739: NUSTAR PROVA QUE ETA CARINAE DISPARA RAIOS CÓSMICOS

A Grande Erupção de Eta Carinae na década de 1840 criou esta nebulosa, fotografada aqui pelo Hubble. Agora com aproximadamente um ano-luz em diâmetro, a nuvem em expansão contém material suficiente para fazer, pelo menos, 10 cópias do nosso Sol. Os astrónomos ainda não conseguiram explicar o que provocou esta explosão.
Crédito: NASA, ESA e Equipa SM4 ERO do Hubble

Um novo estudo usando dados do Telescópio Espacial NuSTAR da NASA sugere que Eta Carinae, o sistema estelar mais luminoso e massivo até 10.000 anos-luz, está a acelerar partículas a altas energias – algumas das quais podem chegar à Terra como raios cósmicos.

“Sabemos que as ondas de choque de estrelas mortas podem acelerar partículas de raios cósmicos a velocidades comparáveis às da luz, um incremento incrível de energia,” disse Kenji Hamaguchi, astrofísico do Centro de Voo Espacial Goddard da NASA em Greenbelt, no estado norte-americano de Maryland, autor principal do estudo. “Processos semelhantes devem ocorrer noutros ambientes extremos. A nossa análise indica que Eta Carinae é um deles.”

Os astrónomos sabem que os raios cósmicos com energias superiores a mil milhões de electrões-volt (eV) chegam até nós além do nosso Sistema Solar. Mas dado que todas estas partículas – electrões, protões e núcleos atómicos – transportam uma carga eléctrica, desviam-se do seu percurso sempre que encontram campos magnéticos. Isto baralha os percursos e mascara as suas origens.

Eta Carinae, localizada a cerca de 7500 anos-luz de distância na direcção da constelação de Quilha (Carina), é famosa por uma explosão do século XIX que brevemente a tornou na segunda estrela mais brilhante do céu. Este evento também expeliu uma enorme nebulosa em forma de ampulheta, mas a causa da erupção ainda é pouco conhecida.

O sistema contém um par de estrelas massivas cujas órbitas excêntricas as aproximam a cada 5,5 anos. As estrelas contêm 90 e 30 vezes a massa do nosso Sol e passam a 235 milhões de quilómetros na sua maior aproximação – mais ou menos a distância média entre Marte e o Sol.

“Ambas as estrelas de Eta Carinae dirigem poderosos fluxos chamados ventos estelares,” disse o membro da equipa Michael Corcoran, também de Goddard. “O local onde estes ventos chocam muda durante o ciclo orbital, o que produz um sinal periódico em raios-X de baixa energia que estamos a rastrear há mais de duas décadas.”

O Telescópio Espacial de raios-gama Fermi da NASA também observa uma mudança nos raios-gama – luz muito mais energética do que os raios-X – de uma fonte na direcção de Eta Carinae. Mas a visão do Fermi não é tão nítida quanto as dos telescópios de raios-X, de modo que os astrónomos não puderam confirmar a ligação.

Para preencher a lacuna entre a monitorização de raios-X de baixa energia e as observações do Fermi, Hamaguchi e colegas recorreram ao NuSTAR. Lançado em 2012, o NuSTAR pode focar-se em raios-X muito mais energéticos do que qualquer telescópio anterior. Utilizando tanto dados recolhidos recentemente como de arquivo, a equipa examinou observações do NuSTAR obtidas entre Março de 2014 e Junho de 2016, juntamente com observações de raios-X de baixa energia do satélite XMM-Newton da ESA no mesmo período.

Os raios-X de baixa energia de Eta Carinae vêm do gás na interface dos ventos estelares em colisão, onde as temperaturas excedem os 40 milhões de graus Celsius. Mas o NuSTAR detecta uma fonte emissora de raios-X acima dos 30.000 eV, cerca de três vezes mais do que pode ser explicado por ondas de choque nos ventos em colisão. Para comparação, a energia da luz visível varia de mais ou menos 2 eV para 3 eV.

A análise da equipa, apresentada na edição de 2 de Julho da Nature Astronomy, mostra que esses raios-X variam com o período orbital binário e indica um padrão de saída de energia similar ao dos raios-gama observados pelo Fermi.

Os investigadores dizem que a melhor explicação para os raios-X energéticos e a emissão de raios-gama é a aceleração de electrões em violentas ondas de choque ao longo da fronteira dos ventos estelares em colisão. Os raios-X detectados pelo NuSTAR e os raios-gama detectados pelo Fermi surgem da luz estelar, devido a um enorme aumento de energia pelas interacções com esses electrões.

Alguns dos electrões super-rápidos, bem como outras partículas aceleradas, devem escapar do sistema e talvez alguns deambulem eventualmente até à Terra, onde podem ser detectados como raios cósmicos.

“Nós sabemos há algum tempo que a região em torno de Eta Carinae é a fonte de emissão energética de raios-X e raios-gama de alta energia,” acrescenta Fiona Harrison, investigadora principal do NuSTAR e professora de astronomia no Instituto de Tecnologia da Califórnia (Caltech) em Pasadena. “Mas até que o NuSTAR foi capaz de identificar a radiação, mostrar que vinha do binário e de estudar as suas propriedades em detalhe, a origem permanecia misteriosa.”

Astronomia On-line
6 de Julho de 2018

[vasaioqrcode]

[SlideDeck2 id=1476]

[powr-hit-counter id=b6195b97_1530889296278]

See also Blog