple of months. The most recent outbursts happened in February 2020, and then again in early May. Yesterday, we observed it at +17.2 mag.

Luminous blue variables are extremely rare (there are no more than a few hundred in the entire Milky Way galaxy). They are among the most massive and brightest stars. Famous for their unpredictable outbursts, these stars are sometimes mistaken for supernovae. It is possible that some LBV lead to supernova explosions, hence why AT2016blu is monitored closely.

The famous star Eta Carinae is an example of a LBV in the Milky Way galaxy.

We have seen this star before, during the outbursts in April 2017 and February 2019. You can find those observations here:
https://bit.ly/AT2016blu_April2017
https://bit.ly/AT2016blu_Februar2019

See also:
https://en.wikipedia.org/wiki/NGC_4559
https://en.wikipedia.org/wiki/Luminous_blue_variable

Northolt Branch Observatories
Qhyccd

AT2016blu é uma variável azul luminosa (LBV) na galáxia NGC 4559, a cerca de 29 milhões de anos-luz da Terra.

Foi descoberto pela primeira vez em 2012, esta estrela muito massiva mostra explosões recorrentes a cada dois meses. As explosões mais recentes aconteceram em Fevereiro de 2020, e depois novamente no início de maio. Ontem, observamos isso em + 17.2 Mag.

As variáveis azuis luminosas são extremamente raras (não existem mais do que algumas centenas em toda a galáxia da Via Láctea). Eles estão entre as estrelas mais massivas e mais brilhantes. Famosas por suas explosões imprevisíveis, estas estrelas são às vezes confundidas com super-novas. É possível que alguns LBV levem a explosões de super-novas, daí a razão pela qual o AT2016blu é monitorizado de perto.

A famosa estrela Eta Carinae é um exemplo de um LBV na galáxia da Via Láctea.

Já vimos esta estrela antes, durante as explosões em Abril de 2017 e Fevereiro de 2019. Você pode encontrar essas observações aqui:
https://bit.ly/AT2016blu_April2017
https://bit.ly/AT2016blu_Februar2019

Ver também:
https://en.wikipedia.org/wiki/NGC_4559
https://en.wikipedia.org/wiki/Luminous_blue_variable

Northolt Branch Observatories
Qhyccd

 

spacenews

 

3748: ALMA descobre disco giratório e massivo no Universo jovem

CIÊNCIA/ASTRONOMIA

Impressão de artista de Wolfe Disk, uma galáxia massiva de disco giratório no Universo jovem e empoeirado. A galáxia foi inicialmente descoberta quando o ALMA examinou a luz de um quasar mais distante (topo esquerdo).
Crédito: NRAO/AUI/NSF, S. Dagnello

No nosso Universo de 13,8 mil milhões de anos, a maioria das galáxias como a Via Láctea forma-se gradualmente, atingindo a sua grande massa relativamente tarde. Mas uma nova descoberta feita com o ALMA (Atacama Large Millimeter/submillimeter Array), de uma galáxia massiva e de disco giratório, vista quando o Universo tinha apenas 10% da sua idade actual, desafia os modelos tradicionais de formação galáctica. Esta investigação foi publicada dia 20 de maio na revista Nature.

A galáxia DLA0817g, apelidada de “Wolfe Disk” em homenagem ao falecido astrónomo Arthur M. Wolfe, é a galáxia de disco giratório mais distante já observada. O poder incomparável do ALMA tornou possível ver esta galáxia a girar a 272 km/s, semelhante à nossa Via Láctea.

“Embora estudos anteriores tenham sugerido a existência destas galáxias precoces de disco, ricas em gás e giratórias, graças ao ALMA agora temos evidências inequívocas de que existiam apenas 1,5 mil milhões de anos após o Big Bang,” disse o autor principal Marcel Neeleman do Instituto Max Planck para Astronomia em Heidelberg, Alemanha.

Como é que “Wolfe Disk” se formou?

A descoberta de Wolfe Disk oferece um desafio para muitas simulações de formação de galáxias, que preveem que galáxias massivas, neste ponto da evolução do cosmos, cresceram através de muitas fusões de galáxias mais pequenas e aglomerados quentes de gás.

“A maioria das galáxias que encontramos no início do Universo parecem destroços de acidentes porque foram submetidas a uma fusão consistente e muitas ‘violenta’,” explicou Neeleman. “Estas fusões escaldantes dificultam a formação de discos giratórios frios e bem ordenados, como observamos no nosso Universo actual.”

Na maioria dos cenários de formação galáctica, as galáxias só começam a mostrar um disco bem formado cerca de 6 mil milhões de após o Big Bang. O facto dos astrónomos encontrarem uma galáxia deste tipo, quando o Universo tinha apenas 10% da sua idade actual, indica que outros processos de crescimento devem ter dominado.

“Pensamos que Wolfe Disk tenha crescido principalmente através de acreção constante de gás frio,” disse J. Xavier Prochaska, da Universidade da Califórnia em Santa Cruz, co-autor do artigo. “Ainda assim, uma das questões que resta é como montar uma massa tão grande de gás, mantendo um disco giratório relativamente estável.”

Formação estelar

A equipa também usou o VLA (Karl G. Jansky Very Large Array) da NSF (National Science Foundation) e o Telescópio Espacial Hubble da NASA/ESA para aprender mais sobre a formação estelar em Wolfe Disk. Nos comprimentos de onda do rádio, o ALMA analisou os movimentos e a massa de gás atómico e poeira enquanto o VLA media a quantidade de massa molecular – o combustível da formação estelar. No ultravioleta, o Hubble observou estrelas massivas. “O ritmo de formação estelar em Wolfe Disk é pelo menos dez vezes maior do que na nossa própria Galáxia,” explicou Prochaska. “Deve ser uma das galáxias de disco mais produtivas do Universo jovem.”

Uma galáxia “normal”

Wolfe Disk foi descoberta pelo ALMA em 2017. Neeleman e a sua equipa encontraram a galáxia quando examinaram a luz de um quasar mais distante. A luz do quasar foi absorvida ao passar por um enorme reservatório de hidrogénio gasoso em redor da galáxia – e foi assim que se revelou. Em vez de procurar luz directa de galáxias extremamente brilhantes, mas mais raras, os astrónomos usaram este método de “absorção” para encontrar galáxias mais fracas e mais “normais” no início do Universo.

“O facto de termos encontrado Wolfe Disk usando este método, diz-nos que pertence à população normal de galáxias presentes nos primeiros tempos,” disse Neeleman. “Quando as nossas mais recentes observações com o ALMA mostraram surpreendentemente que está a girar, percebemos que as galáxias de disco giratório precoces não são tão raras quanto pensávamos e que devem existir muitas mais por aí.”

“Esta observação resume como a nossa compreensão do Universo é aprimorada com a sensibilidade avançada que o ALMA traz à radioastronomia,” disse Joe Pesce, director do programa de astronomia da NSF, que financia o telescópio. “O ALMA permite-nos fazer descobertas novas e inesperadas em quase todas as observações.”

Astronomia On-line
26 de Maio de 2020

 

spacenews

 

3736: Há uma galáxia fria e rebelde no Universo primitivo. É a mais antiga já encontrada

CIÊNCIA/ASTRONOMIA

NRAO / AUI / NSF, S. Dagnello

Uma equipa de investigadores descobriu a galáxia de disco maciço rotativo mais distante já observada. Embora galáxias semelhantes à Via Láctea sejam comuns em todo o Universo, nunca tinha sido descoberta uma tão grande e tão antiga quanto esta.

Apelidado de Wolfe Disk, em homenagem ao falecido astrónomo Arthur M. Wolfe, a galáxia DLA0817g gira a 272 quilómetros por segundo e pesa 72 mil milhões de vezes a massa do Sol.

Esta é a galáxia de disco mais antiga alguma vez encontrada: formou-se quando o Universo tinha 10% da idade actual. As observações, conduzidas pelo Atacama Large Millimeter/submillimeter Array (ALMA), colidem com os modelos tradicionais que defendem que uma galáxia de disco maciço como esta se forme cerca de seis mil milhões de anos após o Big Bang, o que não é tão cedo.

“Embora estudos anteriores sugerissem a existência dessas galáxias em disco ricas em gás e rotativas, graças ao ALMA, agora temos evidências inequívocas de que ocorrem 1,5 mil milhões de anos após o Big Bang”, disse Marcel Neeleman, do Instituto de Astronomia Max Planck e autor principal do estudo, em comunicado.

De acordo com o New Scientist, isto pode significar que galáxias como a Via Láctea podem ter começado a formar-se muito mais cedo na História do universo do que pensávamos.

