3942: Físicos explicam por que as mudanças do campo magnético da Terra são mais fracas no Pacífico

CIÊNCIA/FÍSICA/GEOFÍSICA

NASA Goddard / Flickr
Conceito de artista do Campo Magnético da Terra

Uma nova investigação levada a cabo por físicos da Universidade de Alberta, no Canadá, apresenta uma explicação para o facto de as mudanças no campo magnético da Terra serem mais fracas na região do Pacífico.

“É uma quebra-cabeças desde 1930, quando [este fenómeno] foi notado pela primeira vez”, começou por dizer o geofísico Mathieu Dumberry, principal autor do estudo, citado em comunicado divulgado pelo portal Phys.

Tal como os ventos na atmosfera ou as correntes no oceano, existem movimentos fluídos no núcleo líquido da Terra, explicou Mathieu Dumberry. Estes fluxos centrais geram e mantêm o campo magnético da Terra, o que nos dá a aurora boreal e nos protege das partículas carregadas do Espaço. Os cientistas modelaram o campo magnético da Terra para uma variedade de aplicações, incluindo, por exemplo, os GPS dos smartphones.

“Os fluxos centrais são mais fracos no Pacífico e também apresentam uma corrente em escala planetária que fica próxima do equador na região do Atlântico, mas esta é depois desviada para uma maior latitude na região do Pacífico (…) Mas porque é que isto acontece? Essa é a questão que ainda não compreendemos”, enquadrou Dumberry.

Na nova investigação, cujos resultados foram recentemente publicados na revista Nature Geoscience, os cientistas frisam que olhar para o campo magnético pode fornecer uma nova visão dos fluxos principais que o criam e explicar o mistério quase centenário.

“A nossa explicação envolve a condutividade eléctrica do manto mais baixo”, disse.

“Demonstramos que, se a condutividade eléctrica do manto mais baixo for mais elevada no Pacífico do que em qualquer outro lugar do planeta, e essa maior ‘fricção magnética’ enfraquecer os fluxos do núcleo central, esta também desviará o principal fluxo de corrente planetária da região do Pacífico, uma vez que evita a região de maior condutância, levando consequentemente a mudanças menores no campo magnético da Terra na região”.

Dumberry observou ainda que o modelo coloca novas questões sobre a composição da região da fronteira do manto principal. “O nosso estudo destaca que a região da fronteira do manto principal é bastante heterogénea. A condutância do manto mais baixo provavelmente não é uniforme em todo o planeta”.

“Esperamos que os nossos resultados motivem os geofísicos a investigar melhor as possíveis diferenças entre a região do Pacífico e outros lugares na fronteira do núcleo do manto”, rematou o cientista da Universidade de Alberta.

O campo magnético da Terra está a enfraquecer misteriosamente

Novos dados de satélite da Agência Espacial Europeia (ESA) mostram que o campo magnético da Terra está a enfraquecer entre…

Ler mais

ZAP //

Por ZAP
2 Julho, 2020

 

spacenews

 

3923: Teoria de 50 anos comprovada. Alienígenas podem estar a aproveitar buracos negros para obter energia

CIÊNCIA/ASTROFÍSICA

Goddard NASA

Uma equipa de cientistas da Universidade de Glasgow, na Escócia, demonstrou que a teoria proposta há meio século pelo físico Roger Penrose é, de facto, viável.

Há 50 anos, começou por ser uma especulação sobre como é que uma civilização alienígena poderia usar um buraco negro para produzir energia. Agora, foi finalmente comprovada em laboratório por uma equipa de cientistas da Universidade de Glasgow, na Escócia.

Em 1969, o físico britânico Roger Penrose sugeriu que poderia ser possível explorar um buraco negro ao ponto de este gerar energia. Para isso, seria preciso colocar um objecto dentro da ergosfera, a camada externa do horizonte de eventos do buraco negro.

Nesta região, o objecto iria adquirir uma energia negativa e seria forçado a dividir-se em dois, sendo que uma metade seria engolida pelo corpo celeste e a outra recuperada. O objecto engolido seria perdido para sempre, enquanto que a metade recuperada ganharia o dobro da energia, extraída da rotação do buraco negro.

A escala de dificuldade deste desafio é tão grande que Penrose sugeriu que só uma civilização muito avançada, talvez alienígena, estaria à altura desta tarefa.

Dois anos depois, o físico soviético Yakov Zel’dovich sugeriu que a teoria poderia ser testada com uma experiência terrestre, mostrando, assim, que é mesmo possível realizar a tal transferência de energia.

O especialista propôs que as ondas de luz torcidas, ao atingir a superfície de um cilindro de metal em rotação a uma determinada velocidade, seriam reflectidas com energia extra, extraída da rotação do cilindro, graças a uma peculiaridade do Efeito Doppler.

No entanto, para esta experiência resultar, o cilindro teria de girar, pelo menos, mil milhões de vezes por segundo – um verdadeiro desafio para a tecnologia daquela época.

Agora, 50 depois, a equipa de Glasgow conseguiu finalmente demonstrar a teoria com uma experiência laboratorial, usando ondas de som em vez de luz.

Segundo o New Atlas, os cientistas construíram um sistema de pequenas caixas de som que criam uma “torção” nas ondas. Estas, depois, são direccionadas para um absorvedor de som rotativo, na forma de um disco de espuma. Um conjunto de microfones atrás do disco capta o som das caixas, aumentando constantemente a velocidade de rotação.

Se a teoria de Penrose e Zel’dovich estivesse correcta, os cientistas observariam uma alteração na frequência e amplitude das ondas de som à medida que viajassem pelo disco, causada pelo Efeito Doppler. E foi exactamente o que aconteceu.

Marion Cromb, principal autora do artigo publicado na Nature Physics no dia 22 de Junho, explicou que o Efeito Doppler é bem conhecido: trata-se do fenómeno que ocorre quando uma sirene de ambulância parece mais à medida que se aproxima do ouvinte.

“O Efeito Doppler rotacional é semelhante, mas limitado a um espaço circular. As ondas sonoras distorcidas mudam de tom quando medidas do ponto de vista da superfície rotativa. Se a superfície gira suficientemente rápido, a frequência do som pode fazer algo muito estranho – pode ir de uma frequência positiva para uma negativa e, ao fazê-lo, rouba energia da rotação”, disse.

Nesta experiência, à medida que a velocidade do disco aumenta, o tom do som nas caixas diminui até ficar inaudível. Depois, aumenta novamente, até atingir e ultrapassar o tom anterior, com uma amplitude até 30% maior do que o som original.

“Estas ondas de frequência negativa são capazes de absorver parte da energia do disco giratório de espuma, tornando-se mais altas no processo – exactamente como Zel’dovich propôs em 1971”, concluiu Cromb.

Neste momento, num mundo desconhecido, um alienígena pode estar a realizar o mesmo processo com um buraco negro, para ligar uma televisão ou carregar o seu smartphone.

ZAP //

Por ZAP
27 Junho, 2020

 

spacenews

 

3868: Astronomers solve whirling mystery around nearby black hole

How do you measure a black hole’s spin?

(Image: © Shutterstock)

Physicists may finally have figured out how fast a black hole visible in our Milky Way is spinning, and in doing so gotten closer than ever to figuring out everything there is to know about a certain class of these dark behemoths.

The singularity, named 4U1543-4, orbits a star about 24,700 light-years from Earth. It’s one of just a few similar objects that scientists have found in our region of space, and, at 9.4 times the mass of our sun, is not a supermassive black hole. Most physicists believe black holes, having crushed all their mass down to a single point, are identical except for three numbers: their mass, their charge and their spin. And while in theory a black hole could be very positively or negatively charged if it were made solely of electrons or protons, in the real world black holes (like all massive objects in the universe) probably have a net zero charge. Now, it seems like researchers have managed to make a pretty good measurement of this black hole’s spin.

Like anything in space, the compressed singularity hidden behind a black hole’s event horizon — the point beyond which not even light can escape — spins freely with all the momentum it’s picked up over the eons. But unlike with stars and planets, there’s no way to directly observe how fast the heavy point in space is spinning.

Related: 9 facts about black holes that will blow your mind

Instead, astronomers rely on proxies: the whirling clouds of matter just outside a black hole’s event horizon, which are tugged along by the singularity’s spin. By determining how fast that matter is moving, they can estimate the angular momentum, or spin, of the singularity itself.

Of course, being 24,700 light-years away these clouds of gas aren’t clearly visible. So astronomers don’t have the option of watching a speck of dust complete a circuit around the black hole’s event horizon. Instead, they measure the glow of X-rays produced close to the event horizon as the swirl of dust and gas surrounding the event horizon accelerates to extreme speeds. And that glow reveals how fast the gas and dust are moving, which in turn offers information about the singularity itself.

