3971: Investigadores descobrem origem e massa máxima de buracos negros observados por detectores de ondas gravitacionais

CIÊNCIA/ASTRONOMIA

Diagrama esquemático do percurso evolutivo de buraco negro binário para GW170729. Uma estrela com menos de 80 massas solares evolui e desenvolve-se numa super-nova de colapso de núcleo. A estrela não sofre instabilidade de par, de modo que não há uma ejecção significativa de massa por pulsação. Depois da estrela formar um núcleo massivo de ferro, colapsa sob a sua própria gravidade e forma um buraco negro abaixo das 38 massas solares. Uma estrela entre 80 e 140 massas solares evolui e transforma-se numa super-nova por instabilidade de par pulsante. Depois da estrela formar um núcleo massivo de carbono-oxigénio, o núcleo sofre uma criação catastrófica de pares electrão-positrão. Isto estimula uma forte pulsação e ejecção parcial dos materiais estelares. Os materiais ejectados formam a nuvem que envolve a estrela. Depois, a estrela continua a evoluir forma um núcleo massivo de ferro, que colapsa de maneira semelhante a uma super-nova comum de colapso de núcleo, mas com um buraco negro com massa final entre 38 e 52 massas solares. Estes dois caminhos podem explicar a origem das massas dos buracos negros binários detectados no evento de ondas gravitacionais GW170729.
Crédito: Shing-Chi Leung et al./Instituto Kavli para Física e Matemática do Universo

Através de simulações de uma estrela moribunda, uma equipa de físicos teóricos descobriu a origem evolutiva e a massa máxima de buracos negros que são descobertos graças à detecção de ondas gravitacionais.

A excitante descoberta de ondas gravitacionais com o LIGO (Laser Interferometer Gravitational-wave Observatory) e com o Virgo mostrou a presença de buracos negros em sistemas binários íntimos.

As massas dos buracos negros observados foram medidas antes da fusão e resultaram numa massa muito maior do que o esperado anteriormente, cerca de 10 vezes a massa do Sol (massa solar). Num destes eventos, GW170729, a massa observada de um buraco negro, antes da fusão, é na realidade tão grande quanto 50 massas solares. Mas não está claro que tipo de estrela pode formar um buraco negro tão massivo, ou qual a massa máxima para um buraco negro observado pelos detectores de ondas gravitacionais.

Para responder a esta pergunta, uma equipa de investigação do Instituto Kavli para Física e Matemática do Universo estudou o estágio final da evolução de estrelas muito massivas, em particular com 80 a 130 massas solares, em sistemas binários íntimos. O seu achado está ilustrado nos desenhos (a-e) e nos gráficos.

Em sistemas binários íntimos, inicialmente estrelas com 80 a 130 massas solares perdem o seu invólucro rico em hidrogénio e tornam-se estrelas de hélio com 40 a 65 massas solares. Quando as estrelas com massa inicial entre 80 e 130 vezes a do Sol formam núcleos ricos em oxigénio, as estrelas sofrem pulsação dinâmica, porque a temperatura no interior estelar torna-se alta o suficiente para que os fotões sejam convertidos em pares electrão-positrão. Esta “criação de pares” torna o núcleo instável e acelera a contracção para o colapso (ilustração b).

Na estrela super-comprimida, o oxigénio é queimado explosivamente. Isto desencadeia um salto de colapso e em seguida uma rápida expansão da estrela. Uma parte da camada estelar externa é expelida, enquanto a parte mais interna arrefece e colapsa novamente (ilustração c). A pulsação (colapso e expansão) repete-se até que o oxigénio se esgote (ilustração d). Este processo é chamado “instabilidade de par pulsante” (PPI – “pulsational pair-instability”). A estrela forma um núcleo de ferro e colapsa finalmente para um buraco negro, o que desencadeia a explosão de super-nova (ilustração e), chamada super-nova-PPI (PPSISN).

Ao calcularem várias destas pulsações e ejecções associadas de massa até ao colapso da estrela e formação do buraco negro, a equipa descobriu que a massa máxima de um buraco negro formado a partir de uma super-nova-PPI (super-nova por instabilidade de par pulsante) é de 52 massas solares.

As estrelas inicialmente mais massivas do que 130 massas solares (que formam estrelas de hélio com mais de 65 massas solares) passam por uma “super-nova por instabilidade de par” devido à queima explosiva de oxigénio, que interrompe completamente a estrela sem nenhum remanescente de buraco negro. As estrelas acima das 300 massas solares colapsam e podem formar um buraco negro mais massivo do que aproximadamente 150 massas solares.

Os resultados acima preveem a existência de uma “lacuna de massa” na massa do buraco negro entre 52 e aproximadamente 150 massas solares. Os resultados significam que o buraco negro com 50 massas solares em GW170729 é provavelmente o remanescente de uma super-nova por instabilidade de par pulsacional.