Acredita-se que as galáxias se formem através de muitas fusões de galáxias mais pequenas, bem como capturando aglomerados quentes de gás. O processo é caótico e leva a uma galáxia confusa que só se torna um objecto mais ordenado após milhares de milhões de anos.

Porém, será necessário outro mecanismo para explicar a formação desta estranha e rebelde galáxia. “Acreditamos que a Wolfe Disk tenha crescido principalmente através da acumulação constante de gás frio“, explicou o co-autor J. Xavier Prochaska, da Universidade da Califórnia. “Ainda assim, uma das questões que resta é como montar uma massa de gás tão grande, mantendo um disco rotativo relativamente estável”.

De acordo com o estudo publicado este mês na revista científica Nature, a galáxia está a formar estrelas a uma taxa 10 vezes maior do que a nossa própria galáxia. Este é uma das taxas mais altas durante aquela época do Universo, mas longe do mais alto de todos os tempos.

A galáxia foi descoberta pela primeira vez em 2017, enquanto a equipa estudava a luz de um quasar luminoso distante, um tipo específico de galáxia activa. A emissão do quasar foi alterada pela grande nuvem de hidrogénio ao redor da Wolfe Disk, permitindo a descoberta de uma galáxia muito mais fraca.

“O fato de termos encontrado a Wolfe Disk usando este método diz-nos que pertence à população normal de galáxias presentes nos primeiros tempos”, disse Neeleman. “Quando as nossas mais recentes observações do ALMA mostraram surpreendentemente que está a girar, percebemos que as galáxias em disco rotativo primitivo não são tão raras como pensávamos e que deve haver muitas mais por aí.”

ZAP //

Por ZAP
23 Maio, 2020

 

spacenews

 

3688: Northolt Branch Observatories

CIÊNCIA/ASTRONOMIA

2020jfo is a type II supernova in the spiral galaxy Messier 61, located about 53 million light-years away in the direction of the constellation Virgo.

This supernova was discovered at the Zwicky Transient Facility, Palomar Mountain, on May 6th. We imaged it on May 11th. Its brightness was +14.7 mag at that time.

Northolt Branch Observatories
Qhyccd

 

spacenews

 

MeerKAT resolve mistério de “galáxias-X

CIÊNCIA/ASTRONOMIA

A galáxia PKS 2014-55, localizada a 800 milhões de anos-luz da Terra, está classificada como tendo “forma X” devido à sua aparência em imagens anteriores relativamente difusas. O detalhe fornecido nesta imagem rádio obtida pelo telescópio MeerKAT indica que a sua forma é melhor descrita como um “boomerang duplo”. Dois poderosos jactos de ondas de rádio, indicados em azul, estendem-se cada um a 2,5 milhões de anos-luz para o espaço (comparável à distância entre a Via Láctea e a Galáxia de Andrómeda, a nossa grande vizinha galáctica mais próxima). Eventualmente, são “dobrados” pela pressão do ténue gás intergaláctico. À medida que fluem novamente para a galáxia central, são desviados pela pressão relativamente alta do gás em braços de boomerang mais curtos e horizontais. A imagem de fundo mostra luz visível de uma miríade de galáxias no Universo distante. Adaptado de W. Cotton et al., MNRAS (2020).
Crédito: NRAO/AUI/NSF; SARAO; DES

Muitas galáxias, bem mais activas do que a Via Láctea, têm enormes jactos gémeos de ondas de rádio que se estendem até ao espaço intergaláctico. Normalmente, estes seguem direcções opostas, provenientes de um buraco negro massivo no centro da galáxia. No entanto, alguns são mais complicados e parecem ter quatro jactos formando um “X” no céu.

Foram propostas várias explicações a fim de entender este fenómeno. Estas incluem mudanças na direcção da rotação do buraco negro no centro da galáxia, e jactos associados, ao longo de milhões de anos; dois buracos negros, cada um associado a um par de jactos; e material que cai para a galáxia e que é desviado em direcções diferentes, formando os dois outros braços do “X”.

As novas e requintadas observações, pelo MeerKAT, de uma dessas galáxias, PKS 2014-55, favorecem fortemente a última explicação, pois mostram o material a “virar a esquina” à medida que flui de volta para a galáxia hospedeira; os resultados foram aceites para publicação na revista Monthly Notices of the Royal Astronomical Society.

Este trabalho foi realizado por uma equipa do SARAO (South African Radio Astronomy Observatory), do NRAO (National Radio Astronomy Observatory) dos EUA, da Universidade de Pretória e da Universidade de Rhodes.

Estudos anteriores destas galáxias invulgares não tinham a alta qualidade fornecida pelo telescópio MeerKAT, recentemente concluído. Este conjunto de telescópios consiste de 64 antenas de rádio localizadas no semi-deserto de Karoo, na província do Cabo Setentrional, na África do Sul. Os computadores combinaram os dados dessas antenas num telescópio com 8 km de diâmetro e forneceram imagens rádio da galáxia PKS 2014-55 com qualidade sem precedentes, o que permitiu resolver o mistério da sua forma.

Bernie Fanaroff, ex-director do projecto SKA (Square Kilometre Array) na África do Sul que construiu o MeerKAT e co-autor do estudo, observa que “o MeerKAT foi construído para ser o melhor do mundo dentro do seu género. É maravilhoso ver como as suas capacidades únicas estão a contribuir para resolver questões de longa data relacionadas com a evolução das galáxias.”

O autor principal William Cotton do NRAO diz que o “MeerKAT pertence a uma nova geração de instrumentos cujo poder resolve quebra-cabeças antigos, ao mesmo tempo que encontra novos – esta galáxia mostra características nunca antes vistas com este detalhe e que não são totalmente compreendidas.” Investigações sobre estas questões em aberto já estão em andamento.

Astronomia On-line
12 de Maio de 2020

 

spacenews

3632: Spitzer detecta “dança” de dois buracos negros. Brilham mais do que um bilião de estrelas

CIÊNCIA/ASTRONOMIA

NASA / JPL-Caltech
Dois buracos negros na galáxia OJ 287

Observações feitas com o Telescópio Espacial Spitzer da NASA – que se reformou no início do ano depois de 16 anos de observações – revelaram o momento exacto de uma dança entre dois buracos negros.

No centro da galáxia OJ 287 moram dois buracos negros dançantes. Um deles é cercado por um disco de gás e o segundo buraco negro que o orbita colide a cada 12 anos com o disco, produzindo um brilho intenso, muito mais brilhante do que um bilião de estrelas.

Segundo adianta o portal EurekAlert, o fenómeno que ocorre nesta galáxia, a 3,5 mil milhões de anos-luz da Terra, foi captado pelo telescópio Spitzer.

O buraco negro no centro da OJ 287 é 18 mil milhões de vezes mais massivo que o Sol, sendo um dos maiores que a NASA alguma vez detectou. O segundo é um buraco negro mais “pequeno”, mas ainda assim, 150 milhões de vezes mais massivo do que a nossa estrela.

De acordo com a agência espacial norte-americana, os buracos negros estão numa “dança” porque não estão parados no espaço, movendo-se activamente pela galáxia. No entanto, como são negros não podem ser observados directamente, o que dificulta o seu estudo.

A cada 12 anos, o buraco negro mais pequeno choca contra o enorme disco de gás do outro buraco. Por ter uma orbita irregular de 12 anos, os buracos negros colidem em diferentes alturas do seu ciclo.

O choque cria um flash de luz muito mais brilhante do que toda a Via Láctea. Quando ocorre o choque, são criadas duas nuvens de gás quente que se movem do disco em direcções opostas e, em menos de 48 horas, o brilho do sistema parece quadruplicar de intensidade.

Como este fenómeno ocorre de 12 em 12 anos, é muito difícil registar a sua previsão. No entanto, um grupo de investigadores afirma que o último choque ocorreu no dia 31 de Julho de 2019 e foi captado pelo telescópio Spitzer. Este foi um dos seus últimos registos, antes de se reformar em Janeiro deste ano.

ZAP //

Por ZAP
4 Maio, 2020

 

spacenews

 

Spitzer revela o “timing” preciso de uma dança de dois buracos negros

Esta imagem mostra dois buracos negros massivos na galáxia OJ 287. O buraco negro mais pequeno orbita o maior, que também está rodeado por um disco de gás. Quando o buraco negro mais pequeno atravessa o disco, produz um clarão mais brilhante do que um bilião de estrelas.
Crédito: NASA/JPL-Caltech

Os buracos negros não são estacionários no espaço; de facto, podem ser bastante activos no que toca aos seus movimentos. Mas como são completamente escuros e não podem ser observados directamente, não são fáceis de estudar. Os cientistas finalmente descobriram o movimento exacto de uma dança complicada entre dois buracos negros enormes, revelando detalhes ocultos sobre as características físicas destes misteriosos objectos.

