3431: JWST vai procurar atmosferas em exoplanetas potencialmente habitáveis

CIÊNCIA/ASTRONOMIA

Esta impressão de artista mostra o sete exoplanetas rochosos do sistema TRAPPIST-1, localizado a 40 anos-luz da Terra. Os astrónomos vão observar estes mundos com o Webb num esforço de detectar a primeira atmosfera num planeta do tamanho da Terra para lá do nosso Sistema Solar.
Crédito: NASA e JPL/Caltech

Este mês marca o terceiro aniversário da descoberta de um sistema notável com sete planetas conhecido como TRAPPIST-1. Estes sete mundos rochosos do tamanho da Terra orbitam uma estrela fria a 39 anos-luz do Sistema Solar. Três desses planetas estão na zona habitável, o que significa que estão à distância orbital ideal para serem quentes o suficiente para que a água líquida exista à superfície. Após o seu lançamento em 2021, o Telescópio Espacial James Webb da NASA irá observar esses mundos com o objectivo de fazer o primeiro estudo detalhado no infravermelho próximo da atmosfera de um planeta na zona habitável.

Para encontrar sinais de uma atmosfera, os astrónomos vão usar uma técnica chamada espectroscopia de transmissão. Observam a estrela hospedeira enquanto o planeta cruza a sua face, um evento conhecido como trânsito. A luz da estrela é filtrada pela atmosfera do planeta, que absorve parte desta luz e deixa impressões digitais reveladores no espectro da estrela.

Encontrar uma atmosfera em torno de um exoplaneta rochoso – a palavra que os cientistas usam para planetas para lá do nosso Sistema Solar – não será fácil. As suas atmosferas são mais compactas do que as dos gigantes gasosos, enquanto o seu tamanho menor significa que interceptam menos luz estelar. TRAPPIST-1 é um dos melhores alvos disponíveis para o Webb, já que a própria estrela também é bastante pequena, o que significa que o tamanho dos planetas, em relação à estrela, é maior.

“As atmosferas são mais difíceis de detectar, mas a recompensa é maior. Seria muito emocionante fazer a primeira detecção de uma atmosfera num planeta do tamanho da Terra,” disse David Lafrenière da Universidade de Montreal, investigador principal de uma das equipas que examinam TRAPPIST-1.

Estrelas anãs vermelhas como TRAPPIST-1 tendem a ter surtos violentos que podem tornar os seus planetas inóspitos. Mas determinar se têm atmosferas e, em caso afirmativo, do que são feitos, é o próximo passo para descobrir se a vida como a conhecemos poderia sobreviver nestes mundos distantes.

Um esforço coordenado

Mais de uma equipa de astrónomos vai estudar o sistema TRAPPIST-1 com o Webb. Planeiam usar uma variedade de instrumentos e modos de observação para obter o máximo de detalhes possíveis para cada planeta no sistema.

“É um esforço coordenado porque nenhuma equipa pode fazer tudo o que queremos com o sistema TRAPPIST-1. O nível de cooperação tem sido realmente espectacular,” explicou Nikole Lewis da Universidade de Cornell, a investigadora principal de uma das equipas.

“Com sete planetas para escolher, cada um de nós pode ‘comer um pedaço do bolo’,” acrescentou Lafrenière.

O programa de Lafrenière terá como alvo TRAPPIST-1d e -1f, num esforço de não apenas detectar uma atmosfera, mas determinar a sua composição básica. Eles esperam ser capazes de distinguir entre uma atmosfera dominada por vapor de água, ou uma composta principalmente de azoto (como a Terra) ou dióxido de carbono (como Marte e Vénus).

O programa de Lewis vai observar TRAPPIST-1e com objectivos semelhantes. TRAPPIST-1e é um dos exoplanetas que mais tem em comum com a Terra em termos de densidade e quantidade de radiação que recebe da sua estrela. Isto torna-o um óptimo candidato à habitabilidade – mas os cientistas precisam de saber mais para ter a certeza.

Uma ampla variedade de planetas

Embora os planetas de TRAPPIST-1 tenham apelo particular do ponto de vista de potencial habitabilidade, o programa de Lafrenière terá como alvo uma variedade de planetas – desde rochosos a mini-Neptunos a gigantes de gás do tamanho de Júpiter – a uma variedade de distâncias das suas estrelas. O objectivo é aprender mais sobre como e onde estes planetas se formam.

Em particular, os astrónomos continuam a debater como os planetas gasosos podem ser encontrados tão perto das suas estrelas. Muitos acreditam que este planeta deve ter-se formado mais longe no disco protoplanetário – o disco em torno de uma estrela onde nascem os planetas -, pois o material está disponível longe da estrela e depois migrou para dentro. No entanto, outros cientistas teorizam que até mesmo os grandes gigantes gasosos podem formar-se relativamente perto da sua estrela.

“Além disso, talvez se tenham formado mais longe, mas quanto mais longe?”, perguntou Lewis.

Para ajudar a informar o debate, os astrónomos vão analisar a proporção de carbono e oxigénio numa variedade de exoplanetas. Esta proporção pode servir como um marcador de onde o planeta se formou, porque varia com a distância da estrela.

Mapas meteorológicos

Além de examinar planetas usando espectroscopia de transmissão, as equipas vão também empregar uma técnica conhecida como curva de fase. Isto envolve a observação de um planeta ao longo de uma órbita inteira, o que só é prático para os mundos mais quentes com os períodos orbitais mais curtos.

Um planeta que orbita a sua estrela muito perto sofre bloqueio de maré, o que significa que mostra sempre a mesma face para a estrela, como a Lua faz com a Terra. Como resultado, observadores distantes que observam o planeta vão vê-lo passar por várias fases, uma vez que lados diferentes do planeta são visíveis a diferentes pontos da sua órbita.

Medindo o planeta em vários momentos, os astrónomos podem construir um mapa da temperatura atmosférica em função da longitude. Esta técnica foi pioneira no Telescópio Espacial Spitzer, que fez o primeiro “mapa meteorológico” de um exoplaneta em 2007.

Além disso, observando a emissão de calor do próprio planeta, os astrónomos podem modelar a estrutura vertical da atmosfera.

“Com uma curva de fase, podemos construir um modelo 3D completo da atmosfera de um planeta,” explicou Lafrenière.

Este trabalho está a ser realizado como parte do programa GTO (Guaranteed Time Observations) do Webb. Este programa foi desenvolvido para recompensar cientistas que ajudaram a desenvolver os principais componentes de hardware e software ou o conhecimento técnico e interdisciplinar do observatório.

O Telescópio Espacial James Webb será o principal observatório científico espacial do mundo quando for lançado em 2021. Vai resolver mistérios do nosso Sistema Solar, olhar para mundos distantes em torno de outras estrelas e investigar as misteriosas estruturas e origens do nosso Universo e o nosso lugar nele. O Webb é um projecto internacional liderado pela NASA e pelos seus parceiros, a ESA e a Agência Espacial Canadiana.

Astronomia On-line
11 de Fevereiro de 2020

 

spacenews

 

Kepler testemunha super-explosão em sistema estelar “vampiro”

CIÊNCIA/ASTRONOMIA

A ilustração mostra um sistema recém-descoberto de nova anã, no qual uma anã branca puxa material de uma companheira anã castanha. O material forma um disco de acreção até que atinge um ponto de inflexão, fazendo com que aumente subitamente de brilho. Usando dados de arquivo do Kepler, uma equipa observou uma intensificação gradual, inexplicada e não antes vista seguida por uma super-explosão na qual o sistema aumentou cerca de 1600 vezes de brilho, ao longo de menos de um dia.
Crédito: NASA e L. Hustak (STScI)

A sonda Kepler da NASA foi construída para encontrar exoplanetas, procurando estrelas que diminuem de brilho quando um planeta passa à sua frente. Felizmente, o mesmo design é ideal para a detecção de outros transientes astronómicos – objectos que aumentam ou diminuem de brilho com o tempo. Uma nova investigação de dados de arquivo do Kepler encontrou uma super-explosão invulgar de uma nova anã anteriormente desconhecida. O sistema aumentou cerca de 1600 vezes de brilho ao longo de menos um dia antes de desvanecer lentamente.

O sistema estelar em questão consiste de uma estrela anã branca com uma companheira anã castanha com cerca de um-décimo da massa da anã branca. Uma anã branca é o núcleo remanescente de uma estrela velha parecida com o Sol e contém aproximadamente a mesma quantidade de material que o Sol num globo com o tamanho da Terra. Uma anã castanha é um objecto com uma massa entre 10 e 80 Júpiteres que é demasiado pequeno para despoletar fusão nuclear.

A anã castanha orbita anã branca a cada 83 minutos, a uma distância de apenas 400.000 km – quase a distância Terra-Lua. Estão tão próximas uma da outra que a forte gravidade da anã branca retira o material da anã castanha, sugando a sua essência como um vampiro. O material roubado forma um disco à medida que espirala para a anã branca (conhecido como disco de acreção).

Foi por sorte que o Kepler estava a olhar na direcção certa quando este sistema sofreu uma super-explosão, aumentando mais de 1000 vezes de brilho. De facto, o Kepler foi o único instrumento capaz de o testemunhar, uma vez que o sistema estava demasiado perto do Sol, do ponto de vista da Terra. A rápida cadência de observações do Kepler, obtendo dados a cada 30 minutos, foi crucial para capturar todos os detalhes da explosão.

O evento permaneceu escondido nos dados de arquivo do Kepler até ser identificado por uma equipa liderada por Ryan Ridden-Harper, do STScI (Space Telescope Science Institute), em Baltimore, no estado norte-americano da Maryland e da Universidade Nacional da Austrália, Camberra. “De certo modo, descobrimos este sistema acidentalmente. Não estávamos especificamente à procura de uma super-explosão. Estávamos à procura de qualquer tipo de transiente,” disse Ridden-Harper.

O Kepler capturou todo o evento, observando um lento aumento de brilho seguido por uma rápida intensificação. Embora o repentino aumento de brilho seja previsto pelas teorias, a razão do início lento permanece um mistério. As teorias da física do disco de acreção não preveem este fenómeno, que foi observado posteriormente em duas outras super-explosões de novas anãs.

“Estes sistemas de novas anãs têm vindo a ser estudados há décadas, de modo que descobrir algo novo é bastante complicado,” disse Ridden-Harper. “Vemos discos de acreção por todo o lado – desde estrelas recém-formadas a buracos negros super-massivos – de modo que é importante compreendê-los.”

As teorias sugerem que uma super-explosão é despoletada quando o disco de acreção atinge um ponto de inflexão. À medida que acumula material, cresce em tamanho até que a orla externa sofre ressonância gravitacional com a anã castanha em órbita. Isto pode desencadear uma instabilidade térmica, fazendo com que o disco fique super-aquecido. De facto, as observações mostram que a temperatura do disco sobe de 2700-5300º C no seu estado normal para 9700-11.700ºC no pico da super-explosão.

Este tipo de sistema de nova anã é relativamente raro, conhecendo-se apenas mais ou menos 100. Podem passar-se anos ou décadas entre explosões, o que torna a observação em flagrante um grande desafio.