O resultado também prevê que um meio circum-estelar massivo seja formado pela perda de massa pulsacional, de modo que a explosão de super-nova associada com a formação do buraco negro induzirá a colisão do material ejectado com o material circum-estelar para se tornar uma super-nova super-luminosa. Os futuros sinais de ondas gravitacionais vão fornecer uma base sobre a qual estas previsões teóricas podem ser testadas.

Astronomia On-line
7 de Julho de 2020

 

spacenews

 

1796: Astrónomos preparam-se para fazer um anúncio bombástico

M. Weiss / CXC / NASA

O European Southern Observatory revelou que, na próxima semana, vai fazer um grande anúncio em relação aos “primeiros resultados do Event Horizon Telescope. Especula-se que a rede de telescópios possa ter captado a primeira fotografia de sempre do Horizonte de Eventos de um buraco negro.

Durante anos, o Event Horizon Telescope (EHT) tem varrido a Via Láctea, tentando obter uma fotografia da localização de Sagitário A*, o monstruoso buraco negro da nossa galáxia.

A tarefa não é fácil, uma vez que os buracos negros são literalmente invisíveis. Estas formações cósmicas absorvem toda a radiação electromagnética, o que significa que nenhum dos nossos telescópios os conseguem detectar – razão pela qual não os conseguimos observar ou fotografar.

Mas há uma região muito especial de um buraco negro: o event horizon, ou horizonte de eventos. Este é o limiar a partir do qual a força da gravidade se torna suficientemente grande para  impedir que a radiação escape ao buraco negro.

Neste limiar, o espaço e o tempo comportam-se de forma peculiar, fugindo às leis da física, e é nisso que os cientistas estão a apostar para conseguir captar uma imagem da luminosidade residual emitida pelo buraco negro.

É possível, mas não é propriamente fácil, explica o Science Alert.  Para dificultar a tarefa, Sagitário A* está envolto numa espessa nuvem de poeira e gás.

Nos últimos anos, a equipa do Event Horizon Telescope tem estado a recolher e analisar dados de telescópios de todo o mundo. A informação obtida por esta rede de instrumentos é tão grande, que tem que ser transportada de avião em discos rígidos, para que os astrónomos fizessem uma análise detalhada dessa informação.

A ideia do EHT é simples: os telescópios de todo o mundo estão sincronizados com um relógio incrivelmente preciso, pelo que os seus dados podem ser correlacionados e, eventualmente, produzir uma imagem do event horizon de um buraco negro.

Nos últimos 13 anos, o Event Horizon Telescope tem tentado captar imagens de dois buracos negros: o Sagitário A *, no centro da Via Láctea, e o buraco negro no centro de Messier 87, uma galáxia elíptica próxima de nós. Segundo o CNET, a última recolha de dados tinha sido feita há dois anos, em Abril de 2017.

O trabalho do EHT parece agora ter produzido frutos. A revelação dos “primeiros resultados do Event Horizon Telescope”, que os cientistas consideram “inovadores”, será feita no próximo dia 10 de Abril, às 14h, pela Comissão Europeia, pelo Conselho Europeu de Investigação e pelos responsáveis do telescópio.

A Comissão Europeia fará uma transmissão em directo no YouTube da revelação.

ZAP // ScienceAlert

Por ZAP
2 Abril, 2019

[vasaioqrcode]

 

1057: O IA no Festival da Luz

Entre 21 e 23 de Setembro a vila de Cascais ilumina-se com mais uma edição do Lumina – Festival da Luz. Criações artísticas explorando a luz e a cor poderão ser apreciadas ou experimentadas ao longo de um percurso pelas ruas da vila, aberto a todos.

O Instituto de Astrofísica e Ciências do Espaço associou-se ao festival Lumina 2018 para organizar uma oficina sobre as estrelas e as constelações no âmbito do programa do Cascais Capital Europeia da Juventude. Utilizando materiais fluorescentes e luz “negra” (a luz junto à extremidade violeta do espectro da luz visível), alunos do 5º ano da Escola Básica e Secundária de Carcavelos são convidados a reconstituir uma parte do céu nocturno que se verá por cima de Cascais durante o festival.

Esta é uma proposta para descobrir a diversidade de estrelas e as suas cores, viajando por uma paisagem de luz. Os participantes aprendem também a utilizar as constelações como instrumentos de “navegação” e assim podem começar a partilhar o céu com familiares e amigos.

No final, este mapa do céu que as crianças construírem em equipa, poderá ser visto durante o festival Lumina.

ia-Instituto de Astrofísica e Ciências do Espaço
14 Setembro, 2018

[vasaioqrcode]

See also Blogs Eclypse and Lab Fotográfico