2616: Investigação da NASA fornece novas informações sobre a perda atmosférica de Marte

CIÊNCIA

Esta impressão de artista ilustra o passado ambiente de Marte (direita) – que se pensa ter tido água líquida e uma atmosfera mais espessa – vs. o ambiente frio e seco visto em Marte hoje (esquerda).
Crédito: Centro de Voo Espacial Goddard da NASA

De acordo com novas observações de cientistas financiados pela NASA, um importante rastreador usado para estimar a quantidade de atmosfera perdida por Marte pode mudar dependendo da hora do dia e da temperatura da superfície do Planeta Vermelho. As medições anteriores deste rastreador – isótopos de oxigénio – discordam significativamente. Uma medição precisa deste rastreador é importante para estimar quanta atmosfera Marte já teve antes de se perder, o que revela se pode ter sido habitável e como teriam sido as condições.

Marte é hoje um deserto frio e inóspito, mas características como leitos secos de rio e minerais que só se formam na presença de água líquida indicam que, há muito tempo atrás, teve uma atmosfera espessa que retinha calor suficiente para que a água líquida – um ingrediente necessário para a vida – corresse à superfície. Segundo resultados de missões da NASA como a MAVEN e o rover Curiosity, indo até às missões Viking em 1976, parece que Marte perdeu grande parte da sua atmosfera ao longo de milhares de milhões de anos, transformando o seu clima de um que pode ter sustentado vida para o ambiente seco e frio do presente.

No entanto, permanecem muitos mistérios sobre a antiga atmosfera do Planeta Vermelho. “Sabemos que Marte tinha mais atmosfera. Sabemos que tinha água corrente. Além disso, não temos uma boa estimativa das condições – quão parecido com a Terra era o ambiente marciano? Durante quanto tempo?”, disse Timothy Livengood da Universidade de Maryland em College Park, EUA, e do Centro de Voo Espacial Goddard da NASA em Greenbelt, no mesmo estado norte-americano. Livengood é o autor principal de um artigo sobre esta investigação publicado dia 1 de Agosto na revista Icarus.

Uma maneira de estimar a espessura da atmosfera original de Marte é observando os isótopos de oxigénio. Os isótopos são versões de um elemento com massa diferente devido ao número de neutrões no núcleo atómico. Os isótopos mais leves escapam para o espaço mais rapidamente do que os isótopos mais pesados, de modo que a atmosfera que permanece no planeta é gradualmente enriquecida com isótopos mais pesados. Neste caso, Marte é enriquecido em comparação com a Terra no que toca ao isótopo mais pesado de oxigénio, 18O, vs. o mais leve e muito mais comum 16O. A quantidade relativa medida de cada isótopo pode ser usada para estimar quanto mais atmosfera havia no passado de Marte, em combinação com uma estimativa de quão mais depressa o isótopo 16O escapa, e assumindo que a quantidade relativa de cada isótopo na Terra e Marte já foi semelhante.

O problema é que as medições da quantidade do isótopo 18O em comparação com o 16O em Marte, a proporção 18O/16O, não têm sido consistentes. Diferentes missões mediram diferentes proporções, o que resulta em diferentes entendimentos da antiga atmosfera marciana. O novo resultado fornece uma possível maneira de resolver esta discrepância, mostrando que a proporção pode mudar durante o dia marciano. “Medições anteriores em Marte ou na Terra obtiveram uma variedade de valores diferentes para o rácio isotópico,” disse Livengood. “As nossas são as primeiras medições a usar um único método, de maneira que mostram que a proporção realmente varia num único dia, em vez de comparações entre elementos independentes. Nas nossas medições, a proporção de isótopos varia entre cerca de 9% esgotado em isótopos pesados ao meio-dia marciano a cerca de 8% enriquecido em isótopos pesados por volta das 13:30, em comparação com os rácios isotópicos normais para o oxigénio da Terra.”

Esta gama de rácios isotópicos é consistente com as outras medições relatadas. “As nossas medições sugerem que todo o trabalho anterior pode ter sido feito correctamente, mas discorda porque este aspecto da atmosfera é mais complexo do que pensávamos,” explicou Livengood. “Dependendo da posição marciana onde a medição foi feita, e da hora do dia em Marte, é possível obter valores diferentes.”