Two previous attempts to measure 4U1543-4’s spin led to wildly inconsistent results. This new approach relied on data from a particular flaring event, when the material around the black hole got much brighter, and also used improved techniques for calculating the spin.

Astronomers describe a black hole’s rate of spin with numbers between -1 and 1. A black hole not spinning at all has spin 0 a*, and black holes also have maximum spin speeds, which top out as they approach 1 a* or -1 a*.

As a black hole spins faster and faster, its event horizon shrinks closer and closer to the singularity, as UCLA astronomer Mark Morris told Universe Today in 2014. A black hole cannot spin so fast that its event horizon disappears and reveals the singularity.

This black hole, the researchers found, likely has a spin of 0.67. There are wide error bars around the estimate, which could top out at 0.82 or dip as low as 0.59. But regardless, the researchers wrote in their paper, its rate of spin is “moderate” for a black hole of this mass.

The paper describing these results was published March 5 in the journal Monthly Notices of the Royal Astronomical Society, and is available on arXiv.

Originally published on Live Science.
17/06/2020
By Rafi Letzter – Staff Writer

 

spacenews

Einstein’s core idea about gravity just passed an extreme, whirling test in deep space

In this illustration, a pulsar (PSR J0337-1715) is shown with two white dwarf companions. The green mesh illustrates the curvature of space-time caused by the different masses. (Size and distances of the three components are not to scale.)
(Image: © Michael Kramer/MPIfR)

Once again, physicists have confirmed one of Albert Einstein’s core ideas about gravity — this time with the help of a neutron star flashing across space.

The new work makes an old idea even more certain: that heavy and light objects fall at the same rate. Einstein wasn’t the first person to realize this; there are contested accounts of Galileo Galilei demonstrating the principle by dropping weights off the Tower of Pisa in the 16th century. And suggestions of the idea appear in the work of the 12th-century philosopher Abu’l-Barakāt al-Baghdādī. This concept eventually made its way into Isaac Newton‘s model of physics, and then Einstein’s theory of general relativity as the gravitational “strong equivalence principle” (SEP). This new experiment demonstrates the truth of the SEP, using a falling neutron star, with more precision than ever.

The SEP has appeared to be true for a long time. You might have seen this video of Apollo astronauts dropping a feather and a hammer in the vacuum of the moon, showing that they fall at the same rate in lunar gravity.

But small tests in the relatively weak gravitational fields of Earth, the moon or the sun don’t really put the SEP through its paces, according to Sharon Morsink, an astrophysicist at the University of Alberta in Canada, who wasn’t involved in the new study.

“At some level, the majority of physicists believe that Einstein’s theory of gravity, called general relativity, is correct. However, that belief is mainly based on observations of phenomena taking place in regions of space with weak gravity, while Einstein’s theory of gravity is meant to explain phenomena taking place near really strong gravitational fields,” Morsink told Live Science. “Neutron stars and black holes are the objects that have the strongest known gravitational fields, so any test of gravity that involves these objects really test the heart of Einstein’s gravity theory.”

Neutron stars are the collapsed cores of dead stars. Super dense, but not dense enough to form black holes, they can pack masses greater than that of our sun into whirling spheres just a few miles wide.

The researchers focused on a type of neutron star called a pulsar, which from Earth’s perspective seems to flash as it spins. That flashing is a result of a bright spot on the star’s surface whirling in and out of view, 366 times per second. This spinning is regular enough to keep time by.

Related: 8 ways you can see Einstein’s theory of relativity in real life

This pulsar, known as J0337+1715, is special even among pulsars: It’s locked in a tight binary orbit with a white dwarf star. The two stars orbit each other as they circle a third star, also a white dwarf, just like Earth and the moon do as they circle the sun.

(Researchers have already shown that the SEP is true for orbits like this in our solar system: Earth and the moon are affected to exactly the same degree by the sun’s gravity, measurements suggest.)

The precise timekeeping of J0337+1715, combined with its relationship to those two gravity fields created by the two white dwarf stars, offers astronomers a unique opportunity to test the principle.

The pulsar is much heavier than the other two stars in the system. But the pulsar still falls toward each of them a little bit as they fall toward the pulsar’s larger mass. (The same thing happens with you and Earth. When you jump, you fall back toward the planet very quickly. But the planet falls toward you as well — very slowly, due to your own low gravity, but at the exact same rate as a feather or a hammer would if you ignore air resistance.) And because J0337+1715 is such a precise timekeeper, astronomers on Earth can track how the gravitational fields of the two stars affect the pulsar’s period.

To do so, the astronomers carefully timed the arrival of light from J0337+1715 using large radio telescopes, in particular the Nançay Radio Observatory in France. As the star moved around each of its neighbors — one in a quick little orbit and one in a longer, slower orbit — the pulsar got closer and farther from Earth. As the neutron star moved farther away from Earth, the light from its pulses had to travel longer distances to reach the telescope. So, to a tiny degree, the gaps between the pulses seemed to get longer.

As the pulsar swung back toward Earth, the gaps between the pulses got shorter. That allowed physicists to build a robust model of the neutron star’s movement through space, explaining precisely how it interacted with the gravity fields of its neighbors. Their work built on a technique used in an earlier paper, published in the journal Nature in 2018, to study the same system.

The new paper, published online June 10 in the journal Astronomy and Astrophysics, showed that the objects in this system behaved as Einstein’s theory predicts — or at least didn’t differ from Einstein’s predictions by more than 1.8 parts per million. That’s the absolute limit of the precision of their telescope data analysis. They reported 95% confidence in their findings.

Morsink, who uses X-ray data to study the mass, widths, and surface patterns of neutron stars, said that this confirmation isn’t surprising, but it is important for her research.

“In that work, we have to assume that Einstein’s theory of gravity is correct, since the data analysis is already very complex,” Morsink told Live Science in an in an email. “So tests of Einstein’s gravity using neutron stars really make me feel better about our assumption that Einstein’s theory describes the gravity of a neutron star correctly!”

Without understanding the SEP, Einstein would never have been able to develop his ideas of relativity. In an insight he described as “the most fortunate thought in my life,” he recognized that objects in free fall don’t feel the gravitational fields tugging on them.

(This is why astronauts in orbit around the Earth float. In constant free fall, they don’t experience the gravitational field that holds them in orbit. Without windows, they wouldn’t know Earth was there at all.)

Most of Einstein’s key insights about the universe begin with the universality of free fall. So, in this way, the cornerstone of general relativity has been made that much stronger.

Originally published on Live Science.
15/06/2020

By Rafi Letzter – Staff Writer

 

spacenews

 

3744: Cientistas encontram pista para resolver o mistério (de longa data) da antimatéria

CIÊNCIA/FÍSICA

(dr) University of the West of Scotland
Tório-228

Porque é que há mais matéria do que antimatéria no Universo? Uma equipa de físicos descobriu um elemento que pode ser a chave para desvendar este antigo mistério.

Uma equipa de investigadores da Universidade do Oeste da Escócia (UWS) e da Universidade de Strathclyde descobriu que um dos isótopos do elemento tório tem o núcleo em forma de pêra, muito mais do que até agora se pensava. Núcleos semelhantes ao tório-228 podem ajudar a encontrar uma resposta para o mistério que envolve a matéria e a antimatéria.

O Modelo Padrão prevê que cada partícula fundamental possa ter uma antipartícula semelhante. As anti-partículas são quase idênticas às suas contrapartes materiais, excepto pelo simples facto de conterem cargas opostas.

Desta forma, e de acordo com o Modelo Padrão, a matéria e a antimatéria devem ter sido formadas em quantidades iguais na altura do Big Bang. No entanto, o nosso Universo possui muito mais matéria do que antimatéria.

Em teoria, segundo o artigo científico publicado recentemente na Nature Physics, um momento do dipolo eléctrico (EDM) pode permitir que a matéria e a antimatéria se decomponham em taxas diferentes.

Segundo o Europa Press, os núcleos em forma de pêra foram propostos como sistemas físicos ideais nos quais se procura a existência de um momento do dipolo eléctrico numa partícula fundamental, como um electrão. A forma da pêra significa que o núcleo gera um EDM ao ter os protões e neutrões distribuídos de maneira desigual.

Os investigadores descobriram que os núcleos dos átomos de tório-228 têm a forma de pêra mais pronunciada alguma vez descoberta, tendo, por isso, sido identificados como candidatos ideais para procurar a existência de um momento do dipolo eléctrico.

Quanto mais pequena for a vida útil do estado quântico, mais acentuada é a forma de pêra do núcleo, que dá, por sua vez, maiores esperanças aos cientistas de encontrar um EDM.