A galáxia OJ 287 abriga um dos maiores buracos negros já encontrados, com mais de 18 mil milhões de vezes a massa do nosso Sol. Em órbita deste gigante está outro buraco negro com cerca de 150 milhões de massas solares. Duas vezes a cada 12 anos, o buraco negro mais pequeno atinge o enorme disco de gás que rodeia o seu companheiro maior, criando um “flash” de luz mais brilhante do que um bilião de estrelas – ainda mais brilhante do que toda a Via Láctea. A luz demora 3,5 mil milhões de anos para chegar à Terra.

Mas a órbita do buraco negro mais pequeno é oblonga, não é circular, e é irregular: muda de posição a cada translação em torno do buraco negro maior e está inclinada em relação ao disco de gás. Quando o buraco negro mais pequeno atravessa o disco, cria duas bolhas de gás quente em expansão que se afastam em direcções opostas e, em menos de 48 horas, o sistema parece quadruplicar em brilho.

Por causa da órbita irregular, o buraco negro colide com o disco a diferentes alturas de cada órbita de 12 anos. Às vezes, os surtos de brilho surgem com apenas um ano de diferença; outras vezes, com até 10 anos de diferença. As tentativas de modelar a órbita e prever estas explosões de brilho levaram décadas, mas, em 2010, os cientistas criaram um modelo que podia prever a sua ocorrência com um grau de incerteza de uma a três semanas. Demonstraram que o seu modelo estava correto prevendo o aparecimento de um surto em Dezembro de 2015 com um grau de incerteza tão pequeno quanto três semanas.

Em 2018, um grupo de cientistas liderados por Lankeswar Dey, estudante do Instituto Tata de Pesquisa Fundamental em Mumbai, Índia, publicaram um artigo com um modelo ainda mais detalhado que afirmam ser capaz de prever o momento de futuros surtos até 4 horas. Num novo estudo publicado na revista The Astrophysical Journal Letters, esses cientistas relataram que a sua previsão, com precisão, de um surto que ocorreu no dia 31 de Julho de 2019 confirma que o modelo está correto.

A observação desse surto quase que não aconteceu. Dado que OJ 287 estava perto do Sol, a partir da perspectiva da Terra, fora da vista de todos os telescópios no solo e em órbita da Terra, o buraco negro só voltaria a ser visto por esses telescópios no início de Setembro, muito depois do clarão. Mas o sistema estava à vista do Telescópio Espacial Spitzer da NASA, que a agência reformou em Janeiro de 2020.

Após 16 anos de operações, a sua órbita colocou o telescópio a 254 milhões de quilómetros da Terra, ou mais de 600 vezes a distância Terra-Lua. A partir deste ponto de vista, o Spitzer pôde observar o sistema de 31 de Julho (o mesmo dia que o surto estava previsto ocorrer) até ao início de Setembro, quando OJ 287 se tornaria observável aos telescópios da Terra.

“Quando verifiquei pela primeira vez a visibilidade de OJ 287, fiquei chocado ao descobrir que ficou visível ao Spitzer no dia em que se previa a próxima explosão de brilho,” disse Seppo Laine, cientista associado do Caltech/IPAC em Pasadena, no estado norte-americano da Califórnia, que supervisionou as observações do sistema pelo Spitzer. “Tivemos muita sorte em poder capturar o pico deste surto com o Spitzer, porque nenhum outro instrumento feito por humanos era capaz de alcançar este feito naquele momento específico.”

Ondulações no espaço

Os cientistas modelam regularmente as órbitas de objectos pequenos no nosso Sistema Solar, como um cometa que gira em torno do Sol, levando em consideração os factores que mais influenciam significativamente os seus movimentos. Para esse cometa, a gravidade do Sol é geralmente a força dominante, mas a força gravitacional dos planetas próximos também pode mudar o seu percurso.

A determinação do movimento de buracos negros enormes é muito mais complexa. Os cientistas têm que ter em conta factores que podem não impactar visivelmente objectos mais pequenos; o factor principal é algo a que chamamos ondas gravitacionais. A teoria da relatividade geral de Einstein descreve a gravidade como a distorção do espaço devido à massa de um objecto. Quando um objecto se move pelo espaço, estas distorções transformam-se em ondas. Einstein previu a existência de ondas gravitacionais em 1916, mas só foram observadas directamente em 2015 pelo LIGO (Laser Interferometer Gravitational Wave Observatory).

Quanto maior a massa de um objecto, maiores e mais energéticas as ondas gravitacionais que cria. No sistema OJ 287, os cientistas esperam que as ondas gravitacionais sejam tão grandes que transportem energia suficiente para fora do sistema e alterem de forma mensurável a órbita do buraco negro mais pequeno – e, portanto, o momento das explosões de brilho.

Embora estudos anteriores de OJ 287 tenham tido em conta as ondas gravitacionais, o modelo de 2018 é o mais detalhado até agora. Ao incorporar as informações recolhidas das detecções de ondas gravitacionais pelo LIGO, refina a janela temporal na qual se espera a ocorrência de um surto até apenas dia e meio.

Para refinar ainda mais a previsão dos surtos até um grau de incerteza de 4 horas, os cientistas analisaram detalhes sobre as características físicas do buraco negro maior. Especificamente, o novo modelo incorpora algo chamado teorema “sem cabelo” dos buracos negros.

Publicado na década de 1960 por um grupo de físicos que incluía Stephen Hawking, o teorema faz uma previsão sobre a natureza das “superfícies” dos buracos negros. Embora os buracos negros não tenham superfícies verdadeiras, os cientistas sabem que há um limite em seu redor além do qual nada – nem mesmo a luz – pode escapar. Algumas ideias postulam que a orla externa, chamada horizonte de eventos, pode ser irregular, mas o teorema sem cabelo postula que a “superfície” não possui essas características, nem mesmo cabelo (o nome do teorema é uma piada).

Por outras palavras, se alguém cortasse o buraco negro ao meio ao longo do seu eixo de rotação, a superfície seria simétrica (o eixo de rotação da Terra está quase perfeitamente alinhado com os pólos norte e sul. Se cortássemos o planeta pela metade, ao longo desse eixo, e comparássemos as duas partes, descobriríamos que o nosso planeta é basicamente simétrico, embora características como oceanos e montanhas criem algumas pequenas variações entre as metades).

Encontrando Simetria

Na década de 1970, o professor emérito Kip Thorne, de Caltech, descreveu como este cenário – um satélite que orbita um buraco negro massivo – podia potencialmente revelar se a superfície do buraco negro era macia ou irregular. Ao antecipar correctamente a órbita do buraco negro menor com tanta precisão, o novo modelo suporta o teorema sem cabelo, o que significa que a nossa compreensão básica destes objectos cósmicos incrivelmente estranhos está correta. O sistema OJ 287, por outras palavras, suporta a ideia de que as superfícies dos buracos negros são simétricas ao longo dos seus eixos de rotação.

Então, como é que a suavidade da superfície do buraco negro massivo impacta o “timing” da órbita do buraco negro mais pequeno? Essa órbita é determinada principalmente pela massa do buraco negro maior. Se crescesse mais ou perdesse um pouco da sua massa, isso mudaria o tamanho da órbita do buraco negro mais pequeno. Mas a distribuição da massa também importa. Uma protuberância massiva de um lado do buraco negro maior distorceria o espaço em seu redor de maneira diferente do que se o buraco negro fosse simétrico. Isso alteraria o percurso do buraco negro mais pequeno à medida que orbita o seu companheiro e mudaria de maneira mensurável o tempo da colisão do buraco negro com o disco nessa órbita em particular.

“É importante, para os cientistas dos buracos negros, que provemos ou refutemos o teorema sem cabelo. Sem ele, não podemos confiar que os buracos negros imaginados por Hawking e outros existam,” disse Mauri Valtonen, astrofísico da Universidade de Turku na Finlândia e co-autor do artigo.

Astronomia On-line
1 de Maio de 2020

 

spacenews

3608: Hubble capta galáxia espiral (cercada por um segundo par de braços espirais)

CIÊNCIA/ASTRONOMIA

NASA / ESA / Hubble / J. Greene
Galáxia NGC 2273

O Telescópio Hubble capturou a imagem incomum de uma galáxia espiral, na qual os braços espirais contêm um segundo par.

O Telescópio Espacial Hubble continua a revelar-nos segredos impressionantes do Universo. O mais recente é uma imagem peculiar da galáxia NGC 2273, uma galáxia espiral semelhante à Via Láctea que contém um segundo par de braços espirais.

