2067: Dois buracos negros em fusão

Dois buracos negros em fusão.
Crédito: ESA

Os buracos negros estão entre os objectos mais fascinantes do Universo. Envolvendo enormes quantidades de matéria em regiões relativamente pequenas, estes objectos compactos têm densidades enormes que dão origem a alguns dos campos gravitacionais mais fortes do cosmos, tão fortes que nada pode escapar – nem mesmo a luz.

Esta impressão artística mostra dois buracos negros que estão em espiral um em direcção ao outro e, eventualmente, ir-se-ão fundir. Uma fusão de um buraco negro foi detectada pela primeira vez em 2015 pelo LIGO (Laser Interferometer Gravitational-Wave Observatory), que detectou as ondas gravitacionais – flutuações no tecido do espaço-tempo – criadas pela colisão gigante.

Buracos negros e ondas gravitacionais são previsões da relatividade geral de Albert Einstein, a qual foi apresentada em 1915 e permanece, até hoje, a melhor teoria para descrever a gravidade em todo o Universo.

Karl Schwarzschild derivou as equações para buracos negros em 1916, mas estas permaneceram uma curiosidade teórica durante várias décadas, até que as observações de raios-X realizadas com telescópios espaciais puderam finalmente sondar a emissão altamente energética da matéria na vizinhança desses objectos extremos. A primeira imagem da silhueta escura de um buraco negro, lançada contra a luz da matéria no seu entorno imediato, só foi capturada recentemente pelo EHT (Event Horizon Telescope) e publicada no mês passado.

Quanto às ondas gravitacionais, foi o próprio Einstein quem previu a sua existência a partir da sua teoria, também em 1916, mas levaria outro século para finalmente se observar essas flutuações. Desde 2015, os observatórios terrestres LIGO e Virgo reuniram mais de uma dúzia de detecções e a astronomia de ondas gravitacionais é um novo campo de investigação em desenvolvimento.

Mas outra das previsões de Einstein encontrou prova de observação muito mais cedo: a curvatura gravitacional da luz, que foi demonstrada apenas alguns anos depois da teoria aparecer, durante um eclipse total do Sol em 1919.

No contexto da relatividade geral, qualquer objecto com massa dobra o tecido do espaço-tempo, desviando o caminho de qualquer coisa que passe por perto – incluindo a luz. Uma visão artística dessa distorção, também conhecida como lente gravitacional, encontra-se retratada nesta representação de dois buracos negros em fusão.

Há cem anos, os astrónomos começaram a testar a relatividade geral, observando se e como a massa do Sol desvia a luz de estrelas distantes. Esta experiência só poderia ser realizada obscurecendo a luz do Sol para revelar as estrelas ao seu redor, algo que é possível durante um eclipse solar total.

Em 29 de maio de 1919, Sir Arthur Eddington observou as estrelas distantes ao redor do Sol durante um eclipse na ilha do Príncipe, na África Ocidental, enquanto Andrew Crommelin realizou observações semelhantes em Sobral, no nordeste do Brasil. Os seus resultados, apresentados seis meses depois, indicaram que as estrelas observadas perto do disco solar durante o eclipse foram levemente deslocadas em relação à sua posição normal no céu, aproximadamente pela quantidade prevista pela teoria de Einstein para o seu desvio devido à massa do Sol.

“Acende todos os mortos no céu”, destacou o New York Times em Novembro de 1919 para anunciar o triunfo da nova teoria de Einstein. Isto inaugurou um século de experiências excitantes a investigar a gravidade na Terra e no espaço e a provar a relatividade geral de um modo cada vez mais preciso.

Demos saltos gigantescos nos últimos cem anos, mas ainda há muito para descobrir. Athena, o futuro observatório de raios-X da ESA, investigará detalhadamente, e sem precedentes, os buracos negros super-massivos que se situam no centro das galáxias. LISA, outra futura missão da ESA, detectará as ondas gravitacionais a partir de órbita, procurando as flutuações de baixa frequência que são libertadas quando dois buracos negros super-massivos se fundem e só podem ser detectados a partir do espaço.