As experiência da equipa começaram com uma amostra de tório-232, que tem uma meia-vida de 14 mil milhões de anos, o que significa que se decompõe muito lentamente. A cadeia de decaimento desse núcleo cria estados mecânicos quânticos excitados do núcleo do tório-228, que decaem em nanossegundos.

ZAP //

Por ZAP
25 Maio, 2020

 

spacenews

 

3583: What happened before the Big Bang?

SCIENCE

The Big Bounce theory was once thought impossible. But two physicists have just resurrected it.

An artist’s interpretation of the Big Bang.
(Image: © Scott Wiessinger (USRA): Lead Producer Aaron E. Lepsch (ADNET): Technical Support Krystofer Kim (USRA): Lead Animator)

In the beginning, there was an infinitely dense, tiny ball of matter. Then, it all went bang, giving rise to the atoms, molecules, stars and galaxies we see today.

Or at least, that’s what we’ve been told by physicists for the past several decades.

But new theoretical physics research has recently revealed a possible window into the very early universe, showing that it may not be “very early” after all. Instead it may be just the latest iteration of a bang-bounce cycle that has been going on for … well, at least once, and possibly forever.

Of course, before physicists decide to toss out the Big Bang in favor of a bang-bounce cycle, these theoretical predictions will need to survive an onslaught of observation tests.

Bouncing cosmologies

Scientists have a really good picture of the very early universe, something we know and love as the Big Bang theory. In this model, a long time ago the universe was far smaller, far hotter and far denser than it is today. In that early inferno 13.8 billion years ago, all the elements that make us what we are were formed in the span of about a dozen minutes.

Even earlier, this thinking goes, at some point our entire universe — all the stars, all the galaxies, all the everything — was the size of a peach and had a temperature of over a quadrillion degrees.

Amazingly, this fantastical story holds up to all current observations. Astronomers have done everything from observing the leftover electromagnetic radiation from the young universe to measuring the abundance of the lightest elements and found that they all line up with what the Big Bang predicts. As far as we can tell, this is an accurate portrait of our early universe.

But as good as it is, we know that the Big Bang picture is not complete — there’s a puzzle piece missing, and that piece is the earliest moments of the universe itself.

That’s a pretty big piece.

Related: From Big Bang to present: Snapshots of our universe through time

The conflagration

The problem is that the physics that we use to understand the early universe (a wonderfully complicated mishmash of general relativity and high-energy particle physics) can take us only so far before breaking down. As we try to push deeper and deeper into the first moments of our cosmos, the math gets harder and harder to solve, all the way to the point where it just … quits.

The main sign that we have terrain yet to be explored is the presence of a “singularity,” or a point of infinite density, at the beginning of the Big Bang. Taken at face value, this tells us that at one point, the universe was crammed into an infinitely tiny, infinitely dense point. This is obviously absurd, and what it really tells us is that we need new physics to solve this problem — our current toolkit just isn’t good enough.

Related: 8 ways you can see Einstein’s theory of relativity in real life

To save the day we need some new physics, something that is capable of handling gravity and the other forces, combined, at ultrahigh energies. And that’s exactly what string theory claims to be: a model of physics that is capable of handling gravity and the other forces, combined, at ultrahigh energies. Which means that string theory claims it can explain the earliest moments of the universe.

One of the earliest string theory notions is the “ekpyrotic” universe, which comes from the Greek word for “conflagration,” or fire. In this scenario, what we know as the Big Bang was sparked by something else happening before it — the Big Bang was not a beginning, but one part of a larger process.

Extending the ekpyrotic concept has led to a theory, again motivated by string theory, called cyclic cosmology. I suppose that, technically, the idea of the universe continually repeating itself is thousands of years old and predates physics, but string theory gave the idea firm mathematical grounding. The cyclic universe goes about exactly as you might imagine, continually bouncing between big bangs and big crunches, potentially for eternity back in time and for eternity into the future.

Before the beginning

As cool as this sounds, early versions of the cyclic model had difficulty matching observations — which is a major deal when you’re trying to do science and not just telling stories around the campfire.

The main hurdle was agreeing with our observations of the cosmic microwave background, the fossil light leftover from when the universe was only 380,000 years old. While we can’t see directly past that wall of light, if you start theoretically tinkering with the physics of the infant cosmos, you affect that afterglow light pattern.

And so, it seemed that a cyclic universe was a neat but incorrect idea.

But the ekpyrotic torch has been kept lit over the years, and a paper published in January to the arXiv database has explored the wrinkles in the mathematics and uncovered some previously missed opportunities. The physicists, Robert Brandenberger and Ziwei Wang of McGill University in Canada, found that in the moment of the “bounce,” when our universe shrinks to an incredibly small point and returns to a Big Bang state, it’s possible to line everything up to get the proper observationally tested result.

In other words, the complicated (and, admittedly, poorly understood) physics of this critical epoch may indeed allow for a radically revised view of our time and place in the cosmos.

But to fully test this model, we’ll have to wait for a new generation of cosmology experiments, so let’s wait to break out the ekpyrotic champagne.

Paul M. Sutter is an astrophysicist at SUNY Stony Brook and the Flatiron Institute, host of Ask a Spaceman and Space Radio, and author of Your Place in the Universe.

Originally published on Live Science.

By Paul Sutter – Astrophysicist
20/04/2020

 

spacenews

 

3503: Cientistas descobrem o primeiro remanescente pulsante de uma estrela num sistema binário eclipsante

CIÊNCIA/ASTRONOMIA

Impressão de artista de um sistema binário com uma anã branca acretando matéria da sua companheira.
Crédito: ESO/M. Kornmesser

Cientistas da Universidade de Sheffield descobriram uma antiga estrela pulsante num sistema binário, o que lhes permite aceder a informações importantes sobre a história de como estrelas como o nosso Sol evoluem e eventualmente morrem.

A descoberta da primeira estrela anã branca pulsante num binário eclipsante, por físicos da Universidade de Sheffield, significa que a equipa pode ver, pela primeira vez e em detalhe, como a evolução binária afectou a estrutura interna de uma anã branca.

Um binário eclipsante, ou sistema estelar duplo, é constituído por duas estrelas que se orbitam uma à outra e que passam periodicamente uma à frente da outra, a partir da perspectiva da Terra.

As anãs brancas são os núcleos queimados deixados para trás quando uma estrela como o Sol morre. Esta anã branca em particular pode fornecer, pela primeira vez, informações importantes sobre a estrutura, evolução e morte destas estrelas.

Pensa-se que a maioria das anãs brancas sejam compostas principalmente de carbono e oxigénio, mas esta anã em particular é composta principalmente de hélio. A equipa pensa que isso é resultado da companheira binária ter interrompido a sua evolução cedo, antes de ter hipótese de fundir o hélio em carbono e oxigénio.

Os pulsos desta estrela foram descobertos usando a HiPERCAM, uma revolucionária câmara de alta velocidade desenvolvida por uma equipa liderada pelo professor Vik Dhillon do Departamento de Física e Astronomia da Universidade de Sheffield.

A HiPERCAM pode captar uma imagem a cada milissegundo em cinco cores diferentes simultaneamente e está acoplada ao GTC (Gran Telescopio Canarias) de 10,4 metros, o maior telescópio óptico do mundo em La Palma. Isto permitiu que os cientistas detectassem os pulsos rápidos e subtis desta anã branca em particular.

Os pulsos da anã branca e do sistema binário eclipsante permitiram à equipa investigar a sua estrutura usando duas técnicas, asteros-sismologia e estudos de eclipses. A asteros-sismologia envolve a medição da rapidez com que as ondas sonoras viajam através da anã branca.

O Dr. Steven Parsons, que liderou o estudo e do mesmo departamento, disse: “A determinação da composição de uma anã branca não é simples porque estes objectos têm aproximadamente metade da massa do Sol e aproximadamente o tamanho da Terra. Isto significa que a gravidade é extremamente forte numa anã branca, cerca de um milhão de vezes maior do que aqui na Terra, de modo que à superfície de uma anã branca uma pessoa média pesaria 60 milhões de quilogramas. A gravidade faz com que todos os elementos pesados da anã branca afundem para o centro, deixando apenas os elementos mais leves na superfície e, portanto, a verdadeira composição permanece oculta por baixo.

“Esta anã branca pulsante que descobrimos é extremamente importante, pois podemos usar o movimento binário e o eclipse para medir independentemente a massa e o raio desta anã branca, o que nos ajuda a determinar a sua composição. Ainda mais interessante, as duas estrelas neste sistema binário interagiram uma com a outra no passado, transferindo material para a frente e para trás. Podemos ver como esta evolução binária afectou a estrutura interna da anã branca, algo que não conseguimos fazer antes para este tipo de sistemas binários.”