À semelhança de um quasar, o núcleo muito activo da NGC 2273 é alimentado por um buraco negro super-massivo. Isso faz com que a região central da galáxia brilhe em vários comprimentos de onda, ao ponto de ofuscar todas as outras estrelas.

Aliás, foi o seu brilho fora do comum que permitiu a sua detecção, no final do século XIX, apesar de estar a 95 milhões de anos-luz de distância, revela o Universe Today.

À primeira vista, a NGC 2273 parece uma galáxia espiral comum, com dois braços giratórios que se estendem a partir de uma barra central composta por estrelas densamente compactadas, gás e poeira.

No entanto, estes braços escondem um segundo par de braços em espiral, o que faz desta galáxia uma estrutura com múltiplas conexões, composta por anéis internos e um conjunto de “pseudoanéis” externos.

Esta característica é muito peculiar. De acordo com a teoria predominante da formação e evolução das galáxias, os anéis são criados quando os braços espirais de uma galáxia dão voltas ao redor do centro galáctico e parecem ficar “aninhados”, perto um do outro.

Os astrónomos acreditam que os “pseudoanéis” de NGC 2273 se formaram graças a dois conjuntos de braços em espiral que se uniram e o anel interno por duas estruturas em arco mais próximas ao centro galáctico.

A NASA estima que o Hubble continuará a orbitar a Terra até 2030 ou 2040. Até lá, podem surgir mais surpresas impressionantes como esta.

ZAP //

Por ZAP
28 Abril, 2020

 

spacenews

 

3607: Estrela sobrevive quase-encontro com buraco negro gigante

CIÊNCIA/ASTRONOMIA

Ilustração do buraco negro e da anã branca.
Crédito: raios-X – NASA/CXO/CSIC-INTA/G.Miniutti et al.; Ilustração – NASA/CXC/M. Weiss

Os astrónomos podem ter descoberto um novo tipo de história de sobrevivência: uma estrela que teve um encontro próximo com um buraco negro gigante e sobreviveu para contar a narrativa através de emissões de raios-X.

Dados do Observatório de raios-X da NASA e do XMM-Newton da ESA descobriram a história que começou com uma gigante vermelha que passou demasiado perto de um buraco negro super-massivo numa galáxia a cerca de 250 milhões de anos-luz da Terra. O buraco negro, localizado numa galáxia chamada GSN 069, tem uma massa de cerca de 400.000 vezes a do Sol, colocando-o na extremidade inferior da gama dos buracos negros super-massivos.

Assim que a gigante vermelha foi capturada pela gravidade do buraco negro, as camadas externas da estrela contendo hidrogénio foram arrancadas e levadas para o buraco negro, deixando o núcleo da estrela – conhecido como anã branca – para trás.

“Na minha interpretação dos dados de raios-X, a anã branca sobreviveu, mas não escapou,” disse Andrew King, da Universidade de Leicester, Reino Unido, que realizou este estudo. “Agora está presa numa órbita elíptica em torno do buraco negro, completando uma viagem aproximadamente a cada nove horas.”

À medida que a anã branca faz quase três órbitas por cada dia terrestre, o buraco negro retira material na sua maior aproximação (a não mais do que 15 vezes o raio do horizonte de eventos – o ponto de não retorno – do buraco negro). O detrito estelar entra num disco em redor do buraco negro e liberta um surto de raios-X que o Chandra e o XMM-Newton podem detectar. Além disso, King prevê que ondas gravitacionais serão emitidas pelo par constituído pelo buraco negro e pela anã branca, especialmente no seu ponto mais próximo.

Qual será o futuro da estrela e da sua órbita? O efeito combinado das ondas gravitacionais e uma mudança no tamanho da estrela à medida que perde massa deverá fazer com que a órbita se torne mais circular e cresça em tamanho. O ritmo de perda de massa diminui constantemente, assim como a distância da anã branca ao buraco negro aumenta.

“Vai esforçar-se para fugir, mas não há escapatória. O buraco negro vai devorar a anã branca cada vez mais lentamente, mas nunca parará,” disse King. “Em princípio, esta perda de massa vai continuar até e mesmo depois da anã branca desvanecer até à massa de Júpiter, daqui a um bilião de anos. Esta seria uma maneira notavelmente lenta e complicada do Universo formar um planeta!”

Os astrónomos encontraram muitas estrelas que foram completamente destruídas por encontros com buracos negros (os chamados eventos de perturbação de maré), mas há muito poucos casos relatados de “quase-encontros”, onde a estrela provavelmente sobreviveu.

Encontros próximos como este devem ser mais comuns do que colisões directas, dadas as estatísticas dos padrões de tráfego cósmico, mas podem ser facilmente não observados por várias razões. Primeiro, uma estrela sobrevivente mais massiva pode demorar demasiado tempo a concluir uma órbita em torno do buraco negro para os astrónomos observem surtos repetidos. Outra questão é que os buracos negros super-massivos que são muito mais massivos do que o situado na galáxia GSN 069 podem engolir directamente uma estrela, em vez desta cair para órbitas onde perde massa periodicamente. Nestes casos, os astrónomos nada observariam.

“Em termos astronómicos, este evento só é visível através dos nossos telescópios actuais por um curto período de tempo – cerca de 2000 anos,” disse King. “De modo que a menos que tenhamos uma sorte extraordinária de ter capturado este evento, podem haver muito mais que estejamos a perder. Tais encontros podem ser uma das principais maneiras dos buracos negros do tamanho do buraco negro de GSN 069 crescerem.”

King prevê que a anã branca tem uma massa de apenas dois-décimos da massa do Sol. Se a anã branca era o núcleo da gigante vermelha que foi completamente despojada do seu hidrogénio, deverá ser rica em hélio. O hélio teria sido criado pela fusão de átomos de hidrogénio durante a evolução da gigante vermelha.

“É incrível pensar que a órbita, a massa e a composição de uma pequena estrela a 250 milhões de anos-luz de distância podem ser inferidas,” disse King.

King fez uma previsão com base no seu cenário. Dado que a anã branca está tão perto do buraco negro, os efeitos da Teoria da Relatividade Geral significam que a direcção do eixo da órbita deve oscilar, ou “precessar”. Esta oscilação deve repetir-se a cada dois dias e pode ser detectável com observações suficientemente longas.

O artigo que descreve estes resultados foi publicado na edição de Março de 2020 da revista Monthly Notices of the Royal Astronomical Society e está disponível online.

Astronomia On-line
28 de Abril de 2020

 

spacenews

 

3590: Não se deixe enganar pelo seu aspecto sereno. Esta galáxia é canibal

CIÊNCIA/ASTRONOMIA

ESA / Hubble & Nasa, D. Leonard
NGC 4651

Não se deixe enganar pelo seu aspecto tranquilo e sereno. Na verdade, esta galáxia, conhecida como NGC 4651, esconde um violento segredo.

O Telescópio Espacial Hubble, da NASA, capturou a imagem de uma galáxia notável, conhecida como NGC 4651. Segundo o Tech Explorist, graças à sua estrutura em forma de guarda-chuva, a galáxia é também conhecida como “galáxia Umbrella”.

Apesar de parecer pacífica e serena enquanto gira no vasto e silencioso vazio do Espaço, esta galáxia esconde um segredo violento: a NGC 4651 engoliu uma outra galáxia mais pequena, e foi assim que se tornou a espiral grande e bonita que conseguimos observar actualmente, explicou a NASA em comunicado.

A NGC 4651, descoberta a 30 de Dezembro de 1783 por William Herschel, fica a, aproximadamente, 93 milhões de anos-luz de distância na constelação de Coma Berenices, no Aglomerado de Virgem, um sistema massivo com vários milhares de galáxias que domina o super-aglomerado de Virgem.

A estrutura em forma de guarda-chuva, que deu origem à sua alcunha, é composta por correntes estelares, remanescentes da galáxia mais pequena que foi dilacerada pelas forças de maré da NGC 4651.

Só um telescópio como o Hubble consegue proporcionar-nos uma imagem tão nítida desta galáxia canibal. No entanto, a NGC 4651 também pode ser observada com um telescópio amador. Se tiver um telescópio em casa e for amante de astronomia, não perca a oportunidade de procurar esta espiral canibal brilhante.

