A Rosetta e o cometa “camaleónico”

CIÊNCIA/ASTRONOMIA

Imagem do Cometa 67P/Churyumov-Gerasimenko, obtida pela sonda Rosetta no dia 7 de Julho de 2015 a uma distância de 154 km do centro do cometa.
Crédito: ESA/Rosetta/NAVCAM

Uma grande síntese dos dados da Rosetta mostrou como o seu cometa alvo mudou de cor repetidamente durante os dois anos em que foi observado pela sonda. O núcleo camaleónico do cometa tornou-se progressivamente menos vermelho ao passar mais perto do Sol, e depois novamente vermelho ao regressar ao espaço profundo.

O cometa 67P/Churyumov-Gerasimenko muda de cor dependendo do seu ambiente, assim como um camaleão. Ao contrário do camaleão, as mudanças de cor em 67P/C-G refletem a quantidade de água gelada exposta à superfície e nos arredores do cometa.

No início da missão da Rosetta, a nave encontrou-se com o cometa enquanto ainda estava longe do Sol. A tais distâncias, a superfície estava coberta de camadas de poeira e pouco gelo era visível. Isto significava que a superfície parecia vermelha quando analisada com o instrumento VIRTIS (Visible and Infrared Thermal Imaging Spectrometer).

À medida que o cometa se aproximava, atravessou uma fronteira importante, conhecida como linha de neve. A uma distância de aproximadamente 3 vezes a distância Terra-Sol, qualquer coisa dentro da linha de neve será aquecida o suficiente pelo Sol para que o gelo se transforme em gás, um processo chamado sublimação.

À medida que a Rosetta seguia 67P/C-G através da linha de neve, o instrumento VIRTIS começou a notar a cor do cometa a mudar. Enquanto este se aproximava do Sol, o aquecimento aumentou e a água gelada oculta começou a sublimar, afastando também os grãos de poeira. Isto revelou camadas de gelo cristalino, o que fez o núcleo ficar mais azul, como visto pelo VIRTIS.

Em torno do núcleo do cometa, a situação foi revertida. Quando o cometa estava longe do Sol, havia pouca poeira ao redor do cometa, mas a que existia continha água gelada e, portanto, parecia mais azul. Esta nuvem de poeira em redor é chamada de coma ou cabeleira.

Quando o cometa atravessou a linha de neve, o gelo nos grãos de poeira em redor do núcleo sublimou rapidamente, deixando apenas os grãos de poeira desidratados. E assim a coma ficou mais vermelha ao aproximar-se do periélio, a sua menor distância ao Sol.

Quando o cometa estava a voltar para o Sistema Solar exterior, o VIRTIS mostrou que a situação das cores reverteu-se novamente, de modo que o núcleo ficou mais vermelho e a cabeleira mais azul.

Para rastrear a evolução do cometa, a equipa do VIRTIS teve que analisar mais de 4000 observações separadas ao longo de dois anos da missão Rosetta.

“Para responder à grande questão de como um cometa funciona, é muito importante ter uma série temporal longa como esta,” diz Gianrico Filacchione, do INAF-IAPS (Instituto de Astrofísica e Planetologia Espacial), que liderou o estudo.

A razão é que os cometas são ambientes extremamente dinâmicos. Os jactos tendem a aparecer rapidamente às suas superfícies e depois diminuem de forma igualmente repentina. Portanto, comparar instantâneos ocasionais arrisca a que a nossa compreensão da evolução a longo prazo do cometa seja influenciada pelas mudanças transitórias. No entanto, com uma quantidade tão grande de medições, significa que até mesmo mudanças a curto prazo podem ser rastreadas.

“A correlação do que está a acontecer no núcleo é algo completamente novo que não pode ser feito a partir da Terra,” diz Gianrico.

Isto porque as observações a partir do solo não podem resolver o núcleo de um cometa, que no caso de 67P/C-G tem apenas mais ou menos 3 km de tamanho. Agora que a equipa pode descrever e entender a evolução a longo prazo do cometa e os passos dados ao longo do caminho, isto significa que as leituras de outros instrumentos a bordo da Rosetta podem ser contextualizadas.

Mas isso não significa que sabemos tudo sobre cometas. A análise espectral mostra que a cor vermelha da poeira é criada pelas chamadas moléculas orgânicas. Estas são moléculas feitas de carbono e há uma rica variedade delas no cometa. Os cientistas pensam que são importantes para entender como a vida se formou na Terra.

No entanto, para as estudar mais de perto e para identificar estas moléculas, seria necessário que uma amostra da superfície do cometa fosse enviada para a Terra.

“Trazer para a Terra um pedaço do cometa é realmente o Santo Graal de uma missão cometária,” diz Gianrico.

Até que isso seja possível, continuará a usar os dados do VIRTIS para investigar substâncias orgânicas em 67P/C-G.

“Definitivamente, estão por chegar resultados mais emocionantes,” diz Matt Taylor, cientista do projecto Rosetta da ESA, “a recolha de dados pode ter terminado, mas a análise e os resultados vão continuar durante anos, aumentando o rico legado de conhecimento cometário fornecido pela Rosetta.”

Astronomia On-line
11 de Fevereiro de 2020

 

spacenews

 

Rochas “saltitantes” e colapsos de penhascos no Cometa 67P/C-G

CIÊNCIA

Exemplo de um pedregulho a mover-se pela superfície do Cometa 67P/Churyumov-Gerasimenko, capturado em imagens da câmara OSIRIS da Rosetta.
Crédito: ESA/Rosetta/MPS para Equipa OSIRIS MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Cientistas que analisam o tesouro de imagens obtidas pela missão da Rosetta da ESA descobriram mais evidências de curiosas rochas “saltitantes” e quedas dramáticas de penhascos.

A Rosetta operou no Cometa 67P/Churyumov-Gerasimenko entre Agosto de 2014 e Setembro de 2016, recolhendo dados sobre o ambiente de poeira, gás e plasma do cometa, sobre as suas características de superfície e sobre a sua estrutura interior.

Como parte da análise de cerca de 76.000 imagens de alta resolução capturadas com a sua câmara OSIRIS, os cientistas têm procurado mudanças na superfície. Em particular, estão interessados em comparar o período da maior aproximação do cometa ao Sol – conhecido como periélio – com aquele após esta fase mais activa, para entender melhor os processos que impulsionam a evolução da superfície.

Por todo o cometa existem detritos soltos, mas algumas vezes os pedregulhos são fotografados no ato de serem lançados para o espaço, ou de rolar pela superfície. Um novo exemplo de uma rocha saltitante foi recentemente identificado na região lisa do pescoço que liga os dois lóbulos do cometa, uma área que passou por muitas mudanças visíveis de superfície em larga escala ao longo da missão. Lá, uma rocha com mais ou menos 10 metros aparentemente caiu do penhasco próximo e saltou várias vezes pela superfície sem quebrar, deixando “pegadas” no material superficial pouco consolidado.

“Nós pensamos que caiu do penhasco de 50 metros nas proximidades e é o maior fragmento deste deslizamento de terra, com uma massa de cerca de 230 toneladas,” disse Jean-Baptist Vincent do Instituto DLR para Pesquisa Planetária, que apresentou os resultados na conferência EPSC-DPS em Genebra.

“Entre maio e Dezembro de 2015 aconteceram tantas coisas neste cometa, quando estava mais activo, mas infelizmente por causa desta actividade tivemos que manter a Rosetta a uma distância segura. Como tal, não temos uma visão suficientemente próxima para discernir com resolução suficiente as superfícies iluminadas e assim identificar exactamente a localização ‘anterior’ da pedra.”

O estudo de movimentos de rochas como estas, em diferentes partes do cometa, ajuda a determinar as propriedades mecânicas do material em queda e do terreno da superfície em que pousa. O material do cometa é, de modo geral, muito fraco em comparação com o gelo e com as rochas a que estamos habituados cá na Terra: os pedregulhos do Cometa 67P/C-G são cerca de cem vezes mais fracos do que a neve recém-compactada.

Outro tipo de mudança também foi testemunhado em vários locais em redor do cometa: o colapso de faces de penhascos ao longo de linhas de fraqueza, como a dramática captura da queda de um segmento de 70 metros no desfiladeiro Aswan, observada em Julho de 2015. Mas Ramy El-Maarry e Graham Driver de Birbeck, Universidade de Londres, podem ter encontrado um evento de colapso ainda maior, ligado a uma explosão brilhante vista no dia 12 de Setembro de 2015 ao longo da divisão do hemisfério norte-sul.

“Este parece ser um dos maiores colapsos de penhascos que vimos no cometa durante a vida da Rosetta, com o colapso de uma área com cerca de 2000 metros quadrados,” disse Ramy, que também falou na conferência.

Durante a passagem pelo periélio, o hemisfério sul do cometa foi submetido a altos fluxos solares, resultando num aumento dos níveis de actividade e numa erosão mais intensa do que em outras partes do cometa.

“A inspecção das imagens ‘antes e depois’ permitem-nos verificar que a escarpa estava intacta até pelo menos maio de 2015, pois ainda temos imagens de resolução suficientemente alta dessa região para a ver,” explicou Graham, estudante que trabalha com Ramy para investigar o vasto arquivo de imagens de Rosetta.

“Esta região particularmente activa aumenta a probabilidade de o evento de colapso estar vinculado à explosão ocorrida em Setembro de 2015.”

A observação detalhada dos detritos em torno da região colapsada sugere que aconteceram aqui no passado outros grandes eventos de erosão. Ramy e Graham descobriram que os detritos incluem blocos que variam até algumas dezenas de metros em tamanho, substancialmente maiores do que a população de rochas após o colapso do desfiladeiro Aswan, que é composto principalmente por rochas com alguns metros de diâmetro.

“Esta variabilidade na distribuição de tamanho dos detritos caídos sugere diferenças na força dos materiais dos materiais em camadas do cometa e/ou nos mecanismos variados de colapso do penhasco,” acrescentou Ramy.

O estudo de mudanças no cometa, como estas, não fornecem apenas uma visão da natureza dinâmica destes corpos pequenos em escalas de tempo curtas, mas o colapso de um penhasco a maior escala fornece informações sobre a estrutura interna do cometa, ajudando-nos a juntar o puzzle da evolução do cometa em escalas de tempo mais longas.

“Os dados da Rosetta continuam a surpreender-nos e é maravilhoso que a próxima geração de estudantes já esteja a fazer descobertas emocionantes,” acrescentou Matt Taylor, cientista do projecto Rosetta da ESA.

Astronomia On-line
20 de Setembro de 2019

 

1623: Cometa da Rosetta esculpido por stress

Imagem melhorada da NavCam e obtida dia 27 de Março de 2016, quando a Rosetta estava a 329 km do núcleo do Cometa 67P/Churyumov-Gerasimenko. A escala é de 28m/pixel e a imagem mede 28,7 km de comprimento.
Crédito: ESA/Rosetta/NavCam

Está stressado(a)? Não está sozinho(a). A missão Rosetta da ESA revelou que o stress geológico decorrente da forma do Cometa 67P/Churyumov-Gerasimenko tem sido um processo chave na escultura da superfície e do interior do cometa após a sua formação.

Os cometas pequenos e gelados com dois lóbulos distintos parecem ser comuns no Sistema Solar, um possível modo de formação sendo uma colisão lenta de dois objectos primordiais nos estágios iniciais de formação, há 4,5 mil milhões de anos. Um novo estudo que usa dados recolhidos pela Rosetta durante os seus dois anos no Cometa 67P/C-G iluminou os mecanismos que contribuíram para moldar o cometa ao longo dos milhões de anos seguintes.

Os investigadores usaram modelagem de stress e análises tridimensionais de imagens obtidas pela câmara de alta resolução OSIRIS da Rosetta para estudar a superfície e o interior do cometa.

“Encontrámos redes de falhas e fracturas que penetram a 500 metros de profundidade e que se estendem por centenas de metros,” diz o autor principal Christopher Matonti da Universidade Aix-Marseille, na França.

“Estas características geológicas foram criadas por tensão de cisalhamento, uma força mecânica vista frequentemente em acção em sismos ou glaciares na Terra e noutros planetas terrestres, quando dois corpos ou blocos se empurram e se movem um junto ao outro em direcções diferentes. Isto é extremamente empolgante: revela muito sobre a forma e estrutura interna do cometa, e como mudou e evoluiu ao longo do tempo.”