A equipa pensa que a mudança nas proporções ao longo do dia é uma ocorrência rotineira devido à temperatura do solo, no qual as moléculas isotopicamente mais pesadas “colam-se” mais aos grãos superficiais e frios à noite do que os isótopos mais leves, e depois são libertados (desabsorção térmica) à medida que a superfície aquece durante o dia.

Dado que a atmosfera marciana é principalmente dióxido de carbono (CO2), o que a equipa realmente observou foram isótopos de oxigénio ligados a átomos de carbono na molécula de CO2. Eles fizeram as suas observações da atmosfera marciana com o IRTF (Infrared Telescope Facility) da NASA em Mauna Kea, Hawaii, usando o HIPWAC (Heterodyne Instrument for Planetary Winds and Composition) desenvolvido em Goddard. “Ao tentar entender a ampla dispersão nas taxas estimadas de isótopos que recuperámos das observações, percebemos que estavam correlacionadas com a temperatura da superfície que também obtivemos,” acrescentou Livengood. “Foi este conhecimento que nos colocou neste caminho.”

O novo trabalho vai ajudar os cientistas a refinar as suas estimativas da antiga atmosfera marciana. Como as medições podem agora ser entendidas como consistentes com os resultados de tais processos nas atmosferas de outros planetas, isto significa que estão no caminho certo para entender como o clima marciano mudou. “Isto mostra que a perda atmosférica ocorreu por processos que mais ou menos entendemos,” realçou Livengood. “Os detalhes críticos ainda precisam de ser trabalhados, mas nós não precisamos de invocar processos exóticos que podem resultar na remoção de CO2 sem alterar as taxas de isótopos, ou na alteração de apenas algumas taxas de outros elementos.”

Astronomia On-line
10 de Setembro de 2019

 

2499: Pela primeira vez, astrónomos encontraram um exoplaneta sem atmosfera

CIÊNCIA

Hubble / ESA

Nos últimos anos, investigadores descobriram um tesouro de planetas rochosos que orbitam anãs vermelhas, pequenas estrelas com um raio 60% menor que o nosso Sol.

Apesar do seu tamanho, estas estrelas são muito activas – tanto que muitos acreditam que os planetas em redor delas podem ter dificuldades em manter uma atmosfera. Agora, uma nova investigação publicada na revista especializada Nature reforça essa ideia.

Uma equipa de astrónomos liderada por Harvard analisou 100 horas de observações do exoplaneta LHS 3844b para identificar sinais de uma atmosfera. Os cientistas descartaram uma atmosfera densa – 10 vezes da que temos na Terra – e uma atmosfera menos densa. O modelo que melhor se ajusta aos dados é um planeta rochoso estéril, semelhante ao Mercúrio, mas com um dia mais quente com cerca de 770°C de temperatura.

“Esta é a primeira vez que conseguimos dizer conclusivamente se um exoplaneta terrestre tem uma atmosfera ou não”, disse a principal autora do estudo, Laura Kreidberg, do Clay for the Center for Astrophysics, de Harvard e Smithsonian, disse à IFLScience.

O planeta tem um raio de cerca de 1,3 vezes o da própria Terra e orbita uma anã vermelha chamada LHS 3844, localizada a 48 anos-luz de distância, na constelação de Indus no céu do sul. Foi um dos primeiros exoplanetas descobertos pela Transiting Exoplanet Survey Satellite (TESS) da NASA, depois de lançado no ano passado.

O planeta orbita a estrela em 11 horas, a apenas 10 milhões de quilómetros de distância dela. Isto é cerca de 7% da distância entre a Terra e o Sol. Mesmo que a sua estrela seja muito mais fraca do que o nosso Sol, recebe muito mais radiação.

A questão agora é se esta nova investigação é aplicável a planetas semelhantes no tamanho da Terra, como Proxima b ou os planetas TRAPPIST-1, que foram descobertos nos últimos anos. Estes planetas estão mais longe das suas estrelas do que o LHS 3844b. Por serem menos irradiados, podem conseguir manter a sua atmosfera contra a erosão do vento estelar.