“A detecção deste objecto dá esperanças na detecção de mais eventos raros, escondidos nos dados do Kepler,” disse o co-autor Armin Rest do STScI.

A equipa planeia continuar a minar os dados do Kepler, bem como de outro caçador de exoplanetas, o TESS (Transiting Exoplanet Survey Satellite), à procura de outros transientes.

“As observações contínuas pelo Kepler/K2, e agora pelo TESS, destes sistemas estelares dinâmicos permitem-nos estudar as primeiras horas da explosão, um domínio do tempo que é quase impossível alcançar a partir de observatórios terrestres,” disse Peter Garnavich da Universidade de Notre Dame em Indiana.

O artigo científico sobre a descoberta foi publicado na edição de 21 de Outubro de 2019 da revista Monthly Notices of the Royal Astronomical Society.

Astronomia On-line
28 de Janeiro de 2020

spacenews

 

3388: Pode ter sido descoberto um segundo exoplaneta em torno de Proxima Centauri

CIÊNCIA/ASTRONOMIA

Impressão de artista do sistema planetário em torno de Proxima Centauri.
Crédito: Lorenzo Santinelli

Cientistas descobriram o que pensam ser um segundo planeta em órbita da estrela mais próxima do nosso Sistema Solar, Proxima Centauri, que ficou famosa em 2016 com a descoberta de um planeta “semelhante à Terra” em órbita, Proxima b.

Novas observações de Proxima Centauri tornaram possível revelar a presença do que está a ser descrito como um planeta candidato de baixa massa (pelo menos 5,8 vezes a massa da Terra), aproximadamente com metade do tamanho de Neptuno, em órbita da estrela. Poderá ser uma super-Terra rochosa ou um “mini-Neptuno” gasoso. Com uma órbita de 5,2 anos, provavelmente tem temperaturas na ordem dos -230º C, sendo demasiado frio para ser habitável.

A descoberta, publicada na revista Science Advances, foi feita por uma equipa internacional de investigadores da Universidade de Hertfordshire, Inglaterra, do INAF-Observatório Astrofísico de Turim, Itália, da Universidade de Creta e do Instituto de Astrofísica FORTH, Grécia.

Proxima Centauri é uma estrela anã vermelha cerca de 8 vezes mais pequena que o Sol. É a estrela mais próxima do Sistema Solar, a uma distância de 4,2 anos-luz. Os cientistas esperam que a descoberta possa eventualmente ajudar a nossa compreensão da composição de diferentes planetas e de como o Universo funciona.

Hugh Jones, professor de astrofísica na Universidade de Hertfordshire, comenta: “Graças à proximidade do planeta e à sua órbita a uma distância relativamente grande da sua estrela (1,5 UA), esta é uma das melhores chances possíveis de observação directa que permitirá a compreensão detalhada de outro exoplaneta. No futuro, Proxima c poderá tornar-se um possível alvo para um estudo mais directo do projecto Breakthrough StarShot, que será a primeira tentativa da humanidade de viajar para outro sistema estelar.” O professor Jones, juntamente com Paul Bulter, da Instituição Carnegie para Ciência, foram responsáveis por produzir o conjunto de dados mais precisos para o projecto usando dados do espectrógrafo UVES acoplado ao VLT do ESO.

O professor Jones, que também fez parte da descoberta do planeta “tipo-Terra”, Proxima b, explicou o processo: “Primeiro submetemos um artigo sobre a existência de Proxima b em Fevereiro de 2013, embora só tenhamos obtido evidências suficientes para apoiar conclusivamente uma descoberta tão importante em 2016. As nossas observações contínuas e um melhor processamento de dados permitiram-nos discernir o sinal de Proxima c. Esperamos ansiosamente confirmar o sinal com novas instalações e descobrir quão semelhante ou diferente dos planetas do nosso Sistema Solar Proxima c realmente é.”

A descoberta segue os recentes anúncios de um “Neptuno frio” e de dois planetas potencialmente habitáveis encontrados em órbita de estrelas próximas, publicados na revista The Astrophysical Journal. A mesma técnica de espectrografia com o UVES também foi usada neste projecto.

Astronomia On-line
21 de Janeiro de 2020

spacenews

 

WASP-12b está numa “espiral da morte”

CIÊNCIA/ASTRONOMIA

Impressão de artista do escaldante gigante gasoso WASP-12b e da sua estrela. Uma equipa de astrofísicos mostrou que este exoplaneta está a espiralar em direcção à sua estrela, rumo à sua completa destruição daqui a aproximadamente 3 milhões de anos.
Crédito: NASA/JPL-Caltech

A Terra está condenada – mas só daqui a 5 mil milhões de anos. O nosso planeta será torriscado à medida que o Sol se expande e se torna numa gigante vermelha, mas o exoplaneta WASP-12b, localizado a 600 anos-luz de distância na direcção da constelação de Cocheiro, tem menos de um milésimo desse tempo: uns comparativamente insignificantes 3 milhões de anos.

Uma equipa de astrofísicos mostrou que WASP-12b está a espiralar em direcção à sua estrela hospedeira, rumo à sua destruição. O artigo científico foi publicado na edição de 27 de Dezembro de 2019 da revista The Astrophysical Journal Letters.

WASP-12b é conhecido por ser um “Júpiter quente”, um gigante gasoso como o nosso vizinho Júpiter, mas que está muito próximo da sua estrela-mãe, completando uma órbita em apenas 26 horas (em contraste, a Terra demora 365 dias; até Mercúrio, o planeta mais interior do Sistema Solar, demora 88 dias).

“Desde a descoberta do primeiro ‘Júpiter quente’ em 1995 – uma descoberta reconhecida o ano passado com o Prémio Nobel da Física – que nos perguntamos quanto tempo podem estes planetas sobreviver,” disse Joshua Winn, professor de ciências astrofísicas em Princeton e um dos autores do artigo científico. “Tínhamos a certeza de que não podiam durar para sempre. As fortes interacções gravitacionais entre o planeta e a estrela devem fazer o planeta espiralar para dentro e ser destruído, mas ninguém podia prever quanto tempo isso levaria. Pode levar milhões de anos, milhares de milhões, ou até biliões. Agora que medimos o ritmo, pelo menos para um sistema – são milhões de anos -, temos uma nova pista sobre o comportamento das estrelas como corpos fluídos.”

O problema é que à medida que WASP-12b orbita a sua estrela, os dois corpos exercem força gravitacional um sobre o outro, levantando “marés” como as marés do oceano levantadas pela Lua na Terra.

Dentro da estrela, estas ondas fazem com que se torne ligeiramente distorcida e oscile. Devido à fricção, estas ondas colidem e as oscilações diminuem, um processo que gradualmente converte a energia orbital do planeta em calor dentro da estrela.

A fricção associada às marés também exerce um torque gravitacional no planeta, fazendo com que o planeta espirale para dentro. A medição da rapidez com que a órbita do planeta está a encolher revela a rapidez com que a estrela está a dissipar a energia orbital, o que fornece aos astrofísicos pistas sobre o interior das estrelas.

“Se pudermos encontrar mais planetas como WASP-12b cujas órbitas estão decaindo, seremos capazes de aprender mais sobre a evolução e sobre o destino final dos sistemas exoplanetários,” disse o autor principal Samuel Yee, estudante de ciências astrofísicas. “Embora este fenómeno tenha sido previsto no passado para planetas gigantes íntimos como WASP-12b, esta é a primeira vez que capturamos este processo em acção.”

Uma das primeiras pessoas a fazer essa previsão foi Frederic Radio, professor de física e astronomia na Universidade Northwestern, que não esteve envolvido no estudo de Yee e Winn. “Todos nós esperámos quase 25 anos para que este efeito fosse detectado observacionalmente,” disse Rasio. “As implicações a curto prazo deste decaimento orbital medido também são muito importantes. Em particular, significa que deverão haver muitos mais Júpiteres quentes já destruídos. Quanto atingem o limite de Roche – o limite de perturbação das marés de um objecto numa órbita circular – os seus invólucros podem ser despojados, revelando um núcleo rochoso parecido com uma super-Terra (ou talvez um mini-Neptuno, caso possam reter um pouco da sua camada de gás).”

Rasio também é editor da The Astrophysical Journal Letters, a revista que publicou o novo artigo científico. Os investigadores haviam originalmente submetido o seu trabalho a outra revista científica menos prestigiada, também publicada pela Sociedade Astronómica Americana, mas Rasio redirecionou o artigo devido à “especialmente grande importância” da investigação. “Parte do meu trabalho é garantir que todas as principais novas descobertas apresentadas nos manuscritos submetidos aos periódicos da Sociedade Astronómica Americana sejam consideradas para publicação na The Astrophysical Journal Letters,” explicou. “Neste caso, a decisão foi fácil.”

WASP-12b foi descoberto em 2008 pelo método de trânsito, no qual os astrónomos observam uma pequena queda no brilho de uma estrela quando um planeta passa à sua frente, de cada vez que completa uma órbita. Desde a sua descoberta, o intervalo entre quedas sucessivas diminuiu 29 milissegundos por ano – uma característica observada pela primeira vez em 2017 pelo co-autor Kishore Patra, na altura estudante do MIT (Massachusetts Institute of Technology).

Essa ligeira diminuição pode sugerir que a órbita do planeta está a encolher, mas existem outras explicações possíveis: se a órbita de WASP-12b for mais oval do que circular, por exemplo, as mudanças aparentes no período orbital podem ser provocadas pela mudança de orientação da órbita.

A maneira de ter a certeza de que a órbita está realmente a diminuir é observar o planeta a desaparecer por trás da sua estrela, um evento conhecido como ocultação. Se a órbita está apenas a mudar de direcção, o período orbital real não muda, de modo que se os trânsitos ocorrem mais depressa do que o esperado, as ocultações deverão ocorrer mais lentamente. Mas se a órbita estiver realmente a decair, o tempo dos trânsitos e das ocultações deve mudar na mesma direcção.

Nos últimos dois anos, os investigadores recolheram mais dados, incluindo novas observações de ocultações feitas com o Telescópio Espacial Spitzer.

“Estes novos dados apoiam fortemente o cenário de decaimento orbital, o que nos permite dizer com firmeza que o planeta está realmente a espiralar em direcção à sua estrela,” disse Yee. “Isto confirma as previsões teóricas de longa data e dados indirectos, sugerindo que os Júpiteres quentes devem ser destruídos por este processo.”

Esta descoberta vai ajudar os teóricos a entender o funcionamento interno das estrelas e a interpretar outros dados relacionados com as interacções das marés,” disse Winn. “Também nos diz mais sobre a vida dos Júpiteres quentes, uma pista que pode ajudar a lançar luz sobre a formação destes planetas estranhos e inesperados.”

Astronomia On-line
14 de Janeiro de 2020

spacenews

 

3340: O exoplaneta “Frankenstein” está numa espiral da morte

CIÊNCIA/ASTRONOMIA

(dr) NASA / ESA / G. Bacon (STScI)
Impressão artística do exoplaneta WASP-12b

O exoplaneta WASP-12b, a 600 anos-luz de distância, está numa espiral em direcção à sua estrela hospedeira, ou seja, em direcção a uma destruição segura em apenas três milhões de anos.