O modelo desenvolvido pelos investigadores descobriu que a tensão de cisalhamento atinge o pico no centro do “pescoço” do cometa, a parte mais fina do astro que liga os dois lóbulos.

“É como se o material em cada hemisfério estivesse a puxar e a separar-se, contorcendo a parte do meio – o pescoço – e fazendo com que fique mais fino através da erosão mecânica resultante,” explica o co-autor Olivier Groussin, da mesma universidade francesa.

“Nós pensamos que este efeito surgiu originalmente por causa da rotação do cometa, combinada com a sua forma inicial assimétrica. Formou-se um binário (torque) onde o pescoço e a “cabeça” se encontram à medida que estes elementos protuberantes se torcem em redor do centro de gravidade do cometa.”

As observações sugerem que a tensão de cisalhamento actuou globalmente no cometa e, crucialmente, em torno do seu pescoço. O facto de que as fracturas podem propagar-se tão profundamente em 67P/C-G também confirma que o material que compõe o interior do cometa é frágil, algo que não estava claro antes.

“Nenhuma das nossas observações pode ser explicada por processos térmicos,” acrescenta o co-autor Nick Attree da Universidade de Stirling, no Reino Unido. “Só fazem sentido quando consideramos uma tensão de cisalhamento que actua sobre todo o cometa e especialmente no seu pescoço, deformando-o, danificando-o e fraturando-o ao longo de milhares de milhões de anos.”

A sublimação, o processo de transformar gelo em vapor, que resulta na libertação de poeira cometária para o espaço, é outro processo bem conhecido que pode influenciar a aparência de um cometa ao longo do tempo. Em particular, quando um cometa passa mais perto do Sol, aquece e perde os seus gelos mais depressa – talvez melhor visualizado nalgumas das explosões mais dramáticas captadas pela Rosetta durante a sua estadia em redor do Cometa 67P/C-G.

Os novos resultados mostram como os cometas de lóbulo duplo evoluíram ao longo do tempo.

Pensa-se que os cometas tenham sido formados nos primeiros dias do Sistema Solar e que estejam armazenados em vastas nuvens na fronteira exterior antes de começarem a sua viagem para o interior. Teria sido durante esta fase inicial de “construção” do Sistema Solar que 67P/C-G obteve a sua forma inicial.

O novo estudo indica que, mesmo a grandes distâncias do Sol, a tensão de cisalhamento agiria ao longo de uma escala de tempo de milhares de milhões de anos após a formação, enquanto a erosão por sublimação “toma as rédeas” em escalas de tempo mais curtas (milhões de anos) para continuar a moldar a estrutura do cometa – especialmente na região do pescoço que já estava enfraquecida pela tensão de cisalhamento.

A sonda New Horizons da NASA transmitiu recentemente imagens do seu “flyby” por Ultima Thule, um objeto transneptuniano localizado na Cintura de Kuiper, um reservatório de cometas e outros corpos menores na periferia do Sistema Solar.

Os dados revelaram que este objeto também tem uma forma de lóbulo duplo, embora um pouco achatada em relação ao cometa da Rosetta.

“As semelhanças em forma são promissoras, mas as mesmas estruturas de stress não parecem ser tão aparentes em Ultima Thule,” comenta Christophe.

À medida que imagens mais detalhadas são transmitidas e analisadas, só o tempo dirá se passou, ou não, por uma história similar à de 67P/C-G.

“Os cometas são ferramentas cruciais para aprender mais sobre a formação e evolução do Sistema Solar,” diz Matt Taylor, cientista do projecto Rosetta da ESA.

“Só explorámos ainda alguns cometas com naves, e 67P é de longe o que vimos com mais detalhe. A Rosetta está a revelar muito sobre estes misteriosos visitantes gelados e, com o resultado mais recente, podemos estudar as orlas exteriores e os primeiros dias do Sistema Solar de uma forma que nunca pudemos alcançar antes.”

Astronomia On-line
22 de Fevereiro de 2019

[vasaioqrcode]