3421: Quantas estrelas eventualmente colidem como buracos negros? O Universo dá uma estimativa

CIÊNCIA/ASTRONOMIA

Impressão de artista que mostra as colisões de dois buracos negros, parecidas àquelas detectadas pelos detectores de ondas gravitacionais LIGO e Virgo.
Crédito: LIGO/Caltech/MIT/Universidade Estatal de Sonoma (Aurore Simonnet)

Desde o avanço na astronomia de ondas gravitacionais em 2015, que os cientistas foram capazes de detectar mais de uma dúzia de pares de buracos negros – conhecidos como buracos negros binários – graças às suas colisões. No entanto, os cientistas ainda debatem quantos destes buracos negros nascem a partir das estrelas e como são capazes de se aproximar o suficiente para uma colisão durante a vida útil do nosso Universo.

Agora, um novo e promissor estudo desenvolvido por um astrofísico da Universidade de Vanderbilt poderá dar-nos um método para encontrar o número de estrelas disponíveis na história do Universo que colidem como buracos negros binários.

A investigação, publicada na revista The Astrophysical Journal Letters, vai ajudar futuros cientistas a interpretar a população subjacente de estrelas e a testar as teorias de formação de todos os buracos negros em colisão ao longo da história cósmica.

“Até agora, os cientistas teorizaram a formação e a existência de pares de buracos negros no Universo, mas as origens dos seus antecessores, estrelas, ainda permanecem um mistério,” disse Karan Jani, autor principal do estudo e astrofísico da Universidade de Vanderbilt. “Com este trabalho, fizemos um estudo forense sobre colisões de buracos negros usando as observações astrofísicas actualmente disponíveis. No processo, desenvolvemos uma restrição fundamental, ou estimativa, que nos diz mais sobre a fracção de estrelas desde o início do Universo que estão destinadas a colidir como buracos negros.”

Aproveitando a teoria da relatividade geral de Einstein, que nos diz como os buracos negros interagem e eventualmente colidem, Jani e o co-autor Abraham Loeb, da Universidade de Harvard, usaram os eventos LIGO registados para fazer um inventário dos recursos temporais e espaciais do Universo a qualquer determinado ponto. Desenvolveram depois as restrições responsáveis por cada etapa do processo de um buraco negro binário: o número de estrelas disponíveis no Universo, o processo de cada estrela que transita para um buraco negro individual e a detecção da eventual colisão desses buracos negros – detectados centenas de milhões de anos mais tarde pelo LIGO como ondas gravitacionais emitidas pelo impacto.

“A partir das observações actuais, descobrimos que 14% de todas as estrelas massivas do Universo estão destinadas a colidir como buracos negros. É uma eficiência notável por parte da natureza,” explicou Jani. “Estas restrições adicionais podem ajudar os cientistas a rastrear as histórias dos buracos negros, respondendo a perguntas antigas e, sem dúvida, criando cenários mais exóticos.”

Astronomia On-line
7 de Fevereiro de 2020

spacenews

 

2547: Astrónomos encontram brilho dourado de colisão estelar distante

CIÊNCIA

Nesta série de imagens capturadas pelo Telescópio Espacial Hubble da NASA, uma recém-confirmada quilonova (seta vermelha) – uma explosão cósmica que cria enormes quantidades de ouro e platina – desvanece rapidamente de vista à medida que o brilho da explosão diminui ao longo de 10 dias. A quilonova foi originalmente identificada como uma explosão de raios-gama, mas uma equipa de astrónomos reexaminou recentemente os dados e descobriu evidências de uma quilonova.
Crédito: NASA/ESA/E. Troja

No dia 17 de Agosto de 2017, os cientistas fizeram história com a primeira observação directa de uma fusão entre duas estrelas de neutrões. Foi o primeiro evento cósmico detectado com ondas gravitacionais e no espectro electromagnético, desde raios-gama ao rádio.

O impacto também criou uma quilonova – uma explosão “turbinada” que forjou instantaneamente o equivalente a centenas de planetas em ouro e platina. As observações forneceram a primeira evidência convincente de que as quilonovas produzem grandes quantidades de metais pesados, uma descoberta há muito prevista pela teoria. Os astrónomos suspeitam que todo o ouro e toda a platina da Terra se formaram como resultado de antigas quilonovas criadas durante colisões entre estrelas de neutrões.

Com base nos dados do evento de 2017, descoberto pela primeira vez pelo LIGO (Laser Interferometer Gravitational-wave Observatory), os astrónomos começaram a ajustar as suas suposições de como uma quilonova deveria aparecer para os observadores terrestres. Uma equipa liderada por Eleonora Troja, investigadora associada do Departamento de Astronomia da Universidade de Maryland, EUA, reexaminou dados de uma explosão de raios-gama detectada em Agosto de 2016 e encontrou novas evidências de uma quilonova que passou despercebida durante as observações iniciais.

O Observatório Neil Gehrels Swift da NASA começou a rastrear o evento de 2016, com o nome GRB160821B, minutos depois de ter sido detectado. A captura antecipada permitiu à equipa de investigação reunir novas informações que faltavam às observações da quilonova detectada pelo LIGO, que só começaram 12 horas após a colisão inicial. Troja e colegas relataram estas novas descobertas na edição de 27 de Agosto da revista Monthly Notices of the Royal Astronomical Society.

“O evento de 2016 foi, ao início, muito emocionante. Estava próximo e foi visível a todos os principais telescópios, incluindo o Telescópio Espacial Hubble da NASA. Mas não correspondia às nossas previsões – esperávamos ver a emissão infravermelha tornar-se cada vez mais brilhante ao longo de várias semanas,” explicou Troja, também do Centro de Voo Espacial Goddard da NASA. “Dez dias após o evento, quase nenhum sinal permanecia. Ficámos todos muito desapontados. Então, um ano mais tarde, aconteceu o evento LIGO. Analisámos os nossos dados antigos com novos olhos e percebemos que, de facto, havíamos capturado uma quilonova em 2016. Os dados infravermelhos dos dois eventos têm luminosidades semelhantes e exactamente a mesma escala de tempo.”

As semelhanças entre os dois eventos sugerem que a quilonova de 2016 também resultou da fusão de duas estrelas de neutrões. As quilonovas podem também resultar da fusão de um buraco negro e de uma estrela de neutrões, mas não se sabe se tal evento produziria uma assinatura diferente em observações de raios-X, infravermelho, rádio e no visível.

Segundo Troja, as informações recolhidas durante o evento de 2016 não contêm tantos detalhes quanto as observações do evento LIGO. Mas a cobertura dessas primeiras horas – ausentes do registo do evento LIGO – revelou novas informações importantes sobre os estágios iniciais de uma quilonova. Por exemplo, a equipa observou pela primeira vez o novo objecto que permaneceu após a colisão, que não foi visível nos dados do evento LIGO.

“O remanescente pode ser uma estrela de neutrões hiper-massiva e altamente magnetizada, conhecida como magnetar, que sobreviveu à colisão e depois colapsou para um buraco negro,” disse Geoffrey Ryan, do Departamento de Astronomia da Universidade de Maryland e co-autor do artigo científico. “Isto é interessante, porque a teoria sugere que um magnetar devia retardar ou até interromper a produção de metais pesados, que é a principal fonte da assinatura de radiação infravermelha de uma quilonova. A nossa análise sugere que os metais pesados são, de alguma forma, capazes de escapar à influência da mitigação do objecto remanescente.”

Troja e colegas planeiam aplicar as lições aprendidas para reavaliar eventos passados, além de melhorar a sua abordagem para observações futuras. Vários eventos candidatos foram identificados com observações no visível, mas Troja está mais interessada em eventos com uma forte assinatura infravermelha – o indicador revelador da produção de metais pesados.

“O sinal infravermelho, muito brilhante, deste evento, provavelmente torna-o na quilonova mais evidente já observada no Universo distante,” acrescentou Troja. “Estou muito interessada em saber como as propriedades da quilonova mudam com progenitores e remanescentes finais diferentes. À medida que observamos mais destes eventos, podemos aprender que existem muitos tipos diferentes de quilonovas na mesma família, como é o caso dos muitos tipos diferentes de super-novas. É muito empolgante moldar o nosso conhecimento em tempo real.”

Astronomia On-line
30 de Agosto de 2019