O WASP-12b é conhecido como “Júpiter quente”, um planeta gasoso gigante como o nosso vizinho Júpiter, mas muito próximo da sua própria estrela, orbitando o Sol em apenas 26 horas.

“Desde a descoberta do primeiro ‘Júpiter quente’ em 1995, uma descoberta que foi reconhecida este ano com o Prémio Nobel da Física, questionamos quanto tempo estes planetas podem sobreviver”, disse Joshua Winn, um dos autores do artigo científico recentemente publicado na Astrophysical Journal Letters, citado pelo Europa Press.

“Tínhamos a certeza de que não poderiam durar para sempre. As fortes interacções gravitacionais entre o planeta e a estrela devem fazer o planeta girar para dentro e ser destruído, mas ninguém consegue prever quanto tempo demorará a acontecer. Agora que medimos a taxa para pelo menos um sistema, sabemos que se tratam de milhões de anos, e temos assim uma nova pista sobre o comportamento das estrelas como corpos fluidos.”

Mas há um problema: à medida que o “Frankenstein” orbita a sua estrela, os dois corpos exercem força gravitacional um sobre o outro, elevando “marés” – tal como as marés do oceano.

Dentro da estrela, essas ondas causam distorções e oscilações. Devido ao atrito, as ondas quebram e as oscilações diminuem, um processo que gradualmente converte a energia orbital do planeta em calor dentro da estrela.

Por sua vez, o atrito associado às marés também exerce um par gravitacional no planeta, fazendo o planeta entrar numa espiral para dentro. Medir a rapidez com que a órbita do planeta está a encolher revela a rapidez com que a estrela dissipa a energia orbital, o que fornece pistas astrofísicas sobre o interior das estrelas.

Samuel Yee, primeiro autor do artigo científico, explicou que se os cientistas encontrarem mais planetas como este – cujas órbitas se estão a deteriorar – “podemos aprender sobre a evolução e o destino final dos sistemas exoplanetários”.

“Apesar de este fenómeno ter sido previsto para planetas gigantes próximos, esta é a primeira vez que vemos este processo em acção”.

ZAP //

Por ZAP
9 Janeiro, 2020

spacenews

 

3297: Exoplanetas com oceanos de magma podem “devorar” os seus próprios céus

CIÊNCIA/ASTRONOMIA

L. Kreidberg, G. Bacon/NASA, ESA; J. Bean/U. Chicago; H. Knutson/Caltech

Um novo estudo sugere uma razão pela qual os exoplanetas raramente crescem mais do que Neptuno: os oceanos de magma dos planetas começam a comer os seus próprios céus.

Em 2014, o Telescópio Espacial Kepler da NASA entregou aos cientistas uma porção de mais de 700 planetas distantes para estudar – muitos deles diferentes do que alguém já tinha visto antes. Em vez de gigantes gasosos como Júpiter, que os estudos anteriores tinham captado primeiro porque são mais fáceis de ver, estes planetas eram mais pequenos e, na maioria, rochosos.

Os cientistas notaram que havia muitos planetas do tamanho de ou pouco maiores do que a Terra, mas houve um corte acentuado antes dos planetas atingirem o tamanho de Neptuno.  “O que temos discutido é porque é que os planetas tendem a parar de crescer além do triplo do tamanho da Terra”, explicou Edwin Kite, professor do departamento de ciências geofísicas da Universidade de Chicago, em comunicado.

Os investigadores oferecem uma explicação inovadora para isto: os oceanos de magma na superfície dos planetas absorvem rapidamente as suas atmosferas quando os planetas atingem cerca de três vezes o tamanho da Terra.

Pensa-se que a maioria dos planetas um pouco mais pequenos tem oceanos de magma nas suas superfícies – grandes mares de rocha derretida como os que outrora cobriram a Terra. Mas, em vez de solidificar como o nosso, permanecem quentes graças a uma manta espessa de atmosfera rica em hidrogénio.

A pergunta que Kite e os seus colegas consideraram foi se, à medida que os planetas adquiriam mais hidrogénio, o oceano poderia começava a “comer” o céu. Neste cenário, explica o Futurity, à medida que o planeta adquire mais gás, acumula-se na atmosfera e a pressão onde a atmosfera se encontra com o magma começa a aumentar. A princípio, o magma absorve o gás adicionado a uma taxa constante, mas à medida que a pressão aumenta, o hidrogénio começa a dissolver-se muito mais rapidamente no magma.

Assim, de acordo com o estudo publicado este mês na revista científica Astrophysical Journal Letters, o crescimento do planeta pára antes de atingir o tamanho de Neptuno. Os autores chamam isto “crise de fugacidade”, em honra do termo que mede quanto mais facilmente um gás se dissolve numa mistura do que o que seria esperado com base na pressão.

Segundo os investigadores, a teoria encaixa bem nas observações existentes. Mas existem vários marcadores que os astrónomos podem procurar no futuro. Por exemplo, se a teoria estiver correta, planetas com oceanos de magma que são suficientemente frios para se cristalizarem na superfície devem exibir perfis diferentes, uma vez que isso impediria o oceano de absorver tanto hidrogénio.

ZAP //

Por ZAP
2 Janeiro, 2020

spacenews

 

3277: Novas descobertas que podem revelar a geologia de exoplanetas

CIÊNCIA

Investigadores da The Open University fizeram novas descobertas que podem revelar a geologia de planetas para lá do nosso Sistema Solar.
Crédito: Projecto DMPP

Os astrónomos anunciaram a descoberta de três exoplanetas como parte do projecto DMPP (Dispersed Matter Planet Project), usando o instrumento HARPS (High Accuracy Radial Velocity Planet Searcher) acoplado ao telescópio de 3,6 m do ESO em La Silla, Chile.

A equipa estudou as estrelas conhecidas como DMPP–1, DMPP–2 and DMPP–3. Os planetas descobertos DMPP-1b, DMPP-1c, DMPP-1d, DMPP-1e, DMPP-2b e DMPP-3Ab, estão muito próximos das suas estrelas e são aquecidos a temperaturas de 1100ºC – 1800º C. A estas temperaturas, a atmosfera e até a superfície rochosa do planeta podem desaparecer, e parte deste material dispersa-se para formar um fino manto de gás.

Esta nuvem filtra a luz estelar, produzindo pistas que permitiram à equipa captar a pequena fracção de estrelas com estes planetas invulgares e muito quentes. Com um estudo mais aprofundado, a composição química da nuvem pode ser medida, revelando o tipo de rocha à superfície do planeta quente.

Os planetas recém-descobertos, nomeadamente DMPP-1d, DMPP-1e e DMPP-3Ab, podem ser a chave para desvendar a geologia dos planetas rochosos para lá do Sistema Solar.

A professora Carole Haswell, do Departamento de Astronomia da Open University, Reino Unido, disse: “estas novas descobertas são muito promissoras para novos estudos. Devem permitir-nos medir as relações entre a massa, tamanho e composição dos planetas para lá do nosso próprio Sistema Solar.

“Agora podemos ver como os planetas em geral são construídos e se o nosso próprio planeta é típico. Por exemplo, ainda não sabemos se é coincidência que no Sistema Solar, a Terra e Vénus sejam os maiores objectos rochosos e possuam ferro como a sua maior fracção de massa.”

DMPP-1 tem três super-Terras com massas entre três e dez vezes a da Terra, orbitando a estrela a cada poucos dias. Também tem um planeta quente tipo-Neptuno que orbita a estrela a cada 20 dias.

O Dr. Daniel Staab, ex-aluno de doutoramento da mesma universidade, explicou: “DMPP-1 hospeda um sistema planetário realmente importante com três exoplanetas de baixa massa cuja composição podemos medir.”

DMPP-2b é um planeta gigante com quase metade da massa de Júpiter numa órbita de cinco dias. Tinha sido negligenciado em estudos anteriores porque a estrela pulsa, o que obscurece a assinatura da força gravitacional do planeta em órbita.

Comentando a mais empolgante destas novas descobertas, o Dr. John Barnes, investigador na Open University: “DMPP-3 foi uma grande surpresa, estávamos à procura de um sinal minúsculo indicando um planeta em órbita e de baixa massa, mas a primeira coisa que encontrámos foi um enorme sinal devido a uma estrela companheira que não esperávamos!”

A estrela companheira, DMPP-3B, é apenas massiva o suficiente para sustentar a fusão de hidrogénio, tem das massas mais baixas de todas as estrelas movidas pelo mesmo mecanismo que o Sol. Estas estrelas minúsculas são muito ténues e difíceis de encontrar. Depois de contabilizar esta estrela fraca, o Dr. Barnes e a sua equipa encontraram um planeta, DMPP-3Ab, com duas ou três a massa da Terra que completa uma órbita em torno da estrela mais brilhante a cada sete dias. O Dr. Barnes concluiu: “É difícil determinar como este planeta foi formado!”

Astronomia On-line
27 de Dezembro de 2019

 

spacenews

 

3276: Astrónomos propõem novo método de descobrir atmosferas em mundos rochosos

CIÊNCIA

Esta impressão de artista mostra um exoplaneta rochoso com uma atmosfera nublada em órbita de uma anã vermelha. Os astrónomos identificaram um novo método que pode permitir que o Telescópio Espacial James Webb detecte a atmosfera de um exoplaneta em poucas horas de tempo de observação.
Crédito: L. Hustak e J. Olmsted (STScI)

Quando o Telescópio Espacial James Webb da NASA for lançado em 2021, uma das contribuições mais esperadas para a astronomia será o estudo dos exoplanetas – planetas que orbitam estrelas distantes. Uma das questões mais prementes da ciência exoplanetária é: será que um pequeno planeta rochoso, em órbita íntima de uma estrela anã vermelha, consegue reter uma atmosfera?

Numa série de quatro artigos publicados na revista The Astrophysical Journal, uma equipa de astrónomos propõe um novo método de usar o Webb para determinar se um exoplaneta rochoso tem uma atmosfera. A técnica, que envolve a medição da temperatura do planeta enquanto passa por trás da sua estrela e volta depois a ser visível, é significativamente mais rápida do que os métodos tradicionais de detecção atmosférica, como a espectroscopia de transmissão.

“Descobrimos que o Webb podia facilmente inferir a presença ou ausência de uma atmosfera em torno de uma dúzia de exoplanetas rochosos com menos de 10 horas de tempo de observação por planeta,” disse Jacob Bean da Universidade de Chicago, co-autor de três dos artigos.

Os astrónomos estão particularmente interessados em exoplanetas que orbitam estrelas anãs vermelhas por várias razões. Estas estrelas, mais pequenas e mais frias que o Sol, são o tipo mais comum de estrela na nossa Galáxia. Além disso, dado que as anãs vermelhas são pequenas, um planeta que passe à sua frente parece bloquear uma fracção maior da luz estelar caso a estrela fosse maior, como o nosso Sol. Isto torna o planeta que orbita uma anã vermelha mais fácil de detectar por meio desta técnica de “trânsito”.