“É difícil generalizar a partir de uma amostra de um. Eu diria que o nosso resultado confirma previsões teóricas de que os planetas terrestres quentes em torno dos M-anões têm dificuldade em manter as suas atmosferas”, explicou Kreidberg. “Precisamos de fazer essa medição em mais planetas, por isso podemos aproveitar o grande tamanho da amostra de exoplanetas para avaliar com que frequência e sob quais circunstâncias mantêm as suas atmosferas”.

O estudo da falta de atmosfera deste planeta foi realizado com o observatório infravermelho da NASA Spitzer, cuja missão está prestes a terminar.

O seu avançado substituto, o Telescópio Espacial James Webb (JWST), estará no espaço em 2021. Estimativas recentes sugerem que a excelente capacidade do JWST levará a observações rápidas de atmosferas do planeta do tamanho da Terra. Um estudo também sugere que pode ser capaz de caracterizar todas as atmosferas dos sete planetas no sistema TRAPPIST-1 em apenas um ano.

ZAP //

Por ZAP
23 Agosto, 2019

 

2279: Hubble e Spitzer revelam atmosfera de planeta de tamanho médio

Esta impressão de artista mostra a estrutura interna teórica do exoplaneta GJ 3470 b. É totalmente diferente de qualquer planeta do Sistema Solar. Com 12,6 massas terrestres, o planeta é mais massivo do que a Terra mas menos massivo do que Neptuno. E, ao contrário de Neptuno, que está a 4,5 mil milhões de quilómetros do Sol, GJ 3470 b pode ter sido formado muito perto da sua estrela anã vermelha, como um objecto seco e rochoso. Atraíu, depois, gravitacionalmente, hidrogénio e hélio de um disco protoplanetário para formar uma espessa atmosfera. O disco dissipou-se há milhares de milhões de anos e o planeta parou de crescer. A ilustração de baixo mostra o aspecto do disco. Através das observações com os telescópios espaciais Hubble e Spitzer da NASA, os cientistas conseguiram analisar quimicamente a composição da atmosfera muito limpa e profunda de GJ 3470 b, fornecendo pistas sobre as origens do planeta. Existem, na Via Láctea, muitos planetas com esta massa.
Crédito: NASA, ESA e L. Hustak (STScI)

Dois telescópios espaciais da NASA uniram forças para identificar, pela primeira vez, a “impressão digital” química detalhada de um planeta com tamanho intermédio entre o da Terra e o de Neptuno. Não existe nenhum planeta como este no nosso Sistema Solar, mas são comuns em torno de outras estrelas.

O planeta, Gliese 3470 b (também conhecido como GJ 3470 b), pode ser um cruzamento entre a Terra e Neptuno, com um grande núcleo rochoso enterrado sob uma profunda atmosfera de hidrogénio e hélio. Com 12,6 massas terrestres, o planeta é mais massivo do que a Terra, mas menos massivo que Neptuno (que tem mais de 17 massas terrestres).

Muitos mundos semelhantes já foram descobertos pelo observatório espacial Kepler da NASA, cuja missão terminou em 2018. De facto, 80% dos planetas na nossa Galáxia podem cair nesta gama de massas. No entanto, os astrónomos nunca foram capazes de compreender a natureza química de tal planeta. Até agora.

Ao fazerem um inventário do conteúdo da atmosfera de GJ 3470 b, os astrónomos conseguiram descobrir pistas sobre a natureza e origem do planeta.

“Esta é uma grande descoberta, da perspectiva da formação planetária. O planeta orbita muito perto da estrela e é bem menos massivo do que Júpiter – que tem 318 vezes a massa da Terra – mas conseguiu acumular a atmosfera primordial de hidrogénio/hélio que em grande não está ‘poluída’ por elementos mais pesados,” comentou Björn Benneke da Universidade de Montreal, no Canadá. “Não temos nada assim no Sistema Solar e é isso que o torna tão impressionante.”

Os astrónomos recrutaram as capacidades combinadas de vários comprimentos de onda dos telescópios espaciais Hubble e Spitzer da NASA para fazer um estudo inédito da atmosfera de GJ 3470 b.