O próximo passo da investigação é continuar a observar a anã branca para registar o maior número possível de pulsos usando a HiPERCAM e o Telescópio Espacial Hubble.

Astronomia On-line
20 de Março de 2020

 

spacenews

 

3292: Físico propõe um motor estelar para mover o nosso Sistema Solar

CIÊNCIA/ASTROFÍSICA

A exploração interestelar é uma parte significativa da exploração espacial que revelará os segredos do cosmos. Além disso, viagens dos humanos ao espaço interestelar seria um evento histórico.

Embora as naves espaciais para permitir tais visitas ainda não existam, pode não haver necessidade de as inventar. O astrofísico da Illinois State University, Matthew Caplan, propôs o uso de um “motor estelar” que transformará o nosso sistema solar numa nave espacial.

Um vídeo publicado no Youtube explora o conceito de propulsores teóricos de motores estelares com a capacidade de impulsionar o Sol e, com ele, todo o Sistema Solar. O vídeo explica ainda o funcionamento da mega-estrutura cósmica com a ajuda de The Shadakov Thruster, apresentada pelo físico Leonid Shkadov. O conceito é semelhante à nave espacial LightSail, mas, neste caso, significaria usar a energia do Sol para movê-lo.

O sistema passivo de vela solar seria astronomicamente lento. “Em plena aceleração, o Sistema Solar provavelmente poderia ser movido em cerca de cem anos-luz ao longo de 230 milhões de anos”.

De acordo com o Mashable, o criador do conteúdo perguntou ao astrofísico Matthew Caplan, da Illinois State University, se seria possível ir mais rápido, o que levou à publicação de um artigo na revista científica Acta Astronautica. O documento descreve as considerações de projecto para maximizar a aceleração do motor estelar.

Para o vídeo, o astrofísico apresentou um motor activo baseado no método ateórico de propulsão espacial: Bussard ramjet. O motor utilizaria matéria do Sol como combustível em reactores de fusão termonuclear que libertariam um jacto de partículas de oxigénio a cerca de 1% da velocidade da luz, fora do Sistema Solar. Um segundo jacto libertaria hidrogénio de um acelerador de partículas para empurrar o Sol para frente e equilibrar a força do primeiro jacto para que o motor não colidisse com a bola de fogo.

Apelidado pelo canal do YouTube como Caplan Thruster, o motor estelar poderia empurrar o Sistema Solar a uma distância de 50 anos-luz em cerca de um milhão de anos.

ZAP //

Por ZAP
31 Dezembro, 2019

spacenews

 

3139: Físico constrói calculadora para mostrar o que aconteceria se a Terra colidisse com um buraco negro

CIÊNCIA

(PD/CC0) Comfreak / pixabay

Se o planeta Terra atingisse um buraco negro seria catastrófico em termos de danos? Um nova ferramenta online calcula o nível de destruição.

A Calculadora de Colisão de Buracos Negros determina o nível de expansão de um buraco negro e a quantidade de energia libertada se este absorvesse o nosso planeta – ou outro objecto qualquer, uma vez que esta ferramenta é totalmente personalizável.

Álvaro Díez, um estudante de física de partículas da Polónia, criou esta ferramenta, que está hospedada no projecto Omni Calculator. Com base nos seus cálculos, se um buraco negro engolisse a Terra libertaria 32.204.195.564.497.649.676.480.000.000.000.000 megajoules de energia, cerca de 54 quatriliões o consumo anual de energia de todo o planeta.

Ainda assim, o nosso planeta não afectaria a aparência do cenário ao redor de um buraco negro super-massivo. Sagittarius A*, o buraco negro que mora no coração da Via Láctea, tem cerca 4 milhões de vezes a massa do Sol. Se a Terra fosse engolida por este buraco negro, o horizonte de eventos – o ponto próximo ao buraco negro de onde nada, nem mesmo a luz, consegue escapar – aumentaria em meros 0,00000000007281%.

No entanto, se tivéssemos um encontro inesperado com um buraco negro menor, com “apenas” 20 massas solares, a diferença que causaríamos no horizonte de eventos seria maior – 0,000014562%.

Esta calculadora permite escolher não apenas os efeitos da colisão da Terra com um buraco negro, como também estimar colisões com outros objectos massivos, incluindo estrelas.

A probabilidade de sermos devorados por um buraco negro não deve ser totalmente descartada. Ainda assim, podemos ficar tranquilos em relação a este evento catastrófico durante os próximos milhares de milhões de anos.

A melhor possibilidade de este evento cataclísmico acontecer será quando houver uma colisão entre a Via Láctea e a galáxia de Andrómeda, prevista para daqui a 4 mil milhões de anos.

ZAP // CanalTech

Por ZAP
4 Dezembro, 2019

spacenews

 

3101: Físicos disseram que era impossível, mas descobriram uma nova forma estável de plutónio

CIÊNCIA

(dr) Kristina Kvashnina
Nanopartícula de dióxido de plutónio

Nada é impossível, e uma equipa de químicos acaba de o provar. Os cientistas criaram um novo composto de plutónio (Pu) com um estado de oxidação pentavalente inesperado – Pu (V).

Este novo composto – Pu (V) – é sólido e estável e pode representar uma fase transitória nos repositórios de resíduos radioactivos. O artigo científico foi publicado em Outubro na Angewandte Chemie.

Uma das propriedades mais fundamentais do comportamento químico do plutónio é a variedade dos seus estados de oxidação. Este estado é definido pelo número de electrões que são removidos dos orbitais de valência de um átomo neutro.

Quatro estados de oxidação (de III a VI) podem coexistir sob condições ambientais, já  os estados (VII) e (VIII) são propostos como estáveis ​​sob condições oxidantes altamente alcalinas. O plutónio no estado de oxidação pentavalente, Pu (V), possui três electrões na camada 5f, deixando os orbitais 6d vazios.

“Tudo começou quando estávamos a tentar criar nano-partículas de dióxido de plutónio usando diferentes precursores”, contou Kristina Kvashnina, física do Helmholtz Zentrum Dresden-Rossendorf, citada pelo Sci-News.

Quando os pesquisadores usaram o precursor Pu (VI) perceberam que uma reacção estranha ocorreu durante a formação das nano-partículas de dióxido de plutónio. “Todas as vezes que criamos nano-partículas a partir de outros precursores, Pu (III), (IV) ou (V), a reacção foi muito rápida, mas aqui notamos um fenómeno estranho”, explicou Kvashnina.

Depois de terem realizado uma experiência de detecção de fluorescência de alta energia e resolução, os cientistas concluíram que o fenómeno deveria ser o Pu (V), plutónio pentavalente, uma forma nunca observada do elemento. Experiências posteriores confirmaram as premissas iniciais e demonstraram a estabilidade a longo prazo dessa fase.

“A existência desta nova fase sólida de Pu (V), que é estável, terá que ser levada em consideração a partir de agora”, disse Kvashnina. “Esta descoberta mudará as previsões teóricas do comportamento do plutónio no ambiente ao longo de um período de um milhão de anos.”

ZAP //

Por ZAP
27 Novembro, 2019

 

2980: Nova partícula “fantasma” está a mudar o Universo, defende cientista

CIÊNCIA

(CC0/PD) insspirito / pixabay

Massimo Cerdonio, físico teorético da Universidade de Pádua, em Itália, afirma que uma partícula elementar hipotética, conhecida como axião, está a alterar a quantidade de matéria escura que existe no Universo.

Num novo estudo disponibilizado para pré-visualização no portal arXiv, Cerdonio explica que calculou o grau de mudança que tem que ocorrer nos campos quânticos para que existam alterações na matéria escura.

A matéria escura, recorde-se, compõe 80% do Cosmos. Contudo, pouco ou nada se sabe sobre este estranho tipo de matéria: aliás, os cientistas só sabem da sua existência devido ao efeito gravitacional que causa na matéria visível, que denuncia o seu “rastro”.

A nova investigação sustenta que, caso exista um novo campo quântico responsável pela mudança da matéria escura, isso significa que existe uma nova partícula no Universo, tal como escreve o jornal britânico Daily Star.

As alterações na matéria escura calculadas pelo cientista exigem uma certa quantidade de massa de partículas, que se revelou ser aproximadamente a mesma massa que possuiu a nova partícula, o axião.

Inicialmente, os físicos apontaram teoricamente o axião para resolver questões sobre a compreensão quântica da força nuclear forte. Acredita-se que esta partícula tenha surgido nas primeira etapas de formação da Terra, tendo estado em segundo plano enquanto outras forças e partículas controlavam o rumo do Universo, aponta Cerdonio.