As anãs vermelhas também produzem muito menos calor do que o nosso Sol, de modo que para desfrutar de temperaturas habitáveis, um planeta precisaria de orbitar muito perto de uma anã vermelha. De facto, para estar na zona habitável – a área em torno da estrela onde pode existir água líquida à superfície de um planeta – o planeta tem que orbitar muito mais perto da estrela do que Mercúrio está do Sol. Como resultado, transitará a estrela mais frequentemente, facilitando observações repetidas.

Mas um planeta que orbita tão perto de uma anã vermelha está sujeito a condições adversas. As anãs vermelhas jovens são muito activas, lançando enormes proeminências e erupções de plasma. A estrela também emite um forte vento de partículas carregadas. Todos estes efeitos podem potencialmente destruir a atmosfera de um planeta, deixando para trás uma rocha nua.

“A perda atmosférica é a ameaça existencial número um à habitabilidade dos planetas,” disse Bean.

Outra característica fundamental dos exoplanetas que orbitam perto de anãs vermelhas também o é para a nova técnica: espera-se que sofram bloqueio de maré, o que significa que têm sempre o mesmo lado voltado para a estrela. Como resultado, vemos diferentes fases do planeta em diferentes pontos da sua órbita. Quando cruza a face da estrela, vemos apenas o lado nocturno do planeta. Mas quando está prestes a viajar para trás da estrela (um evento conhecido como eclipse secundário), ou quando está apenas a emergir de trás da estrela, podemos observar o lado diurno.

Se um exoplaneta rochoso não possuir atmosfera, o seu lado diurno será muito quente, assim como vemos com a Lua ou Mercúrio. No entanto, se um exoplaneta rochoso tiver uma atmosfera, espera-se que a presença dessa mesma atmosfera diminua a temperatura diurna medida pelo Webb. Isto pode ser feito de duas maneiras. Uma atmosfera espessa pode transportar o calor do lado diurno para o lado nocturno através de ventos. Uma atmosfera mais fina pode ainda conter nuvens, que refletem parte da luz estelar, diminuindo assim a temperatura do lado diurno do planeta.

“Sempre que acrescentamos uma atmosfera, estamos a diminuir a temperatura do lado diurno. Portanto, se virmos algo mais frio que rocha nua, inferiremos que provavelmente é sinal de uma atmosfera,” explicou Daniel Koll do MIT (Massachusetts Institute of Technology), o autor principal de dois dos artigos científicos.

O Webb é ideal para fazer estas medições porque possui um espelho muito maior do que outros telescópios, como o Hubble ou o Spitzer da NASA, que permite recolher mais luz e estudar os comprimentos de onda infravermelhas apropriados.

Os cálculos da equipa mostram que o Webb deverá ser capaz de detectar a assinatura de calor da atmosfera de um planeta num a dois eclipses secundários – apenas algumas horas de observação. Em contraste, a detecção de uma atmosfera através de observações espectroscópicas normalmente exige oito ou mais trânsitos para estes mesmos planetas.

A espectroscopia de transmissão, que estuda a luz estelar filtrada pela atmosfera do planeta, também sofre interferência devido a nuvens ou neblinas, que podem mascarar as assinaturas moleculares da atmosfera. Nesse caso, o gráfico espectral, em vez de mostrar linhas de absorção pronunciadas devido a moléculas, seria essencialmente plano.

“Na espectroscopia de transmissão, se obtivermos uma linha plana, isso não nos diz nada. A linha plana pode significar que o Universo está repleto de planetas mortos que não têm atmosfera, ou que o Universo está repleto de planetas que têm toda uma gama de atmosferas diversas e interessantes, mas parecem-nos todos iguais porque são nublados,” disse Eliza Kempton da Universidade de Maryland, co-autora de três dos artigos.

“As atmosferas exoplanetárias sem nuvens e neblinas são como unicórnios – ainda não as vimos, e podem não existir,” acrescentou.

A equipa enfatizou que uma temperatura mais baixa do que o esperado para o lado diurno será uma pista importante, mas que não confirma a existência de uma atmosfera. Quaisquer dúvidas remanescentes sobre a presença de uma atmosfera podem ser descartadas com estudos de acompanhamento usando outros métodos como a espectroscopia de transmissão.

A verdadeira força da nova técnica será determinar qual a fracção dos exoplanetas rochosos que provavelmente possui uma atmosfera. Aproximadamente uma dúzia de exoplanetas que são bons candidatos para este método foram detectados neste último ano. É provável que mais sejam encontrados quando o Webb ficar operacional.

“O TESS (Transiting Exoplanet Survey Satellite) está a encontrar muitos destes planetas,” afirmou Kempton.

O método do eclipse secundário tem uma limitação chave: funciona melhor em planetas demasiado quentes para estarem na zona habitável. No entanto, determinar se estes planetas quentes hospedam atmosferas tem implicações importantes para os planetas na zona habitável.

“Se os planetas quentes conseguem manter uma atmosfera, os mais frios também devem conseguir,” disse Koll.

O Telescópio Espacial James Webb será o principal observatório científico espacial do mundo quando for lançado em 2021. Vai resolver mistérios do nosso Sistema Solar, olhar para mundos distantes em torno de outras estrelas e investigar as misteriosas estruturas e origens do nosso Universo e o nosso lugar nele. O Webb é um projecto internacional liderado pela NASA e pelos seus parceiros, a ESA e a Agência Espacial Canadiana.

Astronomia On-line
27 de Dezembro de 2019

spacenews

 

3274: Astrónomos encontraram novo exoplaneta a orbitar uma anã vermelha

CIÊNCIA

ESO / M. Kornmesser
Impressão artística de planetas a orbitar uma estrela anã vermelha

Uma equipa de astrónomos encontrou um novo exoplaneta, um pouco maior do que a Terra, a orbitar uma anã vermelha a apenas 66,5 anos-luz de distância.

Segundo o Science Alert, o estudo desta equipa de astrónomos já foi submetido na American Astronomical Society e pode ser visto no arXiv, estando agora à espera da sua revisão por pares.

“Aqui apresentamos a descoberta do GJ 1252 b, um pequeno planeta que orbita uma anã vermelha. O planeta foi inicialmente descoberto como um candidato a planeta em trânsito usando dados do TESS [Transiting Exoplanet Survey Satellite]”, lê-se.

“Com base nos dados do TESS e nos dados adicionais de acompanhamento, podemos rejeitar todos os cenários de falsos positivos, mostrando que é um planeta real”, dizem ainda os autores do estudo.

O GJ 1252 b tem cerca de 1,2 vezes o tamanho da Terra e cerca de duas vezes da sua massa (sendo um pouco mais denso do que o nosso planeta). Está a orbitar uma estrela anã vermelha chamada GJ 1252, que tem cerca de 40% do tamanho e massa do Sol.

O exoplaneta gira em torno da sua estrela uma vez a cada 12,4 horas — muito próximo para a habitabilidade e provavelmente um lado está sempre voltado para ela —, mas esta órbita estreita torna-a atraente por outro motivo, segundo o mesmo site.

A apenas 66,5 anos-luz de distância, este sistema está a uma distância suficientemente próxima para que a estrela seja brilhante o suficiente para as observações de acompanhamento. Além disso, a anã vermelha é incomummente calma para uma estrela deste tipo; e o facto de o planeta orbitar com tanta frequência significa que há muitas oportunidades para apanhá-lo a mover-se à sua frente.

Isto é chamado de trânsito e, se o planeta tiver uma atmosfera, será iluminado pela luz da estrela durante os trânsitos, permitindo que os astrónomos vejam o que há nele usando observações espectroscópicas.

E outra coisa importante: o GJ 1252 b é apenas a descoberta mais recente de um conjunto de planetas rochosos próximos encontrados pelo TESS: o Pi Mensae c e LHS 3844 b, a 60 e a 49 anos-luz, respectivamente, foram anunciados em Setembro do ano passado; o TOI-270b está a 73 anos-luz; o Teegarden b e o Teegarden c estão a 12,5 anos-luz; e o Gliese b, Gliese c e Gliese d estão a 12 anos-luz de distância.

Quantos mais destes encontrarmos, mais dados podemos compilar para descobrir quão comuns são e como se parecem.

ZAP //

Por ZAP
27 Dezembro, 2019

 

spacenews

 

Centenas de milhares de pessoas de 112 países seleccionam nomes de exoplanetas e respectivas estrelas; Portugal escolheu “Viriato”, que orbita “Lusitânia”

CIÊNCIA

Os 112 países que participaram na campanha IAU100 NameExoWorlds.
Crédito: UAI

No dia 17 de Dezembro de 2019, numa conferência de imprensa em Paris, foram anunciados os nomes de 112 exoplanetas e das suas estrelas hospedeiras da campanha NameExoWorlds da UAI (União Astronómica Internacional). No âmbito das comemorações dos 100 anos da UAI, 112 países organizaram campanhas nacionais que estimularam a participação directa de mais de 780.000 pessoas de todo o mundo, que propuseram e seleccionaram nomes para cada exoplaneta e para a sua estrela hospedeira.

O projecto NameExoWorlds da UAI teve uma participação massiva e generalizada. O público aderiu a esta empolgante oportunidade de sugerir nomes únicos, importantes e criativos para os sistemas exoplanetários de cada dos respectivos países. Esta é apenas a segunda vez na história que uma campanha levou à nomenclatura de estrelas e exoplanetas. No total, foram recebidas mais de 360.000 propostas para nomes entre 112 países. O Comité Nacional de cada país reduziu as suas propostas a uma lista restrita de candidatos, que foram apresentados ao público para votação. Um total de 420.000 pessoas votaram nos seus candidatos favoritos. A lista completa de nomes aprovados pelo Comité Gestor da Campanha IAU100 NameExoWorlds pode ser consultada na secção de links. Este projecto terá um impacto duradouro, pois os nomes vencedores serão usados em paralelo com a nomenclatura científica existente, creditada à pessoa, grupo ou instituição que os sugeriu.

“As observações astronómicas ao longo da última geração descobriram agora mais de 4000 planetas em órbita de outras estrelas – chamados exoplanetas. O número de descoberto continua a duplicar a cada 2 anos e meio, revelando novas populações notáveis de planetas e colocando a nossa própria Terra e o Sistema Solar em perspectiva. Estatisticamente, é provável que a maioria das estrelas no céu tenha planetas em órbita – estão por toda a parte,” disse Eric Mamajek, co-presidente do Comité Gestor da Campanha NameExoWorlds. “Os astrónomos catalogam as suas novas descobertas usando designações semelhantes a números de telefone e tem havido um interesse crescente entre os astrónomos e o público em também atribuir-lhes nomes próprios, como os corpos do Sistema Solar,” continuou Mamajek.

O projecto global IAU100 NameExoWorlds foi concebido para dar a conhecer o nosso lugar no Universo e para reflectir sobre como a Terra seria potencialmente compreendida por uma civilização de outro planeta. Dado que a UAI é a autoridade responsável por atribuir designações e nomes oficiais aos corpos celestes, as celebrações da campanha IAU100 em 2019 foram usadas como uma ocasião especial para oferecer a todos os países uma oportunidade de dar nome a um sistema planetário, incluindo um exoplaneta e a sua estrela hospedeira. Eduardo Monfardini Penteado, gerente do projecto IAU100, salientou: “A campanha IAU100 NameExoWorlds proporcionou ao público a empolgante oportunidade de ajudar a dar nomes a mais de 100 novos mundos e correspondentes estrelas e a ajudar a UAI a estabelecer um tema profundo para a nomenclatura de descobertas futuras nesses sistemas.”

A estrela atribuída a cada nação é visível desse país e brilhante o suficiente para ser observada através de pequenos telescópios. Os respectivos Comités Nacionais, seguindo a metodologia e directrizes estabelecidas pelo Comité Gestor IAU100 NameExoWorlds, foram os órgãos responsáveis por estabelecer as condições para a participação do público, divulgar o projecto no país e desenvolver um sistema de votação.

Os exoplanetas recém-nomeados provavelmente são grandes gigantes de gás e todos foram descobertos através de um de dois métodos: o método de trânsito – no qual se observam planetas a passar em frente das suas estrela, bloqueando parte da luz estelar; e o método de velocidade radial – onde a medição cuidadosa do espectro estelar revela que está a oscilar para a frente e para trás sob a influência da gravidade dos seus planetas.

O sistema atribuído a Portugal é HD 45652 – uma anã laranja na direcção da constelação de Unicórnio. O seu planeta é o gigante gasoso HD 45652 b. Como resultado da votação a nível nacional, à estrela foi atribuído o nome “Lusitânia”, designação da região oeste da Península Ibérica onde o povo Lusitano viveu e que em grande parte corresponde ao Portugal dos tempos modernos. O exoplaneta recebeu o nome “Viriato”, o lendário líder dos Lusitanos, pastor e caçador que liderou a resistência contra os invasores Romanos em meados do século II a.C.

Em reconhecimento do Ano Internacional das Línguas Indígenas da ONU, os falantes de línguas indígenas foram incentivados a propor nomes dessas línguas, e algumas dúzias dos nomes seleccionados são de etimologia indígena. Na Argentina, a proposta vencedora foi submetida por um professor e líder da comunidade indígena Moqoit. Os novos nomes para o planeta HD 48265 b (Naqaya) e para a estrela HD 48265 (Nosaxa) significam irmão-família-parente (referindo-se a todos os seres humanos como irmãos) e primavera (literalmente, ano novo), respectivamente, na língua Moqoit.

“A UAI está encantada por ver o amplo interesse internacional que esta campanha NameExoWorlds gerou,” observou Debra Elmegreen. “É gratificante que tantas pessoas em todo o mundo tenham ajudado a criar um nome para um sistema planetário que seja significativo para a sua cultura e herança. Este esforço ajuda à nossa união na exploração do Universo.”

O projecto NameExoWorlds foi organizado no âmbito do 100.º aniversário da União Astronómica Internacional em 2019. Com mais de 5000 actividades em 140 países, milhões de pessoas em todo o mundo comemoram os avanços astronómicos que moldaram a ciência, a tecnologia e a cultura ao longo do século passado, bem como destacam a importância da astronomia como ferramenta para a educação, desenvolvimento e diplomacia.

“Ao longo do ano, envolvemo-nos com o público em várias actividades astronómicas para o 100.º aniversário da UAI. O Projecto Global NameExoWorlds foi a iniciativa perfeita para fechar um ano cheio de projectos que colaboram com a sociedade. Certamente terá um impacto duradouro durante anos,” conclui Ewine van Dishoeck, presidente da UAI.

Astronomia On-line
20 de Dezembro de 2019

artigos relacionados: Viriato, o herói que se tornou num planeta a orbitar a estrela Lusitânia

 

spacenews

 

3195: A água é comum nos mundos extraterrestres (mas surpreendentemente mais escassa do que se esperava)

CIÊNCIA

(CC0/PD) Buddy_Nath / Pixabay

A presença de água em exoplanetas é comum, mas surpreendentemente mais escassa do que se esperava, concluiu uma nova investigação levada a cabo por cientistas da Universidade de Cambridge, no Reino Unido.

Para chegar a esta conclusão, os cientistas utilizaram dados atmosféricos de 19 exoplanetas par obter medições detalhadas de suas propriedades químicas e térmicas.

A investigação abarcou uma grande diversidade de exoplanetas, que foram desde os chamados mini-Neptunos (quase 10 massas terrestres) aos super-Júpiteres (mais de 600 mais terrestres). Também as temperaturas eram muito diversificadas, indo dos quase 20 graus Celsius até a mais de 2.000 graus Celsius.

Os cientistas concluíram que, apesar de o vapor de água ser um elemento comum na atmosfera de muitos do exoplanetas em estudados, as suas quantidades eram surpreendentemente menores do que o esperado, explicam os cientistas em comunicado.

No que respeita a outros elementos, as quantidades encontradas nos exoplanetas estão em linha com as expectativas e estimativas da comunidade científica.

“Estamos a observar os primeiros sinais de padrões químicos em mundos extraterrestres e vemos o quão diversos estes podem ser em termos de composições químicas”, disse Nikku Madhusudhan, o cientista que liderou o projecto.

Água em 14 dos 19 mundos estudados

A equipa de cientistas relatou ter encontrado vapor de água em 14 dos 19 planetas estudados. Seis planetas tinham abundância de potássio e outros seis de potássio.

Os resultados sugerem que há um esgotamento de oxigénio em relação aos outros elementos, podendo este fenómeno fornecer pistas sobre como é que estes exoplanetas se formaram sem acumular quantidades substanciais de gelo.

“É incrível ver uma abundância de água tão baixa na atmosfera de uma grande variedade de planetas que orbitam uma variedade de estrelas”, disse Luis Welbanks, autor principal do estudo, citado na mesma nota de imprensa.

“Medir a abundância destes produtos químicos em atmosferas exoplanetárias é algo extraordinário, uma vez que ainda não conseguimos fazer o mesmo com os planetas gigantes do nosso Sistema Solar, como é o caso de Júpiter”, rematou.

De acordo com a nova investigação, cujos resultados foram esta semana publicados na revista científica The Astrophysical Journal Letters, este foi o estudo mais extenso já levado a cabo sobre composições químicas e atmosféricas de planetas para lá do Sistema Solar.

ZAP //

Por ZAP
14 Dezembro, 2019

 

spacenews

 

3172: À procura de vida nos espectros de exoplanetas

CIÊNCIA

Esta impressão artística mostra uma vista da superfície do planeta Proxima b, o qual orbita a estrela anã vermelha Proxima Centauri, a estrela mais próxima do Sistema Solar. A estrela dupla Alfa Centauri AB também pode ser vista na imagem por cima e à direita de Proxima Centauri. Proxima b é um pouco mais massivo que a Terra e orbita na zona habitável de Proxima Centauri, zona onde a temperatura permite a existência de água líquida à superfície do planeta.
Crédito: ESO/M. Kornmesser

Um cientista de Cornell criou uma maneira de discernir vida em exoplanetas que deambulam em torno de outras vizinhanças cósmicas: uma espécie de guia de campo espectral.

Zifan Lin desenvolveu modelos espectrais de alta resolução e cenários para dois exoplanetas que podem abrigar vida: Proxima b, na zona habitável da nossa vizinha estelar mais próxima, Proxima Centauri, e TRAPPIST-1e, um dos três possíveis candidatos a exoplanetas semelhantes à Terra no sistema TRAPPIST-1.

O artigo, em co-autoria com Lisa Kaltenegger, professora associada de astronomia e directora do Instituto Carl Sagan de Cornell, foi publicado no dia 18 de novembro na revista Monthly Notices of the Royal Astronomical Society.

“Para investigar se existem sinais de vida noutros mundos, é muito importante entender os sinais de vida que aparecem nas leves impressões digitais de um planeta,” disse Lin. “A vida nos exoplanetas pode produzir uma combinação característica de moléculas na sua atmosfera – e elas tornam-se sinais reveladores nos espectros de tais planetas.”

“Num futuro próximo, veremos a atmosfera destes mundos com novos e sofisticados telescópios terrestres, que nos permitirão explorar o clima do exoplaneta e descobrir a sua biota”, disse.

Na busca por mundos habitáveis, as anãs M chamam a atenção dos astrónomos, já que o Universo local está repleto destes sóis que, segundo Lin, representam 75% do cosmos próximo.

Por toda a Via Láctea, a nossa Galáxia, os astrónomos descobriram mais de 4000 exoplanetas, alguns na zona habitável da sua estrela – uma área que fornece condições adequadas para a vida.

Para explorar a atmosfera destes lugares, os cientistas precisam de grandes telescópios de próxima geração, como o ELT (Extremely Large Telescope), actualmente em construção no Deserto de Atacama no Chile; espera-se que fique operacional em 2025. Os cientistas podem apontar o instrumento – com um impecável espelho primário com cerca de metade do tamanho de um campo de futebol – para Proxima b e TRAPPIST-1e. O telescópio terá mais de 250 vezes o poder de captação de luz do Telescópio Espacial Hubble.

Lin e Kaltenegger disseram que os espectrógrafos de alta resolução do ELT podem discernir água, metano e oxigénio tanto para Proxima b como para TRAPPIST-1e, caso estes planetas sejam como o nosso próprio ponto azul pálido.

A cerca de 4 anos-luz da Terra, Proxima b pode ser resolvido por novos telescópios terrestres, dando aos astrónomos uma vantagem em observar este mundo próximo.

“Assumindo que estes mundos possam ser como uma Terra jovem ou moderna, com atmosferas semelhantes ou empobrecidas,” realçou Kaltenegger. “Zifan criou uma base de dados de impressões digitais leves para estes mundos, um guia para permitir que os observadores aprendam a encontrar sinais de vida, caso exista.

Kaltenegger disse: “Estamos a fornecer um modelo de como encontrar vida nestes mundos.”

Astronomia On-line
10 de Dezembro de 2019

spacenews

 

3089: NASA revela detalhes do exoplaneta “Frankenstein”

CIÊNCIA

NASA. NASA/ ESA/ G. Bacon (STScI)

O Laboratório de Propulsão a Jacto da NASA acaba de revelar novos detalhes do exoplaneta WASP-12b, que orbita a estrela WASP-12.  

Este mundo encontra-se a 1.400 anos-luz do nosso Sistema Solar na constelação de Auriga e, segundo indica a agência espacial norte-americana, trata-se de um “Júpiter quente”, isto é, um planeta com uma massa semelhante à de Júpiter perto de uma estrela.

“Uma estrela monstruosa está a roubar pedaços dos seus planetas vizinhos, o o WASP-12b, para se transformar definitivamente num Frankenstein“, escreveu a NASA.

“A gravidade extrema está a esticar o gigante de gás quente na forma de um ovo, enquanto canibaliza lentamente o planeta (…) Em breve [10 milhões de anos], este planeta será completamente devorado pela sua estrela faminta”.

A agência espacial norte-americana destaca ainda um outro exoplaneta, o TrEs-2b. Trata-se de um mundo escuro que reflete menos de um por cento de qualquer luz que o atinja e, por este motivo, foi rotulado pela NASA como planeta da Noite Eterna.

Este é “o planeta mais sombrio já descoberto a orbitar uma estrela. Este mundo alienígena é menos reflexivo do que o carvão (…) Dentro da sua atmosfera, voaríamos às cegas no escuro (…) O ar deste planeta é tão quente quanto lava”.