Ambas as missões estão actualmente em fase de estudo e estão programadas para lançamento no início da década de 2030. Se Athena e LISA pudessem operar em conjunto por pelo menos alguns anos, poderiam realizar uma experiência única: observar a fusão de buracos negros super-massivos tanto em ondas gravitacionais quanto em raios-X, utilizando uma abordagem conhecida como astronomia multi-mensageira.

Nunca observámos tal fusão: precisamos de LISA para detectar as ondas gravitacionais e nos dizer onde procurar no céu, depois precisamos que Athena a observe com alta precisão em raios-X para ver como a poderosa colisão afecta o gás que circunda os buracos negros. Não sabemos o que acontece durante um confronto cósmico deste tipo, portanto, essa experiência, muito parecida com o eclipse de 1919 que primeiro provou a teoria de Einstein, está preparada para abalar a nossa compreensão da gravidade e do Universo.

Astronomia On-line
28 de Maio de 2019


[vasaioqrcode]

1822: Vamos ver um buraco negro. Cientistas mostram quarta-feira o retrato inédito

Em cinco línguas diferentes, em sete cidades de todo o mundo, sete conferências de imprensa simultâneas poderão mostrar pela primeira vez uma imagem de um buraco negro.

Uma das simulações apresentadas no site do EHT
© Hotaka Shiokawa

A revelação acontecerá às 14:00 desta quarta-feira, hora de Lisboa, em inglês – a partir de Bruxelas, na Bélgica, e Washington, EUA -, em dinamarquês desde Lyngby, em espanhol a partir de Santiago do Chile, em mandarim desde Xangai (China) e Taipei (Taiwan), e em japonês, a partir de Tóquio.

A essa hora, nestes sete pontos do mundo, cientistas divulgarão os primeiros resultados do projecto internacional do Telescópio Event Horizon (EHT, na sigla em inglês), onde todos esperam que se possa observar a primeira imagem de um buraco negro, um dos maiores mistérios do Universo.

A simultaneidade das sete conferências de imprensa, anunciadas pelo projecto Event Horizon, aumentou a expectativa junto das comunidades científicas e da comunicação social sobre o que será divulgado. Na informação divulgada apenas se fala num “resultado inovador do projecto do EHT”.

Desde há muito, apresenta-se o EHT, que “um objectivo na astrofísica é observar directamente o ambiente imediato de um buraco negro”, neste caso no centro da Via Láctea, aquela que é a nossa galáxia.

De acordo com a explicação do site oficial do EHT, o projecto – que envolve cerca de 200 pessoas – liga os telescópios existentes com novos sistemas. O EHT “cria um instrumento fundamentalmente novo, com poder de resolução angular que é o mais elevado possível da superfície da Terra”.

Imagem já divulgada a 22 de Outubro de 2001, pela Agência Espacial Europeia, onde se vê uma observação de satélite de um buraco negro super-maciço na galáxia de MCG 6-30-15.

O telescópio tem sido usado para medir o tamanho das regiões de emissão de dois buracos negros super-maciços: Sagitário A, no centro da Via Láctea, e M87 no centro da galáxia de Virgo A. A expectativa é que esta quarta-feira se possa ver uma primeira imagem eventualmente de um destes buracos negros.

Diário de Notícias
09 Abril 2019 — 18:40

[vasaioqrcode]

 

1796: Astrónomos preparam-se para fazer um anúncio bombástico

M. Weiss / CXC / NASA

O European Southern Observatory revelou que, na próxima semana, vai fazer um grande anúncio em relação aos “primeiros resultados do Event Horizon Telescope. Especula-se que a rede de telescópios possa ter captado a primeira fotografia de sempre do Horizonte de Eventos de um buraco negro.

Durante anos, o Event Horizon Telescope (EHT) tem varrido a Via Láctea, tentando obter uma fotografia da localização de Sagitário A*, o monstruoso buraco negro da nossa galáxia.

A tarefa não é fácil, uma vez que os buracos negros são literalmente invisíveis. Estas formações cósmicas absorvem toda a radiação electromagnética, o que significa que nenhum dos nossos telescópios os conseguem detectar – razão pela qual não os conseguimos observar ou fotografar.

Mas há uma região muito especial de um buraco negro: o event horizon, ou horizonte de eventos. Este é o limiar a partir do qual a força da gravidade se torna suficientemente grande para  impedir que a radiação escape ao buraco negro.

Neste limiar, o espaço e o tempo comportam-se de forma peculiar, fugindo às leis da física, e é nisso que os cientistas estão a apostar para conseguir captar uma imagem da luminosidade residual emitida pelo buraco negro.

É possível, mas não é propriamente fácil, explica o Science Alert.  Para dificultar a tarefa, Sagitário A* está envolto numa espessa nuvem de poeira e gás.

Nos últimos anos, a equipa do Event Horizon Telescope tem estado a recolher e analisar dados de telescópios de todo o mundo. A informação obtida por esta rede de instrumentos é tão grande, que tem que ser transportada de avião em discos rígidos, para que os astrónomos fizessem uma análise detalhada dessa informação.

A ideia do EHT é simples: os telescópios de todo o mundo estão sincronizados com um relógio incrivelmente preciso, pelo que os seus dados podem ser correlacionados e, eventualmente, produzir uma imagem do event horizon de um buraco negro.

Nos últimos 13 anos, o Event Horizon Telescope tem tentado captar imagens de dois buracos negros: o Sagitário A *, no centro da Via Láctea, e o buraco negro no centro de Messier 87, uma galáxia elíptica próxima de nós. Segundo o CNET, a última recolha de dados tinha sido feita há dois anos, em Abril de 2017.

O trabalho do EHT parece agora ter produzido frutos. A revelação dos “primeiros resultados do Event Horizon Telescope”, que os cientistas consideram “inovadores”, será feita no próximo dia 10 de Abril, às 14h, pela Comissão Europeia, pelo Conselho Europeu de Investigação e pelos responsáveis do telescópio.

A Comissão Europeia fará uma transmissão em directo no YouTube da revelação.

ZAP // ScienceAlert

Por ZAP
2 Abril, 2019

[vasaioqrcode]

 

1154: QUAL É O ASPECTO DE UM BURACO NEGRO?

Imagem simulada de um buraco negro com acreção. O horizonte de eventos encontra-se no meio da imagem e a sombra pode ser vista com um disco de acreção em seu redor.
Crédito: Bronzwaer/Davelaar/Moscibrodzka/Falcke/Universidade Radboud

No centro da nossa Galáxia encontra-se um buraco negro super-massivo rodopiante chamado Sagitário A* ou Sgr A*, para abreviar. Durante milhares de milhões de anos, o gás e poeira em redor têm caído na sua direcção. E aproximadamente a cada 10.000 anos engole uma estrela próxima.

Sgr A* é o maior buraco negro do nosso céu nocturno, mas não sabemos qual o seu aspecto porque nunca conseguimos tirar uma fotografia do objecto. Isto é verdade para todos os buracos negros. São omnipresentes no nosso Universo, mas são tão pequenos no céu que não temos imagens detalhadas de nenhum.

As fotos que vemos na Internet ou em documentários televisivos são ilustrações ou simulações com base em evidências indirectas – observações da região do espaço em redor do buraco negro. Os cientistas não duvidam que os buracos negros existam, mas, sem uma imagem, não podem ter a certeza.

Mas tudo isto está prestes a mudar.

Nos últimos quatro anos, o professor de astrofísica John Wardle tem trabalhado com uma equipa de aproximadamente 200 cientistas e engenheiros para criar uma imagem de Sgr A* que será a primeira de um buraco negro. A iniciativa, de nome EHT (Event Horizon Telescope), terminou de recolher dados em Abril de 2017. Os investigadores estão actualmente a analisá-los. Dependendo dos resultados, a imagem que produzirem de Sgr A* pode parecer-se com uma destas:

Simulações de computador das imagens que os investigadores do EHT esperam obter. As regiões brilhantes são gás quente em redor do buraco negro. A região escura e circular é uma sombra provocada pela forte gravidade do buraco negro.
Crédito: EHT

Pode não parecer grande coisa, mas a criação desta imagem grosseira de Sgr A* é o equivalente a ler uma manchete de um jornal situado na Lua, a partir da Terra. De facto, é boa o suficiente para responder a algumas das nossas maiores dúvidas sobre um dos fenómenos mais misteriosos do Universo: qual o aspecto da luz e da matéria quando caem em direcção a um buraco negro? Qual é a composição das correntes de energia que são expelidas dos buracos negros? Qual é o papel dos buracos negros na formação das galáxias?

Embora improvável, os resultados do EHT podem até exigir ajustes na teoria geral da relatividade de Einstein. Mas antes de sabermos se um dos maiores cientistas de todos os tempos não está completamente certo, temos que começar com o básico.

Os factos

Normalmente, os buracos negros surgem quando uma estrela muito massiva queima o seu combustível nuclear e colapsa cataclismicamente num ponto incrivelmente denso, ou singularidade. Quando o gás, as estrelas e outros materiais chegam perto o suficiente do buraco negro, são atraídos para o seu horizonte de eventos, uma concha imaginária em redor da singularidade. Nada que atravesse o limiar do horizonte de eventos pode escapar à atracção gravitacional do buraco negro. À medida que a matéria cai, o buraco negro torna-se mais massivo e o horizonte de eventos expande-se.

Os buracos negros estão por toda a parte. Os supermassivos encontram-se no centro da maioria das galáxias. Os buracos negros menos massivos são muito mais comuns. A nossa Galáxia, a Via Láctea, tem provavelmente uns 100 milhões de buracos negros, embora só tenhamos identificado algumas dúzias.

Quanto a Sgr A*, está a mais ou menos 26.000 anos-luz da Terra e tem uma massa equivalente a quatro milhões de vezes a massa do Sol. Isso torna-o “fraco” em comparação com outros buracos negros supermassivos, comenta Wardle. O outro buraco negro super-massivo que o EHT estuda, Messier 87 (M87), situado no centro do enxame galáctico de Virgem, tem uma massa de quase sete mil milhões de vezes a massa do Sol. O EHT escolheu Sgr A* e M87 porque são os maiores buracos negros supermassivos quando vistos da Terra. São os candidatos mais fáceis e acessíveis para estudo.

Mas como é que podemos tirar uma foto de um buraco negro quando este é, como o nome indica, negro?

Na realidade, os buracos negros são tão escuros quanto a escuridão do espaço. Qualquer luz que lá entre, nunca escapa. Mas, em redor de um buraco negro, existe luz de um redemoinho luminoso de matéria super-aquecida que ainda não caiu no buraco negro. Quando a luz passa perto do horizonte de eventos, é dobrada e distorcida pela forte força da gravidade do buraco negro.

Este efeito delimita uma região escura chamada sombra do buraco negro. Pensa-se que o tamanho da sombra seja duas vezes e meia o tamanho do horizonte de eventos. O tamanho do horizonte de eventos é proporcional à massa do buraco negro. Para Sgr A*, o seu diâmetro ronda os 24 milhões de quilómetros. E o diâmetro de M87, o outro buraco negro que o EHT está a estudar, é mil vezes superior.

Ou seja: através do estudo da sombra do buraco negro, os investigadores do EHT podem descobrir muito sobre o buraco negro. De modo que, tecnicamente falando, os cientistas do EHT não vão produzir uma imagem de um buraco negro. Vão usar a informação sobre a sombra para deduzir informação sobre o buraco negro.

Mas já que fotografar um buraco negro não é uma opção (pelo menos no presente), os cientistas consideram uma imagem da sombra uma evidência conclusiva da existência de um buraco negro.

E é aqui que entra John Wardle. Quando Wardle começou a sua carreira em astrofísica, no final da década de 1960, analisando as ondas de rádio emitidas pelas galáxias, “os buracos negros eram apenas uma curiosidade que podia ou não existir,” explica. “Era um campo mais ou menos desonroso para um astrónomo.”

Mas, alguns anos mais tarde, o campo floresceu e, dado que os buracos negros libertam jactos energéticos que emitem ondas de rádio, ele foi naturalmente atraído na sua direcção. Como parte do Grupo de Radioastronomia Brandeis, Wardle estuda as “galáxias activas”, um tipo relativamente raro de galáxia super-luminosa com buracos negros supermassivos no seu centro.

A rede

Sgr A* é tão pequeno no céu que não temos um único telescópio na Terra que possa observá-lo com detalhe suficiente a fim de criar uma fotografia de alta-resolução. Os cientistas do EHT superaram este obstáculo ligando sete telescópios espalhados pelo globo através de uma técnica chamada VLBI (very long baseline interferometry). O resultado foi um “telescópio virtual” com o poder de resolução de um telescópio do tamanho do diâmetro da Terra.

Durante uma semana em Abril de 2017, todos os sete telescópios do EHT captaram sinais de Sgr A*. Sete relógios atómicos registaram o tempo de chegada dos sinais em cada telescópio. A natureza dos sinais e o tempo de chegada em cada telescópio vai permitir com que os cientistas trabalhem para trás e construam uma imagem de Sgr A*. Isto vai demorar algum tempo. Os telescópios do EHT recolheram suficientes dados para encher 10.000 portáteis.

Grandes jactos

Wardle está especialmente interessado em descobrir mais sobre os enormes jatos de energia que fluem dos buracos negros. Os jactos formam-se quando a matéria fora de um buraco negro é aquecida a milhares de milhões de graus. Gira no que é chamado de disco de acreção. Parte passa pelo ponto de não retorno, o horizonte de eventos, e entra no buraco negro.

Mas os buracos negros produzem muita bagunça quando comem. Alguma da matéria é cuspida sob a forma de jactos bem focados (colimados). Os jactos viajam por milhares de anos-luz perto da velocidade da luz.

É possível que não existam actualmente jactos oriundos de Sgr A*. Não tem estado muito activo nas últimas décadas. Mas caso existam, os telescópios do EHT terão captado os seus sinais de rádio. E a equipa científica pode usar a informação para tentar e responder ao que Wardle diz serem as grandes perguntas sobre os jactos:

  • De que são feitos? Electrões e positrões, electrões e protões, ou campos electromagnéticos?
  • Como é que começam?
  • Como é que aceleram até perto da velocidade da luz?
  • Como é que permanecem tão focados?

E agora, finalmente, chegamos a Einstein

Até muito recentemente, as evidências em suporte da teoria da relatividade geral vieram de observações do nosso Sistema Solar. Mas as condições na nossa minúscula zona do Universo são muito calmas. As condições extremas encontradas perto de um buraco negro vão submeter a teoria da relatividade geral ao teste final.

A teoria da relatividade geral deve descrever com precisão como a luz se curva à medida que a enorme atracção gravitacional do buraco negro curva o espaço-tempo e atrai tudo na sua direcção. Os dados recolhidos pelo EHT vão fornecer medições deste fenómeno que podem então ser comparados com as previsões de Einstein.

As fórmulas da relatividade geral também sugerem que a sombra projectada pelo disco de acreção em redor de Sgr A* será quase circular. Se tiver a forma de um ovo, isso também nos dirá que algo está errado na teoria da relatividade geral.

Wardle pensa que a teoria da relatividade geral vai resistir aos testes. Ainda assim, há sempre a hipótese de “ter que ser ajustada”, realça. “Estaremos então em ‘maus lençóis’, porque não podemos fazer alterações que estragam todas as outras partes que estão a funcionar. Isso seria muito excitante.”

Astronomia On-line
16 de Outubro de 2018

[vasaioqrcode]

 

243: Em 2018 a humanidade poderá ver o seu primeiro buraco negro

Alain r / Wikimedia

Os buracos negros já fazem parte do conhecimento popular há décadas. Sabemos que são lugares no espaço de onde nada, nem mesmo partículas que se movem à velocidade da luz, consegue escapar. Sabemos também que há um buraco negro enorme no meio da nossa Via Láctea – assim como noutras galáxias. Apesar disso, nunca vimos um. Segundo os especialistas, 2018 será o ano em que isso finalmente vai acontecer.

Albert Einstein previu a existência de buracos negros na teoria da relatividade geral, mas mesmo o físico não estava 100% convencido de que realmente existissem. Até agora, ninguém conseguiu produzir evidências concretas de que de facto existam.

A esperança dos cientistas para mudar isso está no Event Horizon Telescope (EHT). Apesar do nome, o EHT não é só um telescópio, mas uma rede de telescópios em todo o mundo. Trabalhando em conjunto, os dispositivos podem fornecer todos os componentes necessários para que finalmente sejamos capazes de capturar a imagem de um buraco negro.

Para fazer isso, seria preciso um telescópio mais ou menos do tamanho da Terra – e é mais ou menos isso que o EHT é, na prática.

“Primeiro, é necessário uma ampliação ultra alta – o equivalente a contar as covinhas numa bola de golfe em Los Angeles quando está sentado em Nova Iorque”, compara o director do EHT, Sheperd Doeleman. “Em seguida, é necessária uma forma de ver o gás na Via Láctea e o gás quente que envolve o próprio buraco negro. Isso requer um telescópio tão grande como a Terra, que é onde o EHT entra”.

A equipa do EHT criou um “telescópio virtual de tamanho terrestre”, explica Doeleman, usando uma rede de radiotelescópios individuais espalhados pelo planeta. Os cientistas sincronizaram os telescópios para que observassem o mesmo ponto no espaço ao mesmo tempo e fossem capazes de gravar as ondas de rádio detectadas.

A ideia é que a imagem produzida pela combinação destes dados seja comparável a uma que poderia ter sido criada usando um único telescópio de tamanho terrestre.

O primeiro teste começou em Abril de 2017. Ao longo de cinco noites, oito telescópios em todo o mundo ficaram de “olhos” postos em Sagitário A * (Sgr A *), um ponto no centro da Via Láctea que os investigadores acreditam ser a localização de um buraco negro super-massivo.

Os dados do Telescópio do Polo Sul chegaram ao Observatório Haystack, do MIT, apenas em Dezembro, devido à falta de voos de carga na região.

Agora que a equipa tem os dados dos oito telescópios, podem começar a análise com a esperança de produzir a primeira imagem de um buraco negro.

Uma imagem de um buraco negro não só provaria definitivamente que eles existem, como também revelaria novas informações sobre o universo, principalmente em escalas maiores.

“Acredita-se que os buracos negros super-massivos no centro das galáxias e as galáxias em que vivem evoluem ao longo dos tempos cósmicos, de modo que observar o que acontece perto do horizonte do evento ajudar-nos-à a compreender o universo em escalas maiores”, diz Doeleman.

O cientista acrescenta que, no futuro, os investigadores deverão ser capazes de fazer imagens de um único buraco negro ao longo do tempo. Isso permitiria aos cientistas determinar se a teoria da relatividade geral de Einstein é verdadeira ou não na fronteira do buraco negro, além de estudar como os buracos negros crescem e absorvem a matéria.

Por mais empolgante que a pesquisa pareça, as observações do buraco negro em Sagitário A * são apenas as primeiras usando o EHT, e Doeleman está a manter as expectativas sob controlo.

“Não temos garantia do que veremos, e a natureza pode nos atirar uma bola curva. No entanto, o EHT agora está em funcionamento, pelo que, ao longo dos próximos anos, trabalharemos para fazer uma imagem para ver como realmente se parece um buraco negro”, garante.

Não há ainda uma data para a publicação dos resultados. Segundo Doeleman, precisamente porque a equipa está a trabalhar com cuidado, mas é provável que a Terra veja o seu primeiro buraco negro em 2018.

ZAP // Futurism / HypeScience

Por ZAP
15 Janeiro, 2018

[vasaioqrcode]

[SlideDeck2 id=42]

[powr-hit-counter id=6436f632_1516009542034]