Importa frisar que esta partícula nunca foi observada. Contudo, se os cálculo de Cerdonio estiverem correctos, estes significam que o axião está já por aí, preenchendo o Universo e os campos quânticos.

Cientistas do CERN podem ter descoberto nova “partícula fantasma”

Ainda não está confirmado, mas o Grande Colisionador de Hadrões pode ter detestado uma nova e inesperada partícula. Os teóricos…

ZAP // SputnikNews

Por ZAP
8 Novembro, 2019

 

2818: “Loucura absoluta”. Nobel da Física diz que os humanos nunca poderão “migrar” para exoplanetas

CIÊNCIA

David Fernandez / EPA

Michel Mayor, vencedor do Prémio Nobel de Física de 2019, considerou, em declarações à agência AFP, que os humanos nunca serão capazes de viajar para fora do Sistema Solar e colonizar exoplanetas.

“Se falamos de exoplanetas, tem que ficar muito claro: não vamos migrar para lá”, afirmou, numa conferência de imprensa que decorreu Espanha, explicando que esta impossibilidade se prende com a distância que separa a Terra dos demais exoplanetas, mesmo dos mundos que nos são mais próximos.

Se uma dia a vida na Terra se tornasse impossível, seria uma “loucura absoluta” pensar que o Homem será capaz de estabelecer colónias em exoplanetas, disse, citado pela AFP.

“Mesmo que tivéssemos a sorte de encontrar um planeta habitável que não estivesse muito longe, vamos levar várias dezenas de anos-luz” para lá chegar. “Falamos de centenas de milhões de dias utilizando os meios que temos disponíveis nos dias que correm”.

Foi em Outubro de 1995 que o primeiro exoplaneta, algo que à data parecia só e apenas parte do mundo da ficção científica, foi descoberto. A descoberta foi da responsabilidade do cientista suíço e do estudante de doutoramento Didier Queloz.

Um quarto de século depois, mais de 4.000 exoplanetas foram detectados na nossa galáxia. “Juntamente com o meu colega, começamos essa busca por planetas, mostramos que é possível estudá-los, disse Michel Mayor.

No entanto, frisou, cabe à “próxima geração” responder à questão sobre se há vida noutros mundos. “Não sabemos. A única forma de o fazer é desenvolver estratégias que nos permitam detectar vida à distância. Por este mesmo motivo, apontou, é necessário cuidar do nosso planeta, que é “muito bonito e ainda absolutamente habitável”.

Na passada terça-feira, os cientistas James Peebles, Michel Mayor e Didier Queloz foram galardoados com o Prémio Nobel de Física pela “contribuição à nossa compreensão da evolução do Universo e do lugar da Terra no Cosmos”.

ZAP //

Por ZAP
11 Outubro, 2019

 

2801: Nobel da Física atribuído a astrónomos que descobriram exoplaneta com estrela semelhante ao Sol

CIÊNCIA

Nobel Prize / Twitter
Da esquerda para a direita: James Peebles, Michel Mayor e Didier Queloz

O Prémio Nobel da Física foi atribuído, esta terça-feira, ao físico canadiano James Peebles, por descobertas em cosmologia física, e aos astrónomos suíços Michel Mayor e Didier Queloz, pela descoberta de um exoplaneta que orbita à volta de uma estrela semelhante ao Sol.

Os prémios Nobel, os mais prestigiados do mundo atribuídos nas áreas de Medicina, Física, Química, Literatura, Economia e Paz cumprem um desejo que o inventor da dinamite, Alfred Nobel (1833-1896), deixou em testamento, em 1895. O cientista e industrial sueco quis legar grande parte da sua fortuna a pessoas que trabalhem por “um mundo melhor”. Os vencedores recebem, actualmente, 9 milhões de coroas suecas (cerca de 830 mil euros).

The Nobel Prize

@NobelPrize

BREAKING NEWS:
The 2019 #NobelPrize in Physics has been awarded with one half to James Peebles “for theoretical discoveries in physical cosmology” and the other half jointly to Michel Mayor and Didier Queloz “for the discovery of an exoplanet orbiting a solar-type star.”

Segundo os termos do testamento assinado em 185 (um ano antes da morte de Nobel), cerca de 31,5 milhões de coroas suecas, o equivalente a 2,2 mil milhões de coroas na actualidade (203 milhões de euros), foram alocados a uma espécie de fundo cujos juros deviam ser redistribuídos anualmente “àqueles que, durante o ano, tenham prestado os maiores serviços à humanidade”, escreve a TSF.

O testamento previa que os juros do capital investido fossem distribuídos ao autor da descoberta ou invenção mais importante do ano no campo da Física, da Química, da Fisiologia ou Medicina, e da obra de Literatura de inspiração idealista que mais se tenha destacado. Uma última parte seria atribuída à personalidade que mais ou melhor contribuísse para “a aproximação dos povos”.

Esta segunda-feira, foram anunciados os vencedores do Nobel da Medicina. Na quarta-feira, será anunciado o prémio da Química, na quinta-feira, serão atribuídos os Nobel da Literatura de 2018 e 2019, e, na sexta-feira, será conhecido o nome do novo Nobel da Paz. O último anúncio será feito no dia 14 de outubro e determinará o vencedor do Nobel da Economia.

ZAP //

Por ZAP
8 Outubro, 2019

 

2572: Físicos criaram um dispositivo que consegue “esquecer” memórias

CIÊNCIA

TheDigitalArtist / pixabay

O cérebro é a melhor máquina de computação, por isso, não é de admirar que os cientistas queiram imitá-lo. Agora, uma nova investigação deu um passo intrigante nessa direcção: um dispositivo capaz de “esquecer” memórias.

Este novo dispositivo, baptizado de “memoristor de segunda ordem” (uma mistura entre “memória” e “resistor”), imita uma sinapse do cérebro humano na forma como este se lembra de informações e depois as perde, de forma gradual, se não forem usadas durante um longo período de tempo, escreve o Science Alert.

Embora este memoristor ainda não tenha um uso prático, pode eventualmente ajudar os cientistas a desenvolver um novo tipo de neuro-computador — a base dos sistemas de Inteligência Artificial — que cumpriria algumas das mesmas funções que um cérebro desempenha.

Num chamado neurocomputador analógico, os componentes electrónicos no chip (como o memoristor) podem assumir o papel de neurónios e sinapses individuais, o que pode reduzir os requisitos de energia do computador e, ao mesmo tempo, acelerar os cálculos.

Actualmente, os neuro-computadores analógicos são apenas hipotéticos, uma vez que precisamos ainda de descobrir como a electrónica pode imitar a plasticidade sináptica — a forma como as sinapses cerebrais activas se fortalecem com o tempo e as inactivas ficam mais fracas.

Tentativas anteriores de produzir memoristores usavam pontes condutoras nano-métricas, que decairiam com o tempo, da mesma forma que as memórias poderiam decair na nossa mente.

“O problema com essa solução é que o dispositivo tende a mudar o seu comportamento ao longo do tempo e quebra após uma operação prolongada”, explica Anastasia Chouprik, física do Instituto de Física e Tecnologia de Moscovo (MIPT).

Sinapse, à esquerda, versus o memoristor, à direita

“O mecanismo que usamos agora para implementar a plasticidade sináptica é mais robusto. De facto, após mudar o estado do sistema 100 mil milhões de vezes, ainda estava a funcionar normalmente, por isso os meus colegas pararam o teste de resistência”.

Neste caso, a equipa utilizou um material ferroeléctrico — óxido de háfnio — em vez das pontes nano-métricas, com uma polarização eléctrica que muda em resposta a um campo eléctrico externo. Isto significa que os estados de baixa e alta resistência podem ser definidos por pulsos eléctricos.

O que torna o óxido de háfnio ideal e o coloca à frente de outros materiais ferroeléctricos é o facto de já estar a ser usado para construir micro-chips por empresas como a Intel, fazendo com que seja mais fácil e barato introduzir memoristores quando vier a existir um neuro-computador analógico.

O actual “esquecimento” é implementado através de uma imperfeição que dificulta o desenvolvimento de microprocessadores baseados em háfnio — defeitos na interface entre o silício e o óxido de háfnio. Esses mesmos defeitos permitem que a condutividade do memoristor diminua com o tempo.

É um começo promissor, mas ainda há um longo caminho a percorrer: estas células de memória ainda precisam de ser mais confiáveis, por exemplo, e a equipa também quer investigar como o seu novo dispositivo pode ser incorporado à electrónica flexível.

Os resultados desta investigação foram publicados na ACS Applied Materials & Interfaces.