Nos últimos anos, o número de exoplanetas descobertos têm aumentado significativamente. Actualmente, são conhecidos 4000 planetas para lá do Sistema Solar.

Descoberto exoplaneta gigante que não devia existir

Uma equipa internacional de cientistas descobriu um exoplaneta gasoso gigante (o GJ 3512 b), semelhante a Júpiter, a orbitar uma

ZAP //

Por ZAP
24 Novembro, 2019

 

3056: Mundos distantes sob muitos sóis

CIÊNCIA

Estas imagens mostram algumas das estrelas que albergam exoplanetas com estrelas companheiras (b, c) encontradas durante o projecto. As imagens são composições RGB obtidas com o PanSTARRS (Panoramic Survey Telescope and Rapid Response System). A imagem do meio mostra um sistema triplo hierárquico.
Crédito: Mugrauer, PanSTARRS

Será que a Terra é o único planeta habitável do Universo ou existem mais mundos por aí capazes de suportar vida? E, se houverem, como serão? Numa tentativa de responder a estas perguntas fundamentais, os cientistas estão a procurar exoplanetas: mundos distantes que orbitam outras estrelas para lá do nosso Sistema Solar.

Até ao momento, conhecemos mais de 4000 exoplanetas, a maioria dos quais orbitam estrelas individuais como o nosso Sol. O Dr. Markus Mugrauer da Universidade Friedrich Schiller em Jena, Alemanha, descobriu e caracterizou muitos novos sistemas estelares múltiplos que contêm exoplanetas. As descobertas confirmam suposições de que a existência de várias estrelas influencia o processo pelo qual os planetas se formam e desenvolvem. O estudo por Mugrauer, do Instituto Astrofísico e do Observatório da Universidade de Jena, foi agora publicado na revista Monthly Notices of the Royal Astronomical Society.

Telescópio espacial fornece dados precisos

“Os sistemas estelares múltiplos são muito comuns na nossa Via Láctea,” explica Mugrauer. “Se tais sistemas incluem planetas, são de particular interesse para a astrofísica, porque os sistemas planetários podem diferir do nosso Sistema Solar de maneiras fundamentais.” Para descobrir mais sobre estas diferenças, Mugrauer investigou mais de 1300 estrelas que hospedam exoplanetas em órbita para ver se têm estrelas companheiras. Para este fim, acedeu a dados precisos de observação do telescópio espacial Gaia, que é operado pela ESA.

Desta maneira, conseguiu demonstrar a existência de cerca de 200 companheiras estelares para estrelas que hospedam exoplanetas até 1600 anos-luz de distância do Sol. Com a ajuda dos dados, Mugrauer também conseguiu caracterizar em mais detalhe as estrelas associadas e os seus sistemas. Ele descobriu que existem sistemas íntimos com distâncias de apenas 20 UA (Unidades Astronómicas) – que no nosso Sistema Solar corresponde aproximadamente à distância de Úrano ao Sol -, bem como sistemas com estrelas separadas por mais de 9000 UA.

Anãs vermelhas e brancas

As estrelas companheiras também variam quanto à sua massa, temperatura e estágio de evolução. As mais massivas têm 1,4 vezes a massa do nosso Sol, enquanto as mais leves têm apenas 8% da massa do Sol. A maioria das estrelas companheiras são anãs frias e de baixa massa com um tom avermelhado.

No entanto, também foram identificadas oito anãs brancas entre as fracas companheiras estelares. Uma anã branca é o núcleo queimado de uma estrela parecida com o Sol, com mais ou menos o tamanho da Terra, mas com metade da massa do nosso Sol. Estas observações mostram que os exoplanetas podem realmente sobreviver ao estágio evolutivo final de uma estrela semelhante ao Sol nas proximidades.

Sistemas estelares duplos, triplos e quádruplos com exoplanetas

A maioria dos sistemas estelares com exoplanetas identificados no estudo possui duas estrelas. No entanto, foram detectadas cerca de duas dúzias de sistemas triplos e até um sistema quádruplo. No intervalo de distâncias investigadas, entre aproximadamente 20 e 10.000 UA, um total de 15% das estrelas estudadas possui pelo menos uma estrela companheira. Isto é apenas cerca de metade da frequência esperada em geral para estrelas do tipo solar. Além disso, as estrelas companheiras detectadas mostram distâncias cerca de cinco vezes maiores do que em sistemas comuns.

“Estes dois factores, em conjunto, podem indicar que a influência de várias estrelas num sistema estelar atrapalha o processo de formação planetária bem como o desenvolvimento das suas órbitas,” disse Mugrauer. A causa disto pode ser, em primeiro lugar, o impacto gravitacional de uma companheira estelar no disco de gás e poeira a partir do qual os se planetas se formam em redor da estrela hospedeira. Mais tarde, a gravitação da companheira estelar influencia o movimento dos planetas em torno da sua estrela hospedeira.

Markus Mugrauer gostaria de continuar o projecto. No futuro, também, a multiplicidade de estrelas hospedeiras planetárias recém-descobertas seria estudada usando dados da missão Gaia e quaisquer estrelas companheiras detectadas seriam caracterizadas com precisão. “Além disso, combinaremos os resultados com os de uma campanha internacional de observação, que actualmente estamos a realizar sobre o mesmo tópico no Observatório Paranal do ESO,” acrescentou Mugrauer. “Seremos capazes de investigar a influência precisa da multiplicidade estelar na formação e no desenvolvimento dos planetas.”

Astronomia On-line
19 de Novembro de 2019

 

2982: A atracção gravitacional de Júpiter pode ajudar-nos a encontrar mundos alienígenas escondidos

CIÊNCIA

Encontrar exoplanetas habitáveis é muito mais mais difícil do que apenas descobrir se está à distância correta de uma estrela para poder ter água líquida.

Há muitas mais perguntas a ser respondidas: o planeta é rochoso como a Terra? Tem placas tectónicas e um campo magnético? Tem atmosfera? Uma das perguntas mais importantes, porém, é: está esse mundo a ser adversamente afectado por outros exoplanetas em órbita em torno da mesma estrela?

Para tentar responder a essa pergunta, os astrónomos estão a olhar para a enorme força que Júpiter tem na órbita da Terra. A técnica foi descrita num novo artigo aceite na revista especializada The Astronomical Journal e está disponível desde a semana passada no arXiv.

Embora os planetas estejam distantes, estão suficientemente próximos para afectar as órbitas um do outro. As interacções com Júpiter e Saturno podem prolongar a forma elíptica da órbita da Terra e influenciar a sua inclinação axial, criando ciclos climáticos glaciais e interglaciais chamados ciclos de Milankovitch. Apesar dos eventos de extinção da Era do Gelo, isso não impediu que a vida prosperasse.

“Se a órbita da Terra fosse tão variável como a órbita de Mercúrio no nosso sistema solar, a Terra não seria habitável. A vida não estaria aqui”, explicou ao ScienceAlert o astrónomo Jonti, da Universidade do Sul de Queensland. “A excentricidade da órbita de Mercúrio pode chegar a 0,45. Se a excentricidade da Terra subir tão alto, a Terra estará mais próxima do Sol do que Vénus quando estiver mais próxima do Sol e tão distante como Marte quando estiver no ponto mais distante”.

Para descobrir se Júpiter poderia efectuar uma mudança dessa magnitude, Horner e uma equipa criaram simulações do Sistema Solar e moveram Júpiter para ver o que aconteceria. Os resultados foram surpreendentes.

A equipa descobriu que a simulação funcionou, o que significa que poderiam executar uma simulação do sistema para determinar como os planetas interagem gravitacionalmente e como os planetas realmente orbitam a estrela.

“Uma das coisas que descobrimos imediatamente foi que é fácil tornar o nosso sistema solar instável”, disse Horner. “Em cerca de três quartos das simulações, ao movimentarmos Júpiter, pusemos o planeta em lugares onde, em 10 milhões de anos, o Sistema Solar se desmoronou. Os planetas começaram a colidir uns contra os outros e foram expulsos do Sistema Solar”.

Os resultados trazem boas notícias para a busca de planetas alienígenas. No último quarto de simulações, a Terra era realmente bastante normal e habitável, o que contradiz a hipótese da Terra Rara, que propõe que as condições que deram origem à vida na Terra são tão únicas que nunca serão replicadas em nenhum outro lugar do Universo.

“A Terra estava praticamente no centro. Não foi rápido. Não foi lento. Não era grande, não era pequeno. Era apenas uma média”, disse Horner. “O que sugere, pelo menos para esses tipos de influências orbitais, perturbações orbitais, em vez de ser a Terra Rara, a maioria dos planetas que estão na órbita da Terra nos sistemas que simulamos seriam igualmente adequados para a vida como a Terra, se não melhor do ponto de vista das oscilações cíclicas”.

Estas são observações importantes, porque o objectivo final é projectar um teste para ajudar a diminuir que exoplanetas são dignos de observação futura. A nossa tecnologia será suficientemente sofisticada para detectar muitos exoplanetas mais pequenos do que o tamanho da Terra na zona habitável. Porém, com o tempo limitado do telescópio, precisamos de identificar outros passos que podemos tomar para avaliar se vale a pena estudar um determinado exoplaneta.

Uma das formas seria examinar o efeito sobre a habitabilidade potencial de quaisquer outros exoplanetas em órbita em torno da mesma estrela. Assim, as simulações poderiam ser usados ​​para ajudar a determinar, não apenas a dinâmica do sistema, mas a probabilidade de o exoplaneta em questão permanecer habitável durante longos períodos de tempo.

ZAP //

Por ZAP
8 Novembro, 2019

 

2957: Cientistas acreditam ter detectado a primeira colisão entre dois exoplanetas

CIÊNCIA

NASA/SOFIA/Lynette Cook

Uma equipa de cientistas norte-americanos acredita ter detectado a primeira colisão entre dois exoplanetas, avançou a NASA esta semana. Massas de ar quente e um aumento da radiação infravermelha podem ser indícios do fenómeno.

Num novo artigo, publicado esta semana na revista científica especializada Astrophysical Journal, os especialistas detalham aquelas que podem ser as consequências de uma eventual colisão entre estes mundos que não orbitam o Sol.

A descoberta terá sido detectada no sistema BD +20 307, que tem duas estrelas e se localiza a mais de 300 anos-luz da Terra, explica a agência espacial norte-americana numa nota publicada esta semana na sua página oficial.

Há uma década, massas de poeira quente foram vistas no sistema. No ano passado, o Observatório Estratosférico de Astronomia Infravermelha da NASA (SOFIA) acompanhou o objecto e detectou um aumento de mais de 10% na radiação infravermelha, o tipo de radiação emitida por objectos quentes.

O aparecimento de mudanças tão claras num período de tempo tão curto não pode ser explicado por mecanismos conhecidos. Por isso, os cientistas assumem que estas variações são indicativas de um choque relativamente recente entre dois planetas.

“Esta é uma rara oportunidade de estudar colisões catastróficas que ocorrem tarde na história de um sistema planetário (…) As observações do SOFIA mostram mudanças no disco empoeirado numa escala de tempo de apenas poucos anos”, afirmou na nota de imprensa uma das autora dos estudo, Alycia Weinberger, do Instituto Carnegie de Ciência, em Washington, nos Estados Unidos.

Por sua vez, a líder do estudo, Maggie Thompson, da Universidade da Califórnia, frisa que esta colisão é semelhante ao choque entre a Terra e o planeta Tea que terá dado à luz a Lua – esta é uma das hipóteses mais aceites para a formação do nosso satélite natural.

“A poeira quente em torno do BD +20 307 dá-nos uma ideia de como é que podem ser os impactos catastróficos entre exoplanetas rochosos. Queremos saber como é que esse sistema evolui após um impacto extremo”, afirmou.

Os astrónomos não descartam a possibilidade de a acumulação incomum de poeira em torno das duas estrelas do sistema ter uma outra origem ainda desconhecida.

“Uma colisão catastrófica entre corpos em escala planetária continua a ser a fonte mais provável para o excesso de poeira no sistema; no entanto, a causa da sua variação recente exige uma investigação mais aprofundada”, pode ler-se no estudo.

A Lua é mesmo fruto de um evento catastrófico (e compartilha do “ADN” da Terra)

Os cientistas não têm dúvidas: a Lua nasceu de um evento catastrófico. Uma equipa de especialista afirma ter novas e…

ZAP //

Por ZAP
4 Novembro, 2019

 

2941: Quando os exoplanetas colidem

CIÊNCIA

Impressão de artista que ilustra uma colisão catastrófica entre dois exoplanetas rochosos no sistema planetário BD +20 307, tornando os dois em detritos empoeirados. Há dez anos, os cientistas especularam que a poeira quente neste sistema era o resultado de uma colisão entre dois planetas. Agora, o SOFIA descobriu ainda mais poeira quente, dando ainda mais suporte ao cenário de colisão exoplanetária. Isto ajuda a construir uma imagem mais robusta da história do nosso próprio Sistema Solar. Pensa-se que uma colisão parecida a esta criou, em última análise, a nossa Lua.
Crédito: NASA/SOFIA/Lynette Cook

Um vislumbre dramático das consequências de uma colisão entre dois exoplanetas está a dar aos cientistas uma visão do que pode acontecer quando os planetas colidem. Um evento similar, no nosso próprio Sistema Solar, pode ter formado a Lua.

Conhecido como BD +20 307, este sistema binário fica a mais de 300 anos-luz da Terra e as suas estrelas têm pelo menos mil milhões de anos. No entanto, este sistema maduro mostrou sinais de detritos empoeirados em turbilhão que não são frios, como seria de esperar para estrelas com esta idade. Ao invés, os detritos são quentes, reforçando que foram produzidos há relativamente pouco tempo pelo impacto de dois corpos planetários.

Há uma década, observações deste sistema por observatórios terrestres e pelo Telescópio Espacial Spitzer da NASA forneceram as primeiras pistas desta colisão aquando da descoberta destes os detritos quentes. Agora, o SOFIA (Stratospheric Observatory for Infrared Astronomy) revelou que o brilho infravermelho dos detritos aumentou mais de 10% – um sinal de que existe actualmente ainda mais poeira quente.

Publicados na revista The Astrophysical Journal, os resultados confirmam ainda que uma colisão extrema entre exoplanetas rochosos poderá ter ocorrido há relativamente pouco tempo. Colisões como estas podem mudar os sistemas planetários. Pensa-se que uma colisão entre um corpo do tamanho de Marte e a Terra, há 4,5 mil milhões de anos, tenha criado detritos que eventualmente formaram a Lua.

“A poeira quente em torno de BD +20 307 dá-nos uma ideia do aspecto dos impactos catastróficos entre exoplanetas rochosos,” disse Maggie Thompson, estudante da Universidade da Califórnia em Santa Cruz e autora principal do artigo. “Nós queremos saber como este sistema evolui após o impacto extremo.”

Os planetas formam-se quando partículas de poeira em redor de uma estrela jovem se unem e crescem com o tempo. Os detritos remanescentes permanecem após a formação de um sistema planetário, geralmente em regiões frias e distantes, como a Cintura de Kuiper, localizada para lá de Neptuno no nosso próprio Sistema Solar. Os astrónomos esperam encontrar poeira quente em torno de jovens sistemas solares. À medida que evoluem, as partículas de poeira continuam a colidir e eventualmente tornam-se pequenas o suficiente para serem sopradas do sistema ou puxadas para a estrela. A poeira quente em torno de estrelas mais velhas, como o nosso Sol e as duas do sistema BD +20 307, há muito que devia ter desaparecido. O estudo dos detritos empoeirados em torno de estrelas ajuda os astrónomos não apenas a aprender como os sistemas exoplanetários evoluem, mas também a construir uma imagem mais completa da história do nosso próprio Sistema Solar.

“Esta é uma rara oportunidade para estudar colisões catastróficas que ocorrem no final da história de um sistema planetário,” disse Alycia Weinberger, cientista do Departamento de Magnetismo Terrestre do Instituto Carnegie para Ciência em Washington, EUA, e investigadora principal do projecto. “As observações do SOFIA mostram mudanças no disco empoeirado numa escala de tempo de apenas alguns anos.”

As observações no infravermelho, como aquelas da câmara FORCAST (Faint Object Infrared Camera for the SOFIA Telescope) acoplada ao SOFIA, são cruciais para descobrir pistas escondidas na poeira cósmica. Quando observado no infravermelho, este sistema é muito mais brilhante do que o esperado tendo em conta apenas as estrelas. A energia extra vem do brilho dos detritos de poeira, que não podem ser observados noutros comprimentos de onda.

Embora existam vários mecanismos que podem fazer com que a poeira brilhe com mais intensidade – pode estar a absorver mais calor estelar ou a aproximar-se das estrelas -, é improvável que tal aconteça em apenas 10 anos, o que é extremamente rápido para mudanças cósmicas. Uma colisão planetária, no entanto, injectaria facilmente e rapidamente uma grande quantidade de poeira. Isto fornece mais evidências de que dois exoplanetas colidiram um com o outro. A equipa está a analisar dados das observações de acompanhamento para verificar se existem outras alterações no sistema.

Astronomia On-line
1 de Novembro de 2019

 

2931: TESS. Investigadores do Porto caçaram um planeta improvável

CIÊNCIA

Centro de Voos Espaciais Goddard da NASA

O satélite TESS (Transiting Exoplanet Survey Satellite) da NASA acaba de caçar um planeta aparentemente improvável em torno de duas estrelas gigantes em expansão, noticia a agência noticiosa Europa Press.

Uma equipa de cientistas do Instituto de Astrofísica e Ciências Espaciais (IA), no Porto, estudou as estrelas gigantes vermelhas HD 212771 e HD 203949, à volta das quais já se sabia que existiam exoplanetas. Foi numa destas que foi encontrado o planeta improvável.

“As observações do TESS são delicadas o suficiente para permitir medir as pulsações suaves nas superfícies das estrelas. Estas duas estrelas bastante evoluídas também abrigam planetas, fornecendo o banco de dados ideal para estudos da Evolução dos sistemas planetários”, escreveram os cientistas no novo estudo, cujos resultados foram esta semana publicados na revista científica especializada Astrophysical Journal.

Para estudar estas duas gigantes vermelhas, os investigadores recorreram a dados de asterossismologia (ciência que estuda o interior das estrelas através da actividade sísmica medida à superfície — oscilações) recolhidos através do satélite TESS.

Depois de determinar as propriedades físicas de ambas as estrelas, como a sua massa, tamanho e idade, os cientistas concentraram-se no estado evolutivo da HD 203949.

O objectivo da equipa passava por entender como é que o planeta poderia evitar ser engolido pela gigante vermelha, uma vez que a estrela já se teria expandido muito para além da órbita planetária actual durante a fase final da sua evolução.

“Este estudo é uma demonstração perfeita de como a astrofísica estelar e exoplanetária estão ligadas uma à outra”, afirmou o co-autor do estudo Vardan Adibekyan, do IA e da Universidade do Porto, citado pela Europa Press.

“A análise estelar levada a cabo parece sugerir que a estrela está demasiado evoluída para abrigar um planeta nesta situação de distância orbital curta”. Por outro lado, continuou, “a análise de exoplanetas diz-nos que o planeta está lá”, rematou, dando conta que se trata de um mundo improvável.

“A solução para este dilema científico está oculta no simples facto de que as estrelas e os seus planetas não apenas se formam, mas também evoluem juntos. Neste caso em particular, o planeta conseguiu evitar ser engolido pelo gigante vermelho em expansão”.

ZAP //

Por ZAP
30 Outubro, 2019

 

2895: NASA faz parceria com caçadores de ET

CIÊNCIA

Ian.CuiYi

A equipa do Breakthrough Listen do SETI vai trabalhar com os cientistas que estão a operar o Transiting Exoplanet Survey Satellite (TESS) da NASA na procura de evidências de vida inteligente nos exoplanetas.

O TESS é o satélite de caça aos planetas que foi colocado no ar para substituir o Kepler Space Telescope. Este satélite da NASA encontra os exoplanetas e agora, com uma parceria com o SETI, vai também analisa-los à procura de “tecno-assinaturas”, sinais gerados por tecnologias de civilizações avançadas como transmissores, propulsores ou outras formas de engenharia.

A lista de mais de mil novos objectos de interesse detectados pelo TESS vai ser partilhada com o SETI que irá usar alguns dos observatórios mais avançados, como os telescópios Green Bank ou Parkes, o MeetKAT e o telescópio do Instituto Allen.

A Breakthrough Listn já analisou dados de vários alvos misteriosos, como o visitante Oumuamua ou o Borisov, lembra a CNet.

Espera-se que o TESS descubra até dez mil novos planetas, muitos deles mais próximos da Terra do que os que foram descobertos pelo Kepler, o que fará com que os investigadores do SETI possam ser capazes de identificar mesmo sinais mais ténues.

Exame Informática
24.10.2019 às 9h37

 

2892: O Universo pode estar repleto de exoplanetas semelhantes à Terra

CIÊNCIA

NASA Ames/JPL-Caltech/T. Pyle

Um grande número de planetas semelhantes à Terra pode estar disperso pelo Universo, aumentando as expectativas de que existem outros mundos com vida.

Esta é a conclusão de uma nova investigação patrocinada pela NASA e levada a cabo por cientistas da Universidade da Califórnia, nos Estados Unidos. Os resultados foram esta semana publicados na revista científica especializada Science.

Para chegar a esta conclusão, os cientistas estudaram “autópsias” planetárias, isto é observaram rochas de seis sistemas solares em torno de anãs brancas, estrelas já mortas e que em vida foram semelhantes ao Sol.

No seu estágio evolutivo final, as anãs brancas atraem material rochoso de objectos menores que orbitam à sua volta porque se contraem e expandem. Na prática, os cientistas estudaram os destroços de planetas devorados por anãs brancas.

Ao estudar a composição química das estrelas, os especialistas conseguiram entender a composição das rochas dos planetas que as orbitavam. Esses dados podem revelar-se importantes, uma vez que fornecem informações sobre a sua habitabilidade, campo magnético, atmosfera e existência de placas tectónicas.