ZAP //

Por ZAP
23 Abril, 2020

 

spacenews

 

3485: Gaia sugere que distorção da Via Láctea foi provocada por colisão galáctica

CIÊNCIA/ASTRONOMIA

O disco galáctico da Via Láctea, a nossa Galáxia, não é achatado mas distorcido para cima num lado e para baixo no outro. Dados do satélite de mapeamento estelar da ESA, Gaia, fornecem novas informações sobre o comportamento da distorção e das suas possíveis origens.
As duas galáxias mais pequenas perto do canto inferior direito são as Nuvens de Magalhães, duas galáxias satélite da Via Láctea.
Crédito: Stefan Payne-Wardenaar; Nuvens de Magalhães: Robert Gendler/ESO

Os astrónomos ponderam há anos porque é que a nossa Galáxia, a Via Láctea, é distorcida. Dados do satélite de mapeamento estelar da ESA, Gaia, sugerem que a distorção pode ser provocada por uma colisão, em curso, com outra galáxia mais pequena, que envia ondulações através do disco galáctico como uma rocha atirada para a água.

Os astrónomos sabem desde o final da década de 1950 que o disco da Via Láctea – onde reside a maioria das centenas de milhares de milhões de estrelas – não é plano, mas um pouco curvo para cima num lado e para baixo no outro. Durante anos, debateram o que está a provocar esta distorção. Propuseram várias teorias, incluindo a influência do campo magnético intergaláctico ou os efeitos de um halo de matéria escura, uma grande quantidade de matéria invisível que se pensa rodear as galáxias. Se tal halo tivesse uma forma irregular, a sua força gravitacional podia dobrar o disco galáctico.

Mais depressa do que o esperado

Com o seu levantamento único de mais de mil milhões de estrelas na nossa Galáxia, o Gaia pode ser a chave para resolver este mistério. Uma equipa de cientistas que utiliza dados do segundo lançamento do Gaia confirmou agora pistas anteriores de que esta distorção não é estática, mas que muda a sua orientação ao longo do tempo. Os astrónomos chamam a este fenómeno precessão e pode ser comparado à oscilação de um pião à medida que o seu eixo gira.

Além disso, a velocidade com que a distorção precede é muito superior ao esperado – mais rápida do que o campo magnético intergaláctico ou do que o halo de matéria escura podiam permitir. Isto sugere que a distorção deve ser provocada por outra coisa. Algo mais poderoso – como uma colisão com outra galáxia.

“Nós medimos a velocidade da distorção comparando os dados com os nossos modelos. Com base na velocidade obtida, a distorção completaria uma rotação em torno do centro da Via Láctea em 600 a 700 milhões de anos,” diz Eloisa Poggio, do Observatório Astrofísico de Turim, na Itália, autora principal do estudo, publicado na revista Nature. “Isto é muito mais depressa do que esperávamos, com base em previsões de outros modelos, como aqueles que observam os efeitos do halo não esférico.”

O poder estelar do Gaia

A velocidade da distorção é, no entanto, inferior à velocidade a que as estrelas propriamente ditas orbitam o centro galáctico. O Sol, por exemplo, completa uma rotação em cerca de 220 milhões de anos.

Estas informações só foram possíveis graças à capacidade sem precedentes da missão Gaia em mapear a nossa Galáxia, a Via Láctea, em 3D, determinando com precisão as posições de mais de mil milhões de estrelas no céu e estimando a sua distância. O telescópio parecido com um disco voador também mede as velocidades nas quais as estrelas individuais se movem no céu, permitindo que os astrónomos “vejam o filme” da história da Via Láctea para trás e para a frente no tempo, ao longo de milhões de anos.

“É como ter um carro e tentar medir a velocidade e a direcção da viagem deste carro ao longo de um período muito curto e, com base nesses valores, tentar modelar a trajectória passada e futuro do carro,” diz Ronald Drimmel, investigador do Observatório Astrofísico de Turim e co-autor do artigo. “Se fizermos essas medições para muitos carros, podemos modelar o fluxo de tráfego. Da mesma forma, medindo os movimentos aparentes de milhões de estrelas no céu, podemos modelar processos em larga escala, como o movimento da distorção.”

Sagitário?

Os astrónomos ainda não sabem qual é a galáxia que pode estar a provocar a ondulação nem quando a colisão começou. Um dos candidatos é Sagitário, uma galáxia anã que orbita a Via Láctea, que se pensa ter atravessado o disco galáctico da Via Láctea várias vezes no passado. Os astrónomos pensam que Sagitário será gradualmente absorvida pela Via Láctea, um processo que já está em andamento.

“Com o Gaia, pela primeira vez, temos uma grande quantidade de dados sobre uma grande quantidade de estrelas, cujo movimento é medido com precisão para que possamos tentar entender os movimentos em larga escala da galáxia e modelar a sua história de formação,” diz Jos de Bruijne, vice-cientista do projecto Gaia da ESA. “Isto é algo único. Esta é realmente a revolução do Gaia.”

Por mais impressionantes que a distorção e a sua precessão pareçam ser à escala galáctica, os cientistas asseguram que não tem efeitos visíveis na vida no nosso planeta.

Distante o suficiente

“O Sol está a uma distância de 26.000 anos-luz do centro galáctico, onde a amplitude da distorção é muito pequena,” diz Eloisa. “As nossas medições foram dedicadas principalmente às partes externas do disco galáctico, a 52.000 anos-luz do centro galáctico e além.”

O Gaia já tinha descoberto anteriormente evidências de colisões entre a Via Láctea e outras galáxias no passado recente e distante, que ainda podem ser observadas nos padrões de movimento de grandes grupos de estrelas milhares de milhões de anos após os eventos terem ocorrido.

Entretanto, o satélite, actualmente no seu sexto ano de missão, continua a estudar o céu e um consórcio europeu está ocupado a processar e a analisar os dados que continuam a ser transmitidos para a Terra. Os astrónomos de todo o mundo estão ansiosos pelos próximos dois lançamentos de dados do Gaia, planeados para o final de 2020 e para a segunda metade de 2021, respectivamente, para continuar a enfrentar os mistérios da galáxia a que chamamos casa.

Astronomia On-line
6 de Março de 2020

 

spacenews

 

3422: Galáxia gigante que deixou cedo de formar estrelas surpreende astrónomos

CIÊNCIA/ASTRONOMIA

Imagem da galáxia Messier 81 Foto: EPA

Astrónomos identificaram uma galáxia primitiva gigantesca que deixou de formar estrelas muito cedo, quando o Universo tinha 1,8 mil milhões de anos, um fenómeno invulgar descrito num estudo publicado na revista científica Astrophysical Journal.

A galáxia XMM-2599 produziu a maioria das suas estrelas quando o Universo tinha menos de mil milhões de anos, tornando-se inactiva ao fim de pouco mais de 800 milhões de anos. Ou seja, a galáxia viveu rápido e morreu jovem.

“Nesta época, muito poucas galáxias pararam de formar estrelas e nenhuma era tão ‘massiva’ como a XMM-2599”, sustentou um dos autores do estudo, Gillian Wilson, professor de Física e Astronomia na Universidade da Califórnia, nos Estados Unidos.

A razão por que a galáxia deixou repentinamente de formar estrelas continua por esclarecer. Uma das hipóteses admitidas pelos astrónomos é que terá deixado de ter combustível (gás) para queimar.

Segundo o estudo, citado em comunicado pela Universidade da Califórnia, a ‘XMM-2599’ já tinha uma massa superior à de 300 mil milhões de estrelas como o Sol quando o Universo tinha menos de dois mil milhões de anos (a teoria do Big Bang estima a idade do Universo em cerca de 14 mil milhões de anos).

No seu pico de actividade, a galáxia gerou estrelas que totalizaram num só ano uma massa superior à de mil estrelas como o Sol, “uma taxa de formação de estrelas extremamente alta”, salientam os autores da investigação.

O padrão de evolução da galáxia é uma incógnita para os astrónomos, que a detectaram do Observatório W. M. Keck, no Havai, nos Estados Unidos, na sua fase inactiva.

Uma questão que os especialistas colocam é se a XMM-2599 poderá ter atraído gravitacionalmente galáxias vizinhas que estão a formar estrelas, gerando um aglomerado de galáxias.

Jornal de Notícias
06/02/2020 às 16:15

spacenews

 

3338: Descoberto pela primeira vez um campo magnético gigante numa galáxia distante

CiÊNCIA/ASTRONOMIA

Composite image by Jayanne English (Univ. of Manitoba). Radio data: Jansky-VLA (Silvia Carolina Mora-Partiarroyo et al. 2019). Optical data: Mayall 4-meter telescope (Maria Patterson and Rene Walterbos, New Mexico State Univ.). Software code for tracing the magnetic field lines: Arpad Miskolczi (Ruhr-Univ. Bochum)

Pela primeira vez, uma equipa internacional de astrónomos captou o campo magnético em grande escala presente no halo galáctico em torno da galáxia NGC 4631, também conhecida como “Whale Galaxy”, localizada a 30 milhões de anos-luz da Terra.