Tal foi conseguido medindo a absorção da luz estelar à medida que o planeta passava em frente (ou “transitava”) da sua estrela e a perda da luz reflectida do planeta quando passava por trás (eclipse) da estrela. Os telescópios espaciais observaram 12 trânsitos e 20 eclipses. A ciência de analisar as impressões digitais químicas com base na luz é chamada “espectroscopia”.

“Pela primeira vez, temos uma assinatura espectroscópica de tal mundo,” disse Benneke. Mas tem muitas dúvidas quanto à sua classificação: deverá ser chamado de “super-Terra” ou “sub-Neptuno?” Ou talvez outro nome?

Por sorte, a atmosfera de GJ 3470 b mostrou-se na maior parte limpa, com apenas neblinas finas, permitindo que os cientistas examinassem profundamente a atmosfera.

“Esperávamos uma atmosfera fortemente enriquecida com elementos mais pesados, como oxigénio e carbono, que formam vapor de água e metano abundantes, de modo idêntico ao que vemos em Neptuno,” explicou Benneke. “Em vez disso, encontramos uma atmosfera tão pobre em elementos pesados que a sua composição se assemelha à composição rica em hidrogénio e hélio do Sol.”

Pensa-se que outros exoplanetas, chamados “Júpiteres quentes”, se formem longe das suas estrelas e, com o tempo, migrem para muito mais perto. Mas este planeta parece ter sido formado exactamente onde está hoje, acrescentou Benneke.

A explicação mais plausível, segundo Benneke, é que GJ 3470 b nasceu precariamente perto da sua estrela anã vermelha, que tem mais ou menos metade da massa do nosso Sol. Ele teoriza que, essencialmente, começou como uma rocha seca e rapidamente acretou hidrogénio de um disco primordial de gás quando a sua estrela era ainda muito jovem. Ao disco chamamos “disco protoplanetário”.

“Estamos a ver um objeto que foi capaz de acumular hidrogénio a partir do disco protoplanetário, mas não fugiu para se tornar um Júpiter quente,” salientou Benneke. “Este é um regime intrigante.”

Uma explicação é que o disco se dissipou antes que o planeta pudesse aumentar ainda mais. “O planeta ficou preso sendo um sub-Neptuno,” disse Benneke.

O Telescópio Espacial James Webb da NASA será capaz de investigar ainda mais profundamente a atmosfera de GJ 3470 b, graças à sua sensibilidade sem precedentes no infravermelho. Os novos resultados já suscitaram grande interesse por parte de equipas norte-americanas e canadianas que estão a desenvolver os instrumentos do Webb. As equipas vão observar os trânsitos e os eclipses de GJ 3470 b no visível, onde as neblinas atmosféricas se tornam cada vez mais transparentes.

Astronomia On-line
5 de Julho de 2019

[vasaioqrcode]

 

2048: Há um enorme buraco na atmosfera de Marte (e a água está a escapar)

NASA

Uma vez a cada dois anos, um gigantesco buraco abres-e na atmosfera marciana, deixando escapar para o Espaço uma parte das escassas reservas de água do Planeta Vermelho.

O estranho mecanismo meteorológico, nunca visto na Terra, foi descoberto por uma equipa internacional de cientistas planetários, liderada por Dmitry Shaposhnikov, do Instituto de Física e Tecnologia de Moscovo, na Rússia. Os investigadores acreditam que é o mesmo mecanismo, ainda em andamento, que causou a perda dos antigos e poderosos sistemas oceânicos e fluviais de Marte, há milhões de anos.

Durante anos, cientistas terrestres observaram com surpresa a presença de vapor de água na atmosfera marciana, bem como a sua estranha “migração” para os pólos do planeta. Mas até agora não tinha sido possível encontrar uma explicação para esses fenómenos. Entender como o ciclo da água em Marte funciona ajudaria a entender como terá passado de mares e rios para quase completamente secos hoje.

A presença de vapor de água na atmosfera superior de Marte é especialmente desconcertante, já que a sua camada intermediária, muito fria, deve interromper completamente o ciclo da água, de acordo com a ABC.

A atmosfera marciana estende-se a aproximadamente 160 quilómetros da superfície. No meio dessa altitude, é composto por gases em um meio extraordinariamente frio – suficientemente frio para congelar o vapor de água e impedir que escape. Ainda assim, o vapor de água consegue passar e atinge as mais altas camadas atmosféricas, onde a radiação ultravioleta do Sol corta as ligações moleculares entre o oxigénio e o hidrogénio, fazendo com que o último se perca irremediavelmente no espaço.