Os resultados demonstraram que estes planetas antigos poderia ter uma composição muito semelhante à Terra ou Marte. “Quanto mais rochas em torno de outras estrelas se assemelharem às rochas que formaram a Terra, maior é a probabilidade de existirem planetas habitáveis como a Terra”, disse a autora do estudo Alexandra Doyle, em declarações ao portal Newsweek.

“Os resultados são consistentes com as fontes de oxigénio da Terra, Marte e os asteróides típicos do Sistema Solar, o que sugere que pelo menos alguns exoplanetas rochosos são geofísica e geo-quimicamente semelhantes à Terra “, explicam os cientistas no estudo agora publicado.

“Se as rochas extraterrestres têm uma quantidade de oxidação semelhante à da Terra, pode concluir-se que o planeta possui placas tectónicas e um potencial semelhante para campos magnéticos como a Terra, que se acreditam serem os principais ingredientes para vida”, rematou o co-autor do estudo Hilke Schlichting, citado em comunicado.

ZAP //

Por ZAP
24 Outubro, 2019

 

2761: Descoberto planeta condenado que tem recorde de menor órbita em torno da estrela

CIÊNCIA

O planeta Mercúrio leva apenas 88 dias terrestres para orbitar o Sol. No entanto, o nosso planeta Terra necessita de um período orbital de 365 dias para o fazer. Estes dias são apenas alguns fragmentos de tempo se compararmos com Neptuno. Este gigante precisa de 164,8 anos da Terra para orbitar o Sol. Contudo, os astrónomos descobriram agora o exoplaneta NGTS-10b.

Este “planeta condenado” estabeleceu um novo recorde para a órbita mais curta. Assim, percorre a sua estrela em apenas 18,4 horas terrestres. Basicamente é como apanhar um voo de Nova York até Sidney na Austrália.

“Júpiter Quente” tem órbita impressionante de 18 horas

Temos um novo recorde. Provavelmente, este exoplaneta estará a 1060 anos-luz de distância da Terra. É um gigante gasoso e chama-se NGTS-10b. Na verdade, este fustiga a sua estrela numa rota muito justa, está tão perto que completa uma órbita inteira em apenas 18,4 horas.

Segundo os astrónomos, esta proximidade está no limite do que um planeta consegue orbitar à estrela hospedeira sem ser rasgado por forças gravitacionais. Contudo, o seu destino está traçado, dada a contínua aproximação.

Os astrónomos estimaram que o exoplaneta está numa espiral em direcção à estrela. Assim, este cruzará esse ponto de parte ondulante – chamado de limite Roche – em apenas 38 milhões de anos. Está completamente condenado.

O que é o limite Roche?

Em astronomia, denomina-se limite de Roche a distância mínima que pode suportar um objecto, que mantém a sua estrutura unicamente por sua própria gravidade numa órbita a um corpo massivo (de maior densidade), sem começar a desintegrar-se devido às forças de maré exercidas pela força gravitacional do objecto principal. Dentro do limite de Roche, a força de gravidade que o corpo principal exerce sobre o extremo do satélite mais próximo e mais afastado excedem à força de gravidade do satélite.

Devido a esse princípio, o corpo secundário poderá ser destruído pelas forças de maré. O nome de limite de Roche provém do astrónomo francês Édouard Roche, que primeiro propôs este efeito e calculou este limite teórico em 1848.

A descoberta faz deste sistema solar um laboratório incrível. Permite assim estudar as interacções de marés entre uma estrela e um exoplaneta gigante perigosamente próximo.

O planeta que não deveria existir

“Júpiteres quentes” são exoplanetas fascinantes. Como o nome sugere, eles são gigantes gasosos como Júpiter. No entanto, ao contrário de Júpiter, orbitam muito perto das suas estrelas hospedeiras, com períodos orbitais de menos de 10 dias. Isto é o que os torna “quentes”.

De acordo com os modelos actuais de formação de planetas, tecnicamente os Júpiteres quentes não deveriam existir. Um gigante gasoso não se deveria formar tão perto da sua estrela, porque a gravidade, radiação e ventos estelares intensos deveriam impedir que o gás se aglomere.

Contudo… eles existem! Dos mais de 4000 exoplanetas confirmados descobertos até hoje, cerca de 337 podem ser Júpiteres quentes. Assim, pensa-se que estes se formam mais longe nos seus sistemas planetários. Posteriormente, migram para dentro em direcção à estrela.

Podemos não saber muito sobre os seus misteriosos nascimentos, mas os Júpiteres quentes que estão particularmente próximos das suas estrelas podem dizer-nos muito sobre as interacções entre as marés do planeta estelar. Assim, eles estão entre os exoplanetas mais estudados da galáxia.

Exoplaneta NGTS-10b é uma extraordinária descoberta

Até esta última descoberta vertiginosa, apenas seis destes enigmáticos gigantes gasosos tinham sido detectados com um período orbital de menos de um dia. Assim, conhecia-se o WASP-18b, com 22.6 horas, o WASP-19b, com 18,9 horas, também o WASP-43b, com 19,5 horas, o WASP-103b, com 22,2 horas, o HATS-18b, com 20,1 horas e o KELT-16b com 23,3 horas.

O exoplaneta NGTS-10b foi descoberto recorrendo ao observatório Next-Generation Transit Survey, no Chile. Este é o sétimo destes Júpiteres quentes ultra-fechados, mas é o que tem o período orbital mais curto de todos.

Quando este astro foi detectado, parecia ser uma estrela de sequência principal relativamente pouco notável. Estaria a cerca de 10 mil milhões de anos, uma estrela laranja tipo K, com pouco menos de 70% do tamanho e massa do Sol. Contudo, um olhar mais atento sobre estas imagens revelou que a estrela estava a escurecer ligeiramente a cada 18,4 horas.

Assim, uma equipa internacional de astrónomos liderada por James McCormac da Universidade de Warwick começou a trabalhar, usando esses dados e observações adicionais para caracterizar o exoplaneta responsável pelo escurecimento.

Maior que Júpiter e com “os dias contados”

Após uma análise muito mais pormenorizada, foi determinado que o NGTS-10b tem pouco mais de 1,2 vezes o tamanho de Júpiter, e pouco mais de 2,1 vezes a sua massa. Além disso, este astro está a orbitar a estrela a 1,46 vezes o raio de Roche – o que significa que está mesmo à beira (no tempo cósmico) da devastação da maré.

Em tal proximidade com a estrela, mesmo que ainda não esteja suficientemente perto para afastar NGTS-10b, o exoplaneta será achatado nos pólos à medida que a gravidade da estrela a puxa para fora de forma, um esferóide oblato ao invés de uma esfera redonda, agradável e gorda.

A equipa teve o cuidado de descartar um companheiro binário da estrela anfitriã como causa do escurecimento. Contudo, mesmo havendo total certeza da descoberta, os astrónomos enfrentam o problema da luz das estrelas vizinhas. Esta torna difícil o calcular da distância exacta a que está o NGTS-10.

Gaia está a criar um mapa tridimensional extremamente preciso de estrelas ao longo da nossa Via-Láctea e galáxias além. | Imagem ESA.

Gaia aponta para 1060 anos-luz da Terra

A distância de 1060 anos-luz foi calculada com base nos dados do observatório espacial da ESA, Gaia. Este produziu o mapa tridimensional mais preciso da galáxia Via-Láctea até hoje. Contudo, ainda há margem para erros. Se a distância estiver incorrecta, isso pode significar que alguns dos dados de tamanho e massa também estão ligeiramente incorrectos.

Enquanto isso, observações contínuas do sistema poderiam revelar a decadência orbital do exoplaneta. A equipa prevê que a órbita será reduzida em 7 segundos nos próximos 10 anos. Se os astrónomos conseguirem obter medições precisas o suficiente do sistema, eles podem ver isso acontecer.

A investigação foi submetida às Notificações Mensais da Royal Astronomical Society, e está disponível no arXiv.

NASA: Descoberto peculiar exoplaneta com 3 sóis vermelhos perto do Sistema Solar

Estamos numa forte epopeia de descobrimentos espaciais, beneficiando claramente da evolução tecnológica das últimas décadas. Como resultado, os “olhos” apontados ao universo descobrem coisas fantásticas. Exemplo disso é a descoberta feita pela NASA um … Continue a ler NASA: Descoberto peculiar exoplaneta com 3 sóis vermelhos perto do Sistema Solar

Pplware

03 Out 2019
Imagem: Science Alert
Fonte: Science Alert

 

2639: Podem chover pedras no “lado nocturno” dos exoplanetas de Júpiter

CIÊNCIA

(dr) McGill University
Nuvens de rocha condensadas

De acordo com um “relatório meteorológico astronómico”, os lados escuros dos exoplanetas de Júpiter podem ter um clima bastante rochoso. As nuvens espessas de minerais vaporizados podem estar a chover pedras.

Uma equipa de astrónomos da Universidade McGill usou os telescópios espaciais Spitzer e Hubble para estudar o clima em 12 “Júpiteres quentes” – exoplanetas gigantes de gás que orbitam muito perto das suas estrelas hospedeiras.

Estes planetas estão trancados. Isto significa que um lado fica sempre de frente para a estrela, enquanto que o lado oposto está envolto numa escuridão eterna. Como seria de esperar, o lado diurno destes planetas é extremamente quente. O lado nocturno, apesar de ser um pouco mais frio, ainda consegue ser suficientemente quente para derreter chumbo.

Segundo o New Atlas, o que surpreendeu esta equipa de investigadores foi a consistência das temperaturas nocturnas nos 12 exoplanetas analisados. A equipa descobriu que as temperaturas nestes planetas se situavam em torno dos 800 graus Celsius.

“Os modelos de circulação atmosférica previam que as temperaturas do lado nocturno deveriam variar muito mais do que variam na realidade”, disse Dylan Keating, autor principal do artigo científico, recentemente publicado na Nature Astronomy.

“Esta descoberta é verdadeiramente surpreendente, uma vez que todos os planetas que estudamos recebem quantidades diferentes de radiação das suas estrelas hospedeiras, e as temperaturas diurnas variam, entre elas, quase 1.700 graus Celsius.”

O mistério que faz com que estas temperaturas sejam tão consistentes ainda não foi resolvido, mas a equipa de cientistas sugere uma explicação: a cobertura das nuvens pode ser a culpada, ao formar uma espécie de cobertor grosso que impede o calor de irradiar para o Espaço.

De acordo com a equipa, as nuvens são feitas de rocha, vaporizadas pelas intensas temperaturas do lado diurno antes de o vento as soprar para o lado mais negro. Aí, as temperaturas mais baixas fazem-nas condensar e causam, possivelmente, as tais chuvas rochosas.

“A uniformidade das temperaturas nocturnas sugere que as nuvens são, provavelmente, muito semelhantes em termos de composição”, explica Keating. “Os nosso dados sugerem que estas nuvens são compostas por minerais como sulfeto de manganês, silicatos ou rochas.”

No futuro, as observações destes “Júpiteres quentes” em diferentes comprimentos de onda ajudarão os astrónomos a determinar de que são feitas estas nuvens.

ZAP //

Por ZAP
15 Setembro, 2019

[post views]