A descoberta, relatada em Novembro na revista científica Astronomy & Astrophysics, foi possível graças a observações do radiotelescópio Karl G. Jansky da National Science Foundation, que permitiu que a equipa descobrisse a direcção e a força do campo magnético.

“Esta é a primeira vez que detectamos claramente o que os astrónomos chamam de campos magnéticos coerentes e de larga escala, no halo de uma galáxia espiral, com as linhas de campo alinhadas na mesma direcção por distâncias de mil anos-luz. Vimos até um padrão regular desse campo organizado a mudar de direcção”, afirmou Marita Krause, do Instituto Max-Planck de Radioastronomia, em comunicado.

Na imagem captada pelos astrónomos, uma visão óptica da galáxia é sobreposta com uma representação das direcções do campo magnético, estendendo-se no halo acima e abaixo do disco da galáxia. A região azul mostra áreas do campo magnético que são apontadas para longe do observador, enquanto as linhas verdes estão a apontar para nós. Existem regiões azuis e verdes alternadas, algo nunca antes visto no halo de uma galáxia.

Estudar o campo magnético além do disco de uma galáxia é importante para a nossa compreensão sobre a evolução da galáxia, tanto em termos gerais como nos termos mais minuciosos que influenciam a formação de sistemas solares como o nosso.

“Para entender como estrelas como o Sol e planetas como a Terra surgiram, precisamos de entender como as galáxias, como a Via Láctea, se formam e evoluem”, explicou Matthew Benacquista, director de projectos da Divisão de Ciências Astronómicas da NSF. “Este projecto é uma tentativa de medir os campos magnéticos galácticos e aprender como influenciam a forma como os gases interestelares são ejectados dos discos das galáxias e contribuem para a formação e evolução das galáxias”.

A técnica usada neste trabalho será agora aplicada a outras galáxias.

ZAP //

Por ZAP
9 Janeiro, 2020

spacenews

 

3336: Astrónomos descobrem uma galáxia distante cercada por um misterioso anel de hidrogénio

CIÊNCIA/ASTRONOMIA

(dr)

Astrónomos do National Centre for Radio Astrophysics, em Pune, na Índia, descobriram uma galáxia gigante que está cercada por um misterioso anel de hidrogénio.

A galáxia, chamada AGC 203001, localizada a cerca de 260 milhões de anos-luz de distância, foi descoberta com o Giant Metrewave Radio Telescope (GMRT). O anel de hidrogénio que envolve a galáxia é muito maior em comparação com a própria galáxia, com um diâmetro de 380 mil anos-luz – quatro vezes o tamanho da Via Láctea.

De acordo com um artigo publicado em Outubro na revista científica Monthly Notices da Royal Astronomical Society, pensa-se que as galáxias com anéis tenham resultado de uma colisão entre duas galáxias que fez com que o gás e as estrelas se expandissem na forma de um anel.

Os astrónomos explicaram, em comunicado, que estas estruturas circulares em torno das galáxias são muito raras, uma que vez apenas uma destas estruturas foi observada – o Anel de Leão. Nenhuma estrela foi observada neste anel em particular, o que deixou os cientistas perplexos, porque outros anéis de gás encontrados continham estrelas.

Embora ainda não seja claro como se formam estes anéis gasosos descentralizados, a formação de anéis de hidrogénio sem estrelas é também um mistério.

Como no caso da formação por colisão, os investigadores explicam que, nesse cenário, o impacto também leva a grandes quantidades de formação de estrelas que não são observadas no anel.

Em estudos futuros, a equipa de cientistas vai realizar mais investigações para mapear os anéis de hidrogénio neutro em torno de galáxias semelhantes para saber mais sobre estes raros fenómenos.

ZAP //

Por ZAP
8 Janeiro, 2020

spacenews

 

3327: A vida turbulenta de dois buracos negros super-massivos apanhados numa colisão galáctica

CIÊNCIA/ESPAÇO

A galáxia NGC 6240, vista pelo ALMA (topo) e pelo Telescópio Espacial Hubble (baixo). Na imagem ALMA, o gás molecular é azul e os buracos negros são os pontos vermelhos. A imagem ALMA fornece a visão mais detalhada do gás molecular em torno dos buracos negros nesta galáxia em fusão.
Crédito: ALMA (ESO/NAOJ/NRAO), E. Treister; NRAO/AUI/NSF, S. Dagnello; NASA/ESA Hubble

Uma equipa internacional de astrónomos usou o ALMA (Atacama Large Millimeter/submillimeter Array) para criar a imagem mais detalhada de sempre do gás em redor de dois buracos negros super-massivos numa galáxia em fusão.

A 400 milhões de anos-luz da Terra, na direcção da constelação de Ofiúco, duas galáxias estão a colidir entre si e a formar uma galáxia conhecida como NGC 6240. Esta galáxia de forma peculiar já foi observada muitas vezes, pois está relativamente perto. Mas NGC 6240 é complexa e caótica. A colisão entre as duas galáxias ainda está em andamento, trazendo com elas dois buracos negros super-massivos em crescimento que provavelmente se vão fundir num buraco negro ainda maior.

Para compreender o que está a acontecer em NGC 6240, os astrónomos querem observar em detalhe a poeira e o gás em redor dos buracos negros, mas as imagens anteriores não eram nítidas o suficiente para tal. Novas observações do ALMA aumentaram a resolução das imagens por um factor de dez – mostrando pela primeira vez a estrutura do gás frio na galáxia, mesmo dentro da esfera de influência dos buracos negros.

“A chave para entender esta sistema galáctico é o gás molecular,” explicou Ezequiel Treister da Pontificia Universidad Católica em Santiago, Chile. “Este gás é o combustível necessário para formar estrelas, mas também alimenta os buracos negros super-massivos, o que lhes permite crescer.”

A maior parte do gás está localizado numa região entre os dois buracos negros. Observações menos detalhadas, feitas anteriormente, haviam sugerido que este gás podia ser um disco giratório. “Não encontramos nenhuma evidência para isso,” disse Treister. “Ao invés, vemos um fluxo caótico de gás com filamentos e bolhas entre os buracos negros. Parte deste gás é expelido para fora com velocidades de até 500 km/s. Ainda não sabemos o que provocou estes fluxos.”

Outra razão para observar o gás com tanto detalhe é que este ajuda a determinar a massa dos buracos negros. “Os modelos anteriores, com base em estrelas circundantes, indicaram que os buracos negros eram muito mais massivos do que esperávamos, cerca mil milhões de vezes mais massivos que o Sol,” disse Anne Medling da Universidade de Toledo no estado norte-americano do Ohio. “Mas estas novas imagens do ALMA mostram, pela primeira vez, a quantidade de gás capturado dentro da esfera de influência dos buracos negros. Esta massa é significativa e, portanto, estimamos agora que as massas dos buracos negros são mais pequenas: cerca de algumas centenas de milhões de vezes a massa do nosso Sol. Com base nisto, pensamos que a maioria das medições anteriores de buracos negros em sistemas como este podem estar erradas em 5-90%.”

O gás também está mais próximo dos buracos negros do que os astrónomos esperavam. “Está localizado num ambiente muito extremo,” explicou Medling. “Acreditamos que eventualmente cairá no buraco negro ou será ejectado a altas velocidades.”

Os astrónomos não encontram evidências de um terceiro buraco negro na galáxia, que outra equipa afirmou recentemente ter descoberto. “Não vemos gás molecular associado a este terceiro núcleo reivindicado,” disse Treister. “Podia ser um enxame estelar local em vez de um buraco negro, mas precisamos de estudá-lo muito mais para dizer algo concreto sobre o objecto.”

A alta sensibilidade e resolução do ALMA são cruciais para aprender mais sobre os buracos negros super-massivos e o papel do gás nas galáxias em interacção. “Esta galáxia é tão complexa que nunca poderíamos saber o que está a acontecer no seu interior sem estas imagens rádio detalhadas,” disse Loreto Barcos-Muñoz do NRAO (National Radio Astronomy Observatory) em Charlottesville, Virgínia, EUA. “Agora temos uma melhor ideia da estrutura 3D da galáxia, o que nos dá a oportunidade de entender como as galáxias evoluem durante os últimos estágios de uma fusão. Daqui a algumas centenas de milhões de anos, esta galáxia parecerá completamente diferente.”

Astronomia On-line
7 de Janeiro de 2020

spacenews

 

3296: Surto violento de buraco negro fornece novas informações sobre a evolução de enxames galácticos

CIÊNCIA/ESPAÇO

Cavidades gigantes no meio intra-enxame em raios-X (a azul, observado pelo Observatório de raios-X Chandra) foram escavadas pelo surto de um buraco negro. Os dados em raios-X estão sobrepostos numa imagem óptica pelo Telescópio Espacial Hubble (em vermelho/laranja), onde a galáxia central que provavelmente contém o buraco negro super-massivo culpado é também visível.
Crédito: cortesia dos investigadores

Há milhares de milhões de anos, no centro de um enxame de galáxias muito longínquo (15 mil milhões de anos-luz, para sermos exactos; este valor é a distância própria, que é diferente do tempo de viagem da luz até nós), um buraco negro expeliu jactos de plasma. À medida que o plasma saía do buraco negro, empurrava material, criando duas cavidades a 180 graus uma da outra. Da mesma forma que podemos calcular a energia de um impacto de asteróide pelo tamanho da sua cratera, Michael Calzadilla, estudante no Instituto Kavli de Astrofísica e Investigação Espacial, usou o tamanho destas cavidades para descobrir o poder da explosão do buraco negro.

Num artigo publicado recentemente na revista The Astrophysical Journal Letters, Calzadilla e co-autores descrevem o surto no enxame galáctico SPT-CLJ0528-5300, ou SPT-0528 para abreviar. Combinando o volume e a pressão do gás deslocado com a idade das duas cavidades, foram capazes de calcular a energia total da explosão. Com uma energia superior a 1054 joules, uma força equivalente a mais ou menos 1038 bombas nucleares, esta é a erupção mais poderosa já relatada num enxame galáctico distante. Os co-autores do artigo incluem Matthew Bayliss e o professor assistente de física Michael McDonald, ambos do mesmo instituto.

O Universo está repleto de enxames de galáxias, colecções de centenas e até milhares de galáxias permeadas com gás quente e matéria escura. No centro de cada aglomerado, há um buraco negro que passa por períodos de alimentação, onde devora o plasma do enxame, seguidos por períodos de surtos explosivos, em que dispara jactos de plasma. “Este é um caso extremo da fase de explosão,” diz Calzadilla sobre a observação de SPT-0528. Embora a explosão tenha acontecido há milhares de milhões de anos, antes da formação do nosso Sistema Solar, a luz do enxame de galáxias demorou cerca de 6,7 mil milhões de anos até chegar ao Chandra, o observatório de raios-X da NASA que orbita a Terra.

Dado que os enxames de galáxias estão cheios de gás, as primeiras teorias previram que, à medida que o gás arrefecia, os enxames teriam altas taxas de formação estelar, formação esta que precisa de gás frio. No entanto, estes aglomerados não são tão frios como o previsto e, como tal, não estavam a produzir novas estrelas à taxa esperada. Algo estava a impedir que o gás arrefecesse completamente. Os culpados eram buracos negros super-massivos, cujas explosões de plasma mantêm o gás demasiado quente nos enxames de galáxias para a rápida formação de estrelas.

A explosão registada em SPT-0528 tem outra peculiaridade que a diferencia de outras explosões de buracos negros. É desnecessariamente grande. Os astrónomos veem o processo de arrefecimento do gás e libertação de gás quente dos buracos negros como um equilíbrio que mantém a temperatura no enxame de galáxias – que ronda os 10 milhões de graus Celsius – estável. “É como um termostato,” diz McDonald. A explosão de SPT-0528, no entanto, não está em equilíbrio.

De acordo com Calzadilla, se determinarmos a quantidade de energia libertada à medida que o gás arrefece para o buraco negro vs. a quantidade de energia contida na explosão, esta última é largamente superior. Na analogia de McDonald, a explosão de SPT-0528 é um termostato com defeito. “É como se arrefecêssemos o ar 2 graus e a resposta do termostato seria aquecer a sala 100 graus,” explicou McDonald.

No início de 2019, McDonald e colegas divulgaram um artigo que analisava um enxame de galáxias diferente, que exibe um comportamento completamente oposto ao de SPT-0528. Em vez de uma explosão desnecessariamente violenta, o buraco negro neste enxame, o Enxame da Fénix, não é capaz de impedir o arrefecimento do gás. Ao contrário de todos os outros enxames galácticos conhecidos, o da Fénix está repleto de berçários estelares, o que o diferencia da maioria dos enxames de galáxias.

“Com estes dois enxames de galáxias, estamos realmente a olhar para os limites do que é possível nos dois extremos,” diz McDonald acerca do enxame SPT-0528 e do Enxame da Fénix. Ele e Calzadilla também vão caracterizar enxames de galáxias mais normais, a fim de entender a evolução dos aglomerados de galáxias ao longo do tempo cósmico. Para explorar isto, Calzadilla está a caracterizar 100 enxames de galáxias.

A razão para a caracterização de uma colecção tão grande de enxames galácticos é porque cada imagem telescópica captura os enxames num momento específico no tempo, enquanto os seus comportamentos ocorrem ao longo do tempo cósmico. Estes aglomerados cobrem uma variedade de distâncias e idades, permitindo que Calzadilla investigue como as propriedades dos enxames mudam ao longo do tempo cósmico. “Estas são escalas de tempo muito maiores do que uma escala humana ou que podemos observar,” explica Calzadilla.

A investigação é semelhante à de um paleontólogo que tenta reconstruir a evolução de um animal a partir de um registo fóssil esparso. Mas, em vez de ossos, Calzadilla está a estudar enxames de galáxias, variando de SPT-0528 (com a sua violenta explosão de plasma) numa extremidade até ao Enxame da Fénix (com o seu rápido arrefecimento) na outra. “Estamos a observar diferentes instantâneos no tempo,” diz Calzadilla. “Se construirmos amostras suficientemente grandes de cada um destes instantâneos, podemos ter uma noção de como um enxame de galáxias evolui.”

Astronomia On-line
31 de Dezembro de 2019

 

spacenews

 

3264: Astrónomos descobrem uma das “fusões mais violentas” entre dois grupos de galáxias

CIÊNCIA

Chandra / NASA / CXC / SAO / E. O’Sullivan / ESA / XMM / SDSS

Uma equipa de astrónomos descobriu dois grupos de galáxias no sistema de fusão NGC 6338 a colidir a uma velocidade gritante de cerca de 6,4 milhões de quilómetros por hora.

Através dos dados fornecidos pelo Observatório de Raios-X Chandra da NASA, do XMM-Newton da ESA, do Telescópio Gigante de Metaveave e do Observatório Apache Point, uma equipa de astrónomos descobriu dois grupos de galáxias a colidir a grande velocidade –  a 6,4 milhões de quilómetros por hora. Esta pode ser a colisão mais violenta alguma vez observada entre grupos de galáxias.

As observações permitiram também concluir que os núcleos frios destes grupos de galáxias estão embutidos numa grande região de gás aquecido.

O sistema NGC 6338 mora na constelação de Draco, a cerca de 380 milhões de anos-luz do nosso planeta. A massa total deste sistema é de cerca de 100 biliões de massas solares – cerca de 83% na forma de matéria escura, 16% na forma de gás quente e 1% de estrelas.

Estudos anteriores indicaram a presença de regiões de gás frio, que emitem raios X em torno dos centros de ambos os grupos de galáxias – conhecidos como “núcleos frios”. Esta descoberta ajudou os cientistas a reconstruir a geometria deste sistema, revelando que a colisão entre os grupos de galáxias aconteceu quase ao longo da linha de visão da Terra. Esta descoberta foi confirmada neste novo estudo.

“Os novos dados mostram que o gás à esquerda e à direita dos núcleos frios, e entre eles, parece ter sido aquecido por frentes de choque formadas pela colisão“, adiantou Ewan O’Sullivan, do Harvard-Smithsonian Center for Astrophysics, nos Estados Unidos, citado pelo Sci-News.

Este padrão de gás aquecido por choque foi previsto em simulações de computador, mas o sistema NGC 6338 pode ser a primeira fusão de grupos de galáxias a demonstrar este fenómeno. Por sua vez, o aquecimento impedirá que parte do gás quente arrefeça para formar novas estrelas.

“Uma segunda fonte de calor comummente encontrada em grupos e aglomerados de galáxias é a energia fornecida por explosões e jactos de partículas de alta velocidade geradas por buracos negros super-massivos”, explicaram os astrónomos. Esta fonte de calor parece estar inactiva em NGC 6338.

“Esta ausência pode explicar os filamentos de gás de arrefecimento detectados em raios X e dados ópticos em torno da grande galáxia no centro do núcleo frio no sul”. O artigo científico foi publicado recentemente na Monthly Notices of the Royal Astronomical Society.