Nem toda a água consegue escapar do planeta. A parte que não o atinge e cuja viagem é interrompida pela camada atmosférica gelada intermediária, flutua a essa altitude em direcção aos pólos do planeta, onde arrefece e cai para a superfície.

A questão é: como é que uma parte da água atravessa a barreira congelada “intransponível”? A resposta, de acordo com as simulações realizadas pelos investigadores, cujo estudo foi publicado na revista Advancing Earth and Science Space tem a ver com uma série de processos atmosféricos que são exclusivos do Planeta Vermelho.

Na Terra, os Verões dos hemisférios norte e sul são muito semelhantes. Mas em Marte, com uma órbita muito mais excêntrica, os dois Verões são muito diferentes. Devido a essa excentricidade, a órbita está muito mais próxima do Sol durante os Verões no hemisfério sul, de modo que são muito mais quentes que os do hemisfério norte.

Quando isso acontece – a cada dois anos – nas simulações, uma “janela” abre-se na atmosfera média de Marte (entre 60 e 90 quilómetros de altitude), um “buraco” real que permite o vapor de água passe e escape para as camadas superiores. Noutras épocas do ano, a falta de luz solar suficiente faz com que o ciclo da água em Marte seja interrompido quase completamente.

Outra grande diferença entre Marte e a Terra é que a sua superfície é frequentemente varrida por gigantescas tempestades de poeira que, bloqueando a luz do sol, arrefecem o planeta. Mas a luz que não alcança a superfície por causa da poeira atinge a sua atmosfera, aquecendo-a e criando as condições certas para a água se movimentar.

Sob as condições extremas de uma tempestade global de poeira, as simulações dos cientistas mostraram que pequenas partículas de gelo se formam ao redor das partículas. Essas partículas de luz flutuam para a atmosfera superior mais facilmente do que a água. É precisamente durante as tempestades que mais água se move do solo para a atmosfera. Os cientistas descobriram que tempestades de areia podem demorar ainda mais água do que os Verões do hemisfério sul.

ZAP //

Por ZAP
25 Maio, 2019

1734: Um meteorito explodiu na atmosfera da Terra. Mas ninguém reparou

NASA detectou a enorme bola de fogo que aconteceu em Dezembro. Mas a explosão, que teve lugar sobre o mar de Bering, passou quase despercebida, apesar de ter sido a segunda maior em 30 anos.

Quando o meteorito explodiu na atmosfera terrestre sobre o mar de Bering, junto à península russa de Kamchatka, libertou dez vezes mais energia do que a bomba atómica lançada no final da II Guerra Mundial sobre a cidade japonesa de Hiroxima.

A enorme explosão, que aconteceu em Dezembro, foi detectada pela NASA, que só agora a divulgou. Mas passou quase despercebida, apesar de ter sido a segunda maior dos últimos 30 anos e a maior desde que uma bola de fogo atravessou o céu sobre Chelyabinsk, na Rússia, há seis anos.

Veja aqui o vídeo da explosão de 2013:

Segundo Lindley Johnson, responsável pela defesa planetária da NASA, explicou à BBC que este tipo de explosão em meteoritos na atmosfera da Terra só ocorre em média duas a três vezes num século.

Era meio-dia de dia 18 de Dezembro quando um meteorito com vários metros de comprimento entra na atmosfera da Terra a uma velocidade de 32 quilómetros por segundo. E explode a 25,6 km de distância da superfície terrestre, com um impacto energético de 173 quilo-toneladas.

De acordo com os cientistas da NASA a energia libertada foi apenas 40% da libertada na explosão sobre Chelyabinsk, mas o facto de ter acontecido sobre o mar fez com que não tivesse as mesmas consequências e ficasse de fora das notícias.

A explosão foi captada pelos satélites militares em final do ano e a NASA foi informada do ocorrido pela Força Aérea americana.

Os cientistas estimam que todos os dias caiam na Terra 48,5 toneladas de matéria meteórica. A quase totalidade desfaz-se em poeira ao entrar na atmosfera terrestre. Quando este fenómeno aumenta acontecem as chamadas chuvas de meteoritos.

Diário de Notícias
18 Março 2019 — 10:30

[vasaioqrcode]

 

Atmosfera da Terra estende-se até à Lua – e além

Onde a nossa atmosfera se funde com o espaço exterior, há uma nuvem de átomos de hidrogénio chamada geo-coroa.
Uma descoberta recente com base em observações da SOHO (Solar and Heliospheric Observatory) da ESA/NASA mostra que a camada gasosa que envolve a Terra alcança 630.000 km de distância, ou 50 vezes o diâmetro do nosso planeta.
Nota: a ilustração não está à escala.
Crédito: ESA

A parte mais externa da atmosfera do nosso planeta estende-se bem para lá da órbita lunar – quase o dobro da distância da Lua.

Uma descoberta recente com base em observações da SOHO (Solar and Heliospheric Observatory) da ESA/NASA mostra que a camada gasosa que envolve a Terra alcança 630.000 km de distância, ou 50 vezes o diâmetro do nosso planeta.

“A Lua voa através da atmosfera da Terra,” diz Igor Baliukin do Instituto de Pesquisa Espacial da Rússia, autor principal do artigo que divulga os resultados.

“Nós não sabíamos disto até que ‘tirámos o pó’ a observações feitas há mais de duas décadas pela sonda SOHO.”

Onde a nossa atmosfera se funde com o espaço exterior, há uma nuvem de átomos de hidrogénio chamada geo-coroa. Um dos instrumentos da nave, SWAN, usou os seus sensores sensíveis para traçar a assinatura do hidrogénio e detectar com precisão quão longe estão os limites da geo-coroa.

Estas observações só podiam ser feitas a certas épocas do ano, quando a Terra e a sua geo-coroa aparecessem no campo de visão do SWAN

Para planetas com hidrogénio nas suas exosferas, o vapor de água é frequentemente visto mais próximo da sua superfície. Este é o caso da Terra, Marte e Vénus.

“Isto é especialmente interessante quando se procura planetas com potenciais reservatórios de água para lá do nosso Sistema Solar,” explica Jean-Loup Bertaux, co-autor e investigador principal do SWAN.

O primeiro telescópio na Lua, colocado pelos astronautas da Apollo 16 em 1972, capturou uma imagem evocativa da geo-coroa em redor da Terra e brilhando intensamente no ultravioleta.

“Naquela época, os astronautas à superfície lunar não sabiam que estavam realmente inseridos nos arredores da geo-coroa,” explica Jean-Loup.

Nuvem de hidrogénio

O Sol interage com os átomos de hidrogénio através de um determinado comprimento de onda ultravioleta chamado Lyman-alpha, que os átomos podem absorver e emitir. Dado que este tipo de radiação é absorvida pela atmosfera da Terra, só pode ser observada do espaço.

Graças à sua célula de absorção de hidrogénio, o instrumento SWAN pôde medir selectivamente a luz Lyman-alpha da geo-coroa e descartar átomos de hidrogénio mais longe no espaço interplanetário.

O novo estudo revelou que a luz do Sol comprime átomos de hidrogénio na geo-coroa no lado diurno da Terra, e também produz uma região de densidade reforçada no lado nocturno. A região mais densa do hidrogénio, no lado diurno, é ainda assim bastante esparsa, com apenas 70 átomos por centímetro cúbico 60.000 km acima da superfície da Terra e cerca de 0,2 átomos à distância da Lua.

“Na Terra, chamaríamos a isto vácuo, de modo que esta fonte extra de hidrogénio não é suficientemente significativa para facilitar a exploração espacial,” diz Igor.

A boa notícia é que estas partículas não representam uma ameaça para os viajantes espaciais em futuras missões tripuladas que orbitem a Lua.

“Há também radiação ultravioleta associada à geo-coroa, pois os átomos de hidrogénio espalham a luz solar em todas as direcções, mas o impacto sobre os astronautas em órbita lunar seria insignificante em comparação com a principal fonte de radiação – o Sol,” acrescenta Jean-Loup Bertaux.

Do lado negativo, a geo-coroa da Terra pode interferir com observações astronómicas futuras realizadas nas proximidades da Lua.