ZAP //

Por ZAP
4 Setembro, 2019

 

2568: Indícios de uma exolua vulcanicamente activa

CIÊNCIA

Impressão de artista de uma exo-Io vulcânica a sofrer extrema perda de massa. A exolua escondida está rodeada por uma nuvem irradiada de gás que brilha num tom laranja-amarelado, como vista através de um filtro de sódio. As manchas de nuvens de sódio parecem seguir a órbita lunar, possivelmente conduzidas pela magnetosfera do gigante gasoso.
Crédito: Thibaut Roger/Universidade de Berna

Uma exolua com lava borbulhante pode orbitar um planeta a 550 anos-luz de distância. Isto é sugerido por uma equipa internacional de investigadores liderada pela Universidade de Berna, com base em previsões teóricas que coincidem com observações. A “exo-Io” parece ser uma versão extrema da lua de Júpiter, Io.

A lua Io de Júpiter é o corpo mais vulcanicamente activo do nosso Sistema Solar. Hoje, existem indícios de que uma lua activa para lá do nosso Sistema Solar, uma exolua, poderá estar escondida no sistema exoplanetário WASP-49b. “Seria um mundo vulcânico perigoso com uma superfície derretida de lava, uma versão lunar de super-Terras íntimas como 55 Cancri-e,” disse Apurva Oza, pós-doutorado do Instituto de Física da Universidade de Berna e associado do NCCR PlanetS (National Centre of Competence in Research PlanetS), “um local onde os Jedis vão para morrer, perigosamente familiar ao caso de Anakin Skywalker”. Mas o objecto que Oza e colegas descrevem no seu artigo científico parece ser ainda mais exótico do que a ficção da saga “Guerra das Estrelas”: a possível exolua orbitaria um gigante gasoso e quente, que por sua vez orbitaria a sua estrela hospedeira em menos de três dias – um cenário a 550 anos-luz de distância na direcção da discreta constelação de Lebre, por baixo da brilhante constelação de Orionte.

O gás sódio como evidência circunstancial

Os astrónomos ainda não descobriram uma lua rochosa para lá do nosso Sistema Solar e é com base em evidências circunstanciais que os investigadores de Berna concluem a existência da exolua: o gás sódio foi detectado em WASP-49b a uma altitude anormalmente alta. “O gás neutro de sódio está tão longe do planeta que é improvável que seja emitido apenas por um vento planetário,” explicou Oza. As observações de Júpiter e de Io, no nosso Sistema Solar, pela equipa internacional, juntamente com cálculos de perda de massa, mostram que uma exolua pode ser uma fonte muito plausível do sódio em WASP-49b. “O sódio está exactamente onde deveria estar,” diz o astrofísico.

As marés mantêm o sistema estável

Já em 2006, Bob Johnson da Universidade da Virgínia (EUA) e o falecido Patrick Huggins, da Universidade de Nova Iorque (EUA), tinham mostrado que grandes quantidades de sódio num exoplaneta podiam apontar para uma lua ou anel oculto de material e, há dez anos, os investigadores de Virginia calcularam que um sistema tão compacto de três corpos – estrela, planeta gigante muito íntimo e lua – podia permanecer estável durante milhares de milhões de anos. Apurva Oza era na altura estudante na Universidade da Virginia e, após o seu doutoramento em atmosferas lunares em Paris, decidiu continuar os cálculos teóricos destes cientistas. Ele publicou agora os resultados do seu trabalho em conjunto com Johnson e colegas na revista The Astrophysical Journal.

“As enormes forças de maré em tal sistema são a chave de tudo,” explicou o astrofísico. A energia libertada pelas marés até ao planeta e à sua lua mantêm a órbita da lua estável, simultaneamente aquecendo-a e tornando-a vulcanicamente activa. No seu trabalho, os investigadores foram capazes de mostrar que uma pequena lua rochosa pode libertar mais sódio e potássio para o espaço através deste vulcanismo extremo do que um planeta gigante gasoso, especialmente a grandes altitudes. “As linhas de sódio e potássio são tesouros quânticos para nós, astrónomos, porque são extremamente brilhantes,” acrescentou Oza. “As lâmpadas que iluminam as nossas ruas com uma neblina amarelada são semelhantes ao gás que estamos agora a detectar nos espectros de uma dúzia de exoplanetas.”

“Precisamos de encontrar mais pistas”

Os investigadores compararam os seus cálculos com estas observações e encontraram cinco sistemas candidatos onde uma exolua escondida pode sobreviver contra a evaporação térmica destrutiva. Para WASP-49b, os dados observados podem ser melhor explicados pela existência de uma exo-Io. No entanto, existem outras opções. Por exemplo, o exoplaneta pode estar rodeado por um anel de gás ionizado, ou processos não-térmicos. “Precisamos de encontrar mais pistas”, admitiu Oza. Os cientistas estão, portanto, a contar com novas observações com instrumentos terrestres e espaciais.

“Enquanto a actual onda de investigação está a caminhar para a habitabilidade e para as bio-assinaturas, a nossa assinatura é uma assinatura de destruição,” comentou o astrofísico. Alguns destes mundos poderão ser destruídos daqui a alguns milhares de milhões de anos devido à extrema perda de massa. “A parte interessante é que podemos monitorizar estes processos destrutivos em tempo real, como fogos de artifício,” disse Oza.

Astronomia On-line
3 de Setembro de 2019

 

2522: Físicos conseguiram calcular a massa da mais pequena “partícula-fantasma” (ou quase)

CIÊNCIA

DESY/Science Communication Lab

Estamos cheios de neutrinos. Estão em toda parte, quase indetectáveis, voando através da matéria normal. Não sabemos nada sobre eles – nem mesmo o quão pesados são.

Porém, sabemos que os neutrinos têm o potencial de alterar a forma de todo o universo. E como têm esse poder, podemos usar a forma do universo para pesá-los – como uma equipa de físicos já fez.

Por causa da Física, os comportamentos das menores partículas alteram o comportamento de galáxias inteiras e outras estruturas celestes gigantes. Num novo artigo, que será publicado numa edição da revista especializada Physical Review Letters, os investigadores usaram esse facto para calcular a massa do neutrino mais leve a partir de medições precisas da estrutura em larga escala do universo.

Os físicos recolheram dados sobre os movimentos de aproximadamente 1,1 milhões de galáxias do Baryon Oscillation Spectroscopic Survey, misturaram-nos com outras informações cosmológicas e resultados de experiências com neutrinos de escala muito menor na Terra, colocando, por fim, toda essa informação num supercomputador.

“Utilizamos mais de meio milhão de horas de computação para processar os dados”, disse em comunicado o co-autor do estudo, Andrei Cuceu, um estudante de doutorado em astrofísica da University College London. “Isso equivale a quase 60 anos num único processador”

O resultado não ofereceu um número fixo para a massa do tipo mais leve de neutrino, mas perto: aquela espécie de neutrino tem uma massa não superior a 0,086 electrão-volts (eV), ou cerca de seis milhões de vezes menos que a massa de um único electrão.

Apesar deste número estabelecer um limite superior para a massa das espécies mais leves de neutrino, não estabelece um limite inferior. É mesmo possível que não tenha massa nenhuma. O que os físicos sabem é que pelo menos duas das três espécies de neutrinos precisam de ter alguma massa e que há uma relação entre as suas massas.

As três massas das espécies de neutrinos não se alinham com os três sabores de neutrino: electrão, muão e tau. De acordo com o Fermilab, cada sabor de neutrino é composto de uma mistura quântica das três massas. Assim, um certo neutrino tau tem um pouco de espécia 1, um pouco de espécie 2 e um pouco de espécie 3. Essas diferentes espécies de massa permitem que os neutrinos saltem de um lado para o outro entre os sabores, como uma descoberta de 1998 – Prémio Nobel de Física – mostrou.

Os físicos podem nunca conseguir identificar com precisão as massas das três espécies de neutrinos, mas podem aproximar-se. A massa continuará a diminuir à medida que as experiências na Terra e as medições no Espaço melhorem.

E quanto melhor os físicos puderem medir esses componentes minúsculos e omnipresentes do nosso Universo, melhor a Física será capaz de explicar como tudo se encaixa.

ZAP //

Por ZAP
27 Agosto, 2019

 

2480: Lua brilha mais do que o Sol em imagens do Fermi da NASA

Estas imagens mostram a visão cada vez mais aprimorada do brilho de raios-gama da Lua do Telescópio Espacial de Raios-gama Fermi da NASA. Cada imagem de 5 por 5 graus é centrada na Lua e mostra raios-gama com energias acima dos 31 milhões de electrões-volt, dezenas de milhões de vezes superiores à da luz visível. Nestas energias, a Lua é realmente mais brilhante do que o Sol. As cores mais brilhantes indicam um maior número de raios-gama. Esta sequência de imagens mostra como exposições mais longas, variando de dois a 128 meses (10,7 anos), melhorou a visão.
Crédito: NASA/DOE/Colaboração LAT do Fermi

Se os nossos olhos pudessem ver radiação altamente energética chamada raios-gama, a Lua pareceria mais brilhante do que o Sol! É assim que o Telescópio Espacial de Raios-gama Fermi da NASA tem visto o nosso vizinho no espaço ao longo da última década.

As observações de raios-gama não são sensíveis o suficiente para ver claramente a forma de disco da Lua ou quaisquer características da superfície. Em vez disso, o LAT (Large Area Telescope) do Fermi detecta um brilho proeminente centrado na posição da Lua no céu.

Mario Nicola Mazziotta e Francesco Loparco, ambos do Instituto Nacional de Física Nuclear da Itália em Bari, têm analisado o brilho da radiação gama da Lua como forma de entender melhor um outro tipo de radiação espacial: partículas velozes chamadas raios cósmicos.

“Os raios cósmicos são principalmente fotões acelerados por alguns dos fenómenos mais energéticos do Universo, como ondas de choque de estrelas explosivas e jactos produzidos quando a matéria cai em buracos negros,” explicou Mazziotta.

Dado que as partículas são electricamente carregadas, são fortemente afectadas por campos magnéticos, que a Lua não possui. Como resultado, até raios cósmicos de baixa energia podem alcançar a superfície, transformando a Lua num prático detector espacial de partículas. Quando os raios cósmicos atacam, interagem com a superfície poeirenta da Lua, de nome rególito, para produzir emissão de raios-gama. A Lua absorve a maioria destes raios-gama, mas alguns escapam.

Mazziotta e Loparco analisaram as observações lunares do LAT do Fermi para mostrar como a visão melhorou durante a missão. Eles reuniram dados de raios-gama altamente energéticos acima dos 31 milhões eV (electrão-volt) – mais de 10 milhões de vezes superior à energia da luz visível – e organizaram-nos ao longo do tempo, mostrando como exposições mais longas melhoram a visão.

“Vista a estas energias, a Lua nunca passaria pelo seu ciclo mensal de fases e ficaria sempre Cheia,” explicou Loparco.

À medida que a NASA planeia enviar novamente seres humanos à Lua até 2024 através do programa Artemis, com o objectivo eventual de enviar astronautas a Marte, a compreensão dos vários aspectos do ambiente lunar assume uma nova importância. Estas observações de raios-gama são uma lembrança de que os astronautas da Lua precisarão de protecção contra os mesmos raios cósmicos que produzem esta radiação gama de alta energia.

Embora o brilho de raios-gama da Lua seja surpreendente e impressionante, o Sol ainda brilha mais, com energias superiores a mil milhões de electrões-volt. Os raios cósmicos com energias mais baixas não alcançam o Sol porque o seu poderoso campo magnético os impede. Mas os raios-gama muito mais energéticos podem penetrar este campo magnético e atingir a atmosfera mais densa do Sol, produzindo raios-gama que chegam ao Fermi.

Embora a Lua, em raios-gama, não mostre um ciclo mensal de fases, o seu brilho varia com o tempo. Os dados do LAT do Fermi mostram que o brilho da Lua varia em cerca de 20% ao longo do ciclo de 11 anos do Sol. As variações na intensidade do campo magnético do Sol durante o ciclo mudam a quantidade de raios cósmicos que chegam à Lua, alterando a produção de raios-gama.

Astronomia On-line
20 de Agosto de 2019

 

2394: Cientistas fizeram uma ressonância magnética a um átomo

CIÊNCIA

RoyBuri / pixabay

Cientistas do Centro de Nanociência Quântica (QNS) da Ewha Womans University, na Coreia do Sul, fizeram um grande avanço científico ao realizar a menor ressonância magnética do mundo.

Numa colaboração com cientistas dos Estados Unidos, uma equipa de físicos da Ewha Womans University, na Coreia do Sul, usou uma nova técnica para observar o campo magnético de átomos individuais.

O procedimento trata-se do mesmo tipo de ressonância magnética que pode ser realizada em hospitais, para observar o corpo humano e diagnosticar doenças. No entanto, no caso do átomo, o processo só foi possível graças à tecnologia de tunelamento por varredura, um microscópio com uma “ponta” de metal que permite aos cientistas digitalizar átomos individuais.

Os dois elementos analisados neste trabalho foram ferro e titânio, ambos magnéticos. A ponta de metal do microscópio serviu como uma máquina de ressonância magnética, realizando um mapa tridimensional dos átomos com uma resolução nunca antes alcançada.

O mapa foi feito através de uma varredura da interacção entre dois spins – possíveis orientações de partículas subatómicas carregadas -, um na ponta do metal e outro na amostra que passou pela ressonância magnética.

“A interacção magnética que medimos depende das propriedades de ambos os spins, o da ponta e o da amostra. Por exemplo, o sinal que vemos para os átomos de ferro é muito diferente dos átomos de titânio, o que nos permite distinguir diferentes tipos de átomos pela sua assinatura de campo magnético, tornando esta técnica muito poderosa”, explicou o principal autor do estudo, Philip Willke, ao portal Phys.org.

As áreas claras marcam as posições em que o campo magnético do átomo é o mesmo.

A técnica tem muitas aplicações possíveis, nomeadamente nos campos da computação quântica e da medicina, para desenvolver novos materiais e medicamentos.

O próximo passo desta investigação é utilizar a tecnologia para pesquisar estruturas e fenómenos mais complexos, assim como mapear moléculas e materiais magnéticos.

“Muitos fenómenos magnéticos ocorrem em escala nanométrica, incluindo a recente geração de dispositivos de armazenamento magnético. Queremos estudar uma variedade de sistemas através da nossa ressonância magnética microscópica”, adiantou Yujeong Bae, outro investigador que participou no estudo, publicado recentemente na Nature Physics.

Estou muito animado com os resultados. É certamente um marco e tem implicações muito promissoras para investigações futuras. A capacidade de mapear spins e os seus campos magnéticos com precisão permite-nos obter um conhecimento mais profundo sobre a estrutura da matéria e abre novos campos de pesquisa básica”, concluiu Andreas Heinrich, diretor do Centro de Nanociência Quântica.

ZAP // HypeScience

Por ZAP
1 Agosto, 2019

 

2326: Revelada a primeira fotografia de entrelaçamento quântico

CIÊNCIA

Universidade de Glasgow

Pela primeira vez na História, os cientistas capturaram uma fotografia de entrelaçamento quântico – um fenómeno tão estranho que o físico Albert Einstein o descreveu como “uma acção fantasmagórica à distância”.

A imagem foi capturada por físicos da Universidade de Glasgow, na Escócia. Esta fotografia cinzenta e difusa é a primeira vez que vemos a interacção de partículas que sustenta a estranha ciência da mecânica quântica e forma a base da computação quântica.

O emaranhamento quântico ocorre quando duas partículas se tornam inextricavelmente ligadas e o que quer que aconteça com uma afecta imediatamente a outra, independentemente de quão distantes estejam.

Esta fotografia em particular mostra o entrelaçamento entre dois fotões – duas partículas de luz, que estão a interagir e, por um breve momento, a compartilhar estados físicos.

Paul-Antoine Moreau, primeiro autor do artigo em que a imagem foi revelada, publicado a 12 de Julho na revista Science Advances, disse à BBC que a imagem era “uma elegante demonstração de uma propriedade fundamental da natureza”.

Para capturar a fotografia, Moreau e uma equipa de físicos criaram um sistema que explodiu fluxos de fotões entrelaçados no que descreveram como “objectos não convencionais”. A experiência envolveu a captura de quatro imagens dos fotões em quatro diferentes transições de fase.

Universidade de Glasgow

Os físicos dividiram os fotões emaranhados e percorreram um feixe através de um material de cristal líquido conhecido como borato de bário, desencadeando quatro transições de fase. Ao mesmo tempo, capturaram fotos do par entrelaçado a passar pelas mesmas transições de fase, mesmo não tendo passado pelo cristal líquido.

A câmara conseguiu capturar imagens dessas imagens ao mesmo tempo, mostrando que ambas mudaram da mesma maneira, apesar de estarem divididas. Noutras palavras, estavam emaranhadas.

Enquanto Einstein tornou famoso o emaranhamento quântico, o falecido físico John Stewart Bell ajudou a definir o entrelaçamento quântico e estabeleceu um teste conhecido como “Desigualdade de Bell”.

A chamada desigualdade de Bell é satisfeita apenas se as acções num local não puderem afectar outro lugar instantaneamente e os resultados das medições forem bem definidos de antemão – algo apelidado de “realismo local”.

Bell mostrou, teoricamente, que o entrelaçamento quântico violaria a sua teoria da desigualdade, mas teorias realistas contendo as variáveis ocultas, não. Isto ocorre porque a ligação entre partículas entrelaçadas é mais forte do que Einstein queria acreditar. Se a correlação medida entre pares de partículas de uma experiência fosse acima de um determinado limiar, seria inconsistente com variáveis ocultas e a teoria do emaranhamento quântico estaria correta.

“Aqui, relatamos uma experiência demonstrando a violação de uma desigualdade de Bell dentro das imagens observadas”, escreve a equipa. “Esse resultado abre o caminho para novos esquemas de imagens quânticas e sugere a promessa de esquemas de informação quântica baseados em variáveis espaciais”.

ZAP //

Por ZAP
17 Julho, 2019

[vasaioqrcode]

 

2299: Teoria de Einstein pode não ser a única explicação da gravidade

CIÊNCIA

(dr)
Albert Einstein, Prémio Nobel da Física em 1921

Uma equipa de físicos usou supercomputadores para simular o cosmos partindo de um modelo alternativo à teoria de Albert Einstein.

Físicos sugerem num estudo publicado esta segunda-feira que a Teoria da Relatividade Geral de Einstein poderá não ser a única forma de explicar como funciona a gravidade ou como se formam as galáxias. O estudo, publicado na revista da especialidade “Nature Astronomy”, foi conduzido por investigadores da Universidade de Durham, no Reino Unido.

Segundo a agência noticiosa espanhola Efe, que cita o estudo, uma equipa de físicos usou supercomputadores (computadores com maior capacidade de processamento de dados do que os convencionais) para simular o cosmos partindo de um modelo alternativo à teoria de Albert Einstein (1879-1955), a Teoria dos Camaleões, assim chamada porque muda de comportamento em função do meio envolvente.

De acordo com os cientistas da Universidade de Durham, as galáxias como a Via Láctea poderão ter-se formado segundo leis diferentes das da gravitação.

Publicada em 1915, a Teoria da Relatividade Geral constitui a descrição actual da gravitação na física moderna. Segundo Einstein, a gravitação não é uma força, mas uma curvatura no espaço-tempo provocada por uma massa como o Sol.

Os cientistas sabiam, a partir de cálculos teóricos, que a Teoria dos Camaleões podia reproduzir o sucesso da relatividade no Sistema Solar. O que a equipa da Universidade de Durham terá feito foi demonstrar que esta teoria explica a formação real de galáxias.

Para o físico Christian Arnold, do Instituto de Cosmologia da universidade britânica, as conclusões do estudo não significam que a Teoria da Relatividade Geral “seja incorrecta”, mas revelam, em seu entender, que “não tem que ser a única forma de explicar o papel da gravidade na evolução do Universo”.

O estudo, de acordo com os seus autores, poderá ajudar a compreender a ‘energia escura’, que tende a acelerar a expansão do Universo.

Os cientistas esperam que as conclusões da sua investigação possam ser confirmadas pelo telescópio SKA, que se apresenta como o maior radiotelescópio do mundo, com participação portuguesa, e que deverá começar a operar em 2020.

ZAP // Lusa

Por ZAP
9 Julho, 2019

[vasaioqrcode]

 

2293: Cientistas querem abrir “um portal para o mundo paralelo”

CIÊNCIA

Chingster23 / Flickr

A física Leah Broussard, do Laboratório Nacional de Oak Ridge, no estado norte-americano do Tennessee, prepara-se para demonstrar a existência de um “universo espelho” composto por um material semelhante ao do nosso mundo.

A informação foi avançada pela especialista em declarações à cadeia televisiva NBC. De acordo com Broussard, o “universo espelho”, que deverá ser testado este verão, é composto por um tipo de matéria escura, a misteriosa matéria que ocupa cerca de 85% do Universo e não pode ser observada excepto através da sua influência gravitacional.

“[O “universo espelho”] manifesta-se como uma cópia perfeita de partículas e interacções do Modelo Padrão de tal forma que a paridade e a inversão do tempo são simetrias exactas (…) [este universo] interage muito fracamente com o nosso Universo conhecido, principalmente do ponto de vista gravitacional”, pode ler-se num estudo publicado no arXiv.org em 2017 por uma equipa de cientistas liderados por Broussard.

No entanto, a física acredita que a matéria escura pode ser detectada se um feixe de partículas subatómicas acelerado com um íman poderoso colidir com uma parede impenetrável – e é exactamente esta experiência que vai levar agora levar a cabo.

Se a teoria da “matéria-espelho” estiver correta, algumas desta partículas vão tornar-se “imagens espelhadas” de si mesmas e continuarão o seu movimento para trás da barreira. “Este é um experimento experimental bastante simples que improvisamos com peças que descobrimos, usando os equipamentos e recursos que já tínhamos disponíveis”.

Apesar da sua simplicidades, a experiência – que os média rotularam já como uma tentativa de “abrir um portal para o mundo paralelo” – pode refutar a visão existente sobre o mundo criado pela Física convencional. “Se descobrirmos algo novo deste género, o jogo muda completamente”, assegurou a cientista.

A cientista não acredita, contudo, que seja possível encontrar vida inteligente no “universo paralelo”. Ainda assim, Broussard não duvida que o “universo-espelho” seja tão complexo quanto o nosso. “É improvável que na matéria escura existam pessoas (…) mas é muito provável que a matéria escura seja tão rica quanto a nossa“, assume Broussard.

ZAP //

Por ZAP
9 Julho, 2019

[vasaioqrcode]

 

2259: A vida pode (teoricamente) existir num universo 2D

CIÊNCIA

MathewKennedy / Deviant Art

A nossa realidade viva acontece num universo tridimensional. Apesar de ser difícil imaginar um universo com apenas duas dimensões, novos cálculos indicam que poderia teoricamente suportar vida.

James Scargill, da Universidade da Califórnia, em Davis, quis testar o princípio antrópico – que estabelece que qualquer teoria válida sobre o universo tem que ser consistente com a existência do ser humano. Na prática, segundo esta ideia filosófica, os universos não podem existir se não houver vida no interior.

O físico analisou a ideia de vida em dimensões 2+1, em que +1 é a dimensão do tempo. Segundo o Science Alert, o cientista defende que a comunidade científica terá de repensar tanto a física quanto a filosofia de viver fora das dimensões 3+1 às quais estamos acostumados.

“Há dois argumentos principais contra a possibilidade de vida em dimensões 2+1: a falta de uma força gravitacional local e o limite newtoniano na relatividade geral 3D, e a afirmação de que a restrição a uma topologia planar significa que as possibilidades são demasiado simples para que a vida exista”, escreve Scargill no artigo científico.

Os cálculos do especialista são muito sofisticados, mas mostram que, em teoria, poderia existir um campo gravitacional escalar em duas dimensões, permitindo assim gravidade e, portanto, a cosmologia num universo 2D.

No entanto, para a vida emergir é necessário um nível de complexidade tal que, neste caso, pode ser simbolizado por redes neurais. Os nossos cérebros são altamente complexos e existem em 3D, pelo que tendemos a pensar que uma rede neural não poderia funcionar em apenas duas dimensões.

Mas Scargill demonstra que certos tipos de gráficos bidimensionais planares compartilham propriedades com redes neurais biológicas. Estes gráficos podem ser combinados de maneiras que se assemelham à função modular das redes neurais. Aliás, até exibem aquilo que é conhecido como propriedades do mundo pequeno, em que uma rede complexa pode ser cruzada num pequeno número de etapas.

Em suma, de acordo com a física descrita por Scargill, os universos 2D poderiam sustentar vida. Isto não significa, porém, que estes universos existem: o artigo apenas apresenta dois fortes argumentos que sugerem que os universos 2+1 precisam de uma séria reconsideração.

O artigo científico ainda não passou pela revisão por pares, mas já foi avaliado por cientistas do Massachusetts Institute of Technology (MIT), que afirmam que esta pesquisa enfraquece, de facto, o princípio antrópico.

Como não temos nenhuma máquina para atravessar o universo, este tipo de pesquisa pode parecer extremamente teórico, mas a reflexão de Scargill abre alguns caminhos para investigações futuras – inclusivamente a possibilidade de, um dia, simularmos um universo 2D, através da computação quântica.

“Seria interessante determinar se existem outros impedimentos à vida até agora negligenciados, bem como continuar a procurar explicações não-antrópicas para a dimensionalidade do espaço-tempo”, escreveu Scargill, no artigo científico disponível no arXiv.org.

ZAP //

Por ZAP
2 Julho, 2019

[vasaioqrcode]