ZAP //

Por ZAP
25 Dezembro, 2019

 

spacenews

 

3234: Galáxias distantes revelam história da formação estelar do Universo

CIÊNCIA

Composição de uma observação que mostra milhares de galáxias no rádio e o radiotelescópio MeerKAT no semi-derserto do Karoo na África do Sul. Os pontos mais brilhantes são galáxias rádio luminosas alimentadas por buracos negros super-massivos. A miríade de pontos fracos são galáxias distantes como a nossa própria Via Láctea, demasiado ténues para serem detectadas até agora. Dado que as ondas rádio viajam à velocidade da luz, esta imagem é uma máquina do tempo que “amostra” a história da formação estelar do Universo.
Crédito: SARAO; NRAO/AUI/NSF

Esta nova imagem rádio está repleta de pontos, cada um dos quais é uma galáxia distante! Os pontos mais brilhantes são galáxias alimentadas por buracos negros super-massivos. Mas o que torna esta imagem especial são os inúmeros pontos fracos que enchem o céu. São galáxias distantes como a nossa que nunca foram antes observadas no rádio.

Para aprender mais sobre a história de formação estelar do Universo, precisamos de olhar para trás no tempo. As galáxias por todo o Universo têm formado estrelas ao longo dos últimos 13 mil milhões de anos. Mas a maioria das estrelas nasceram há 8-11 mil milhões de anos, durante uma era chamada “meio-dia cósmico”.

Tem sido um desafio para os astrónomos o estudo da luz fraca oriunda desta época. Os telescópios ópticos podem ver galáxias muito distantes, mas as estrelas novas estão em grande parte escondidas dentro de nuvens de gás e poeira. Os radiotelescópios podem ver através da poeira e observar as raras e brilhantes galáxias de formação estelar explosiva, mas até agora não eram sensíveis o suficiente para detectar os sinais de galáxias muito longe da Via Láctea, responsáveis pela maior parte da formação estelar no Universo.

Uma equipa internacional de astrónomos usando o telescópio MeeKAT do SARAO (South African Radio Astronomy Observatory) recentemente fez a primeira observação rádio sensível o suficiente para revelar estas galáxias. “Para fazer esta imagem, seleccionámos uma área do céu do hemisfério sul que não contém fortes fontes de rádio cujo brilho possa ofuscar uma observação sensível,” disse Tom Mauch do SARAO na Cidade do Cabo, África do Sul, que liderou a equipa cujos resultados foram aceites para publicação na revista The Astrophysical Journal.

A equipa usou as 64 antenas do MeerKAT para observar esta área durante um total de 130 horas. A imagem resultante mostra uma região do céu comparável em área a cinco Luas Cheias, contendo dezenas de milhares de galáxias.

“Tendo em conta que as ondas de rádio viajam à velocidade da luz, esta imagem é uma máquina do tempo que ‘amostra’ formação estelar nestas galáxias distantes ao longo de milhares de milhões de anos,” explicou o co-autor James Condon do NRAO (National Radio Astronomy Observatory) em Charlottesville, no estado norte-americano da Virgínia. “Dado que apenas estrelas de vida curta com menos de 30 milhões de anos libertam ondas de rádio, sabemos que a imagem não é contaminada por estrelas antigas. A ‘luz’ rádio que vemos de cada galáxia é, portanto, proporcional à sua taxa de formação estelar naquele momento.”

Os astrónomos querem usar esta imagem para aprender mais sobre a formação estelar em todo o Universo. “Estes primeiros resultados indicam que a taxa de formação estelar perto do meio-dia cósmico é ainda maior do que originalmente se esperava,” disse Allison Matthews, estudante da Universidade da Virgínia e doutoranda no NRAO. “Imagens anteriores só conseguiam detectar a ponta do icebergue, as galáxias raras e luminosas que produziram apenas uma pequena fracção das estrelas no Universo. O que vemos agora é a imagem completa: estes pontos ténues são as galáxias que formaram a maioria das estrelas no Universo.”

“Somente nos últimos anos se desenvolveu a tecnologia para construir telescópios magníficos como o MeerKAT na África do Sul, o poder de computação para criar imagens como esta e obter uma compreensão real de como o Universo veio a ser como é,” acrescentou o astrónomo William Cotton do NRAO. “As próximas gerações de instrumentos, com o SKA (Square Kilometer Array) e a próxima geração do VLA (Very Large Array) devem ser ainda mais espectaculares.”

Astronomia On-line
20 de Dezembro de 2019

 

spacenews

 

Como “moldar” uma galáxia espiral

CIÊNCIA

Os campos magnéticos em NGC 1086, ou M77, são vistos como linhas de campo sobre uma composição visível e em raios-X da galáxia obtida com o Telescópio Espacial Hubble, NuSTAR (Nuclear Spectroscopic Array) e SDSS (Sloan Digital Sky Survey). Os campos magnéticos alinham-se ao longo de todo o comprimento dos braços espirais massivos – 24.000 anos-luz – o que implica que as forças gravitacionais que criaram a forma espiral da galáxia também estão a comprimir o seu campo magnético. Isto apoia a teoria de como estes braços são forçados na sua forma icónica, conhecida como “teoria das ondas de densidade.” O SOFIA estudou a galáxia no infravermelho distante (89 micrómetros) para revelar facetas dos seus campos magnéticos que observações anteriores no visível e no rádio não foram capazes de detectar.
Crédito: NASA/SOFIA; NASA/JPL-Caltech/Univ. Roma Tre

A nossa Via Láctea tem uma forma espiral elegante com braços longos repletos de estrelas, mas exactamente como ela assumiu esta forma há muito que intriga os cientistas. Novas observações de outra galáxia estão a lançar luz sobre como as galáxias em forma de espiral, como a nossa, obtêm a sua forma icónica.

De acordo com uma investigação do SOFIA (Stratospheric Observatory for Infrared Astronomy), os campos magnéticos desempenham um papel importante na formação destas galáxias. Os cientistas mediram campos magnéticos ao longo dos braços espirais da galáxia chamada NGC 1068, ou M77. Os campos são mostrados como linhas de campo que seguem de perto os braços espirais.

“Os campos magnéticos são invisíveis, mas podem influenciar a evolução de uma galáxia,” disse Enrique Lopez-Rodriguez, cientista da USRA (Universities Space Research Association) no Centro de Pesquisa Ames da NASA em Silicon Valley, no estado norte-americano da Califórnia. “Temos um bom entendimento de como a gravidade afecta as estruturas galácticas, mas estamos apenas a começar a aprender o papel dos campos magnéticos.”

A galáxia M77 está localizada a 47 milhões de anos-luz de distância na direcção da constelação de Baleia. Tem um buraco negro super-massivo activo no centro que é duas vezes maior que o buraco negro no coração da nossa Via Láctea. Os braços rodopiantes estão cheios de poeira, gás e áreas de formação estelar extrema.

As observações infravermelhas do SOFIA revelam o que os olhos humanos não conseguem: campos magnéticos que seguem de perto os braços espirais cheios de estrelas recém-nascidas. Isto apoia a teoria de como estes braços são forçados na sua forma icónica, conhecida como “teoria das ondas de densidade.” Esta afirma que a poeira, o gás e as estrelas nos braços não estão fixos no seu lugar como lâminas numa ventoinha. Em vez disso, o material move-se ao longo dos braços à medida que a gravidade o comprime, como objectos numa correia transportadora.

O alinhamento do campo magnético estende-se por todo o comprimento dos braços massivos – aproximadamente 24.000 anos-luz. Isto implica que as forças gravitacionais que criaram a forma espiral da galáxia também estão a comprimir o seu campo magnético, apoiando a teoria das ondas de densidade. Os resultados da investigação foram publicados na revista The Astrophysical Journal.

“Esta é a primeira vez que vimos campos magnéticos alinhados em escalas tão grandes com o actual nascimento estelar nos braços espirais,” disse Lopez-Rodriguez. “É sempre emocionante ter evidências observacionais que apoiam as teorias.”

Os campos magnéticos celestes são notoriamente difíceis de observar. O mais recente instrumento do SOFIA, o HAWC+ (High-resolution Airborne Wideband Camera-Plus), usa luz infravermelha distante para observar grãos de poeira que se alinham perpendicularmente às linhas de campo magnético. A partir destes resultados, os astrónomos podem inferir a forma e a direcção do campo magnético invisível. A radiação infravermelha distante fornece informações importantes sobre os campos magnéticos, porque o sinal não está contaminado pela emissão de outros mecanismos, como luz visível dispersa e radiação de partículas altamente energéticas. A capacidade do SOFIA em estudar a galáxia no infravermelho longínquo, especialmente no comprimento de onda de 89 micrómetros, revelou facetas anteriormente desconhecidas dos seus campos magnéticos.

São necessárias mais observações para entender como os campos magnéticos influenciam a formação e a evolução de outros tipos de galáxias, como aquelas com formas irregulares.

Astronomia On-line
17 de Dezembro de 2019

 

spacenews