“Os telescópios espaciais que observam o céu no ultravioleta, para estudar a composição química de estrelas e galáxias, precisariam de levar isto em conta,” realça Jean-Loup.

O poder dos arquivos

Lançado em Dezembro de 1995, o observatório espacial SOHO tem vindo a estudar o Sol, desde o seu núcleo profundo até à coroa externa e vento solar, há mais de duas décadas. O satélite orbita no primeiro ponto de Lagrange (L1), a cerca de 1,5 milhões de quilómetros da Terra em direcção ao Sol.

Esta posição é um bom ponto de observação para observar a geo-coroa de fora. O instrumento SWAN, da SOHO, observou a Terra e a sua atmosfera estendida em três ocasiões entre 1996 e 1998.

A equipa de investigação de Jean-Loup e Igor, na Rússia, decidiu recuperar este conjunto de dados dos arquivos para análise posterior. Estas vistas únicas de toda a geo-coroa, pela SOHO, estão agora a lançar luz sobre a atmosfera da Terra.

“Os dados arquivados há muitos anos podem muitas vezes ser explorados para novas ciências,” diz Bernhard Fleck, cientista do projecto SOHO da ESA. “Esta descoberta destaca o valor dos dados recolhidos há mais de 20 anos e o excepcional desempenho da SOHO.”

Astronomia On-line
22 de Fevereiro de 2019

[vasaioqrcode]

 

1540: Revelado o segredo da misteriosa atmosfera de Titã, a lua de Saturno

IPGP/Labex UnivEarthS/Universidade de Paris Diderot – C. Epitalon & S. Rodriguez

Um novo estudo do Centro de Engenharia e Ciência Espacial resolve um dos maiores mistérios de Titã, a lua de Saturno: a origem da actual atmosfera de nitrogénio.

O trabalho, publicado na revista Astrophysical Journal, sugere que o interior de Titã é provavelmente quente e o nitrogénio do material orgânico no interior da lua pode contribuir em 50% para a sua atmosfera – rica em nitrogénio.

“Titã é um lua muito interessante porque tem uma atmosfera muito espessa, o que a torna única em relação às outras luas no nosso Sistema Solar”, disse Kelly Miller, investigadora no Centro de Engenharia e Ciência Espacial.

“É também o único corpo o Sistema Solar, além da Terra, que tem largas quantidades de líquido na superfície. Titã, no entanto, tem hidrocarbonetos líquidos em vez de água. Muita química orgânica, sem dúvida, está a acontecer em Titã, por isso é uma fonte inegável de curiosidade”, referiu.

A atmosfera da maior lua de Saturno é extremamente densa, ainda mais espessa que a atmosfera da Terra, e é composta principalmente de gás nitrogénio. “Como Titã é a única lua no nosso Sistema Solar com uma atmosfera substancial, os cientistas perguntam-se há muito tempo qual é a sua fonte”, disse Miller.

“A principal teoria é que o gelo de amónia dos cometas foi convertido, por impactos ou fotoquímica, em nitrogénio para formar a atmosfera de Titã. Embora isto ainda possa ser um processo importante, negligencia os efeitos do que hoje sabemos ser uma parcela substancial dos cometas: material orgânico complexo”.

Outro aspecto estranho da atmosfera de Titã é que também é cerca de 5% de metano, que reage rapidamente para formar compostos orgânicos que caem gradualmente para a superfície. Como resultado, o metano atmosférico teria de ser reabastecido de alguma forma ou, estão, este período de tempo actual é simplesmente uma era única para Titã.

O estudo foi estimulado por dados da sonda Rosetta, da ESA, uma sonda que estudou o cometa 67P/Churyumov-Gerasimenko e fez a descoberta surpreendente de que o cometa era aproximadamente metade do gelo, um quarto de rocha e um quarto de matéria orgânica. “Cometas e corpos primitivos no Sistema Solar externo são realmente interessantes porque são considerados blocos de construção remanescentes do Sistema Solar”, disse Miller.

“Estes pequenos corpos poderiam ser incorporados em corpos maiores, como Titã, e o material rochoso denso e rico em orgânicos poderia ser encontrado no núcleo”.

Para estudar o mistério de Titã, Miller e co-autores combinaram dados existentes de material orgânico encontrado em meteoritos com modelos térmicos do interior da Lua para ver quanto material gasoso poderia ser produzido e se era comparável à atmosfera actual.

Seguindo a regra padrão de “Se cozinhar algo, produzirá gases”, os cientistas descobriram que aproximadamente metade da atmosfera de nitrogénio, e potencialmente todo o metano, poderia resultar do “cozinhado” destes compostos orgânicos que foram incorporados em Titã no início da sua vida.

ZAP // Sci News

Por ZAP
31 Janeiro, 2019

[vasaioqrcode]

 

1475: Há uma misteriosa espiral na atmosfera de Vénus

(CC0) GooKingSword / Pixabay

A nave espacial não tripulada japonesa Akatsuki encontrou gigantescas estruturas espirais na atmosfera de Vénus, formadas por ventos polares e pela rápida rotação do planeta.

A atmosfera de Vénus ganha atenção de astrónomos há quase 60 anos, desde estudos de sondas soviéticas e americanas. Investigadores descobriram que a capa protectora de Vénus é completamente diferente da do nosso planeta.

Por exemplo, a atmosfera de Vénus é extremamente densa e a pressão na sua superfície é quase cem vezes maior do que na Terra. A alta densidade faz com que o dióxido de carbono, que corresponde a uns 95% da massa do ar de Vénus, se comporte como um fluído exótico, e também ocasiona uma série de efeitos incomuns.

Em particular, a atmosfera deste planeta gira 60 vezes mais rápido do que o próprio planeta, provocando ventos poderosos de 500 quilómetros por hora. Além disso, o dia em Vénus é mais longo do que um ano no planeta – 240 e 224 dias terrestres, respectivamente.

Propriedades atípicas da camada de ar de Vénus dão origem a misteriosas estruturas gigantes, indecifráveis até então por investigadores. A letra gigante Y, que foi descoberta no início dos anos 60, e uma onda vertical de dez mil quilómetros de comprimento são alguns detalhes de Vénus que até agora não foram decifrados.

Hiroki Kashimura, da Universidade de Kobe, e outros membros do grupo científico Akatsuki descobriram outra estrutura muito estranha através de imagens das camadas inferiores das nuvens de Vénus, que foram fotografadas com câmaras de infravermelhos. As imagens foram publicadas na revista Nature este mês.

Estrutura espiral na atmosfera de Vénus, descoberta pela nave Akatsuki

Os cientistas não estavam muito interessados nas nuvens de ácido sulfúrico e, sim, na localização, na densidade e noutras características que mostram a direcção e velocidade dos ventos na atmosfera de Vénus.

Tais observações deveriam ajudá-los a descobrir o que acontece por trás das nuvens e a entender que processos climáticos estão a ocorrer na atmosfera do planeta misterioso.

Em vez disso, depararam-se com outro enigma. Combinando as imagens dos últimos três anos, astrónomos japoneses descobriram que as regiões circumpolares e temperadas da atmosfera de Vénus possuem espirais gigantes, formadas por correntes rápidas de ar. O comprimento de cada “cauda” da espiral é de cerca de dez mil quilómetros, já o diâmetro delas corresponde a centenas de milhares de quilómetros.

Para entender melhor, a equipa pediu ajuda a colegas para a criação de modelos climáticos de Vénus baseados nos dados recebidos da Akatsuki e de outras naves. Os cálculos já tinham indicado a existência de espirais na atmosfera de Vénus, mas não houve oportunidade de comprovação até agora.

Com os cálculos, os astrónomos entenderam como surgem as misteriosas espirais. Constatou-se que são geradas por dois fenómenos conhecidos por terráqueos: ventos polares de alta altitude, que coordenam o clima no nosso planeta, e a força inercial de Coriolis gerada pela rotação da Terra.

Curiosamente, os cálculos demonstram que as espirais deveriam existir na atmosfera de Vénus constantemente, mas na realidade não é assim: apareceram e desapareceram periodicamente e a causa ainda é desconhecida.

ZAP // Sputnik

Por SN
14 Janeiro, 2019

[vasaioqrcode]

 

1101: Surpresa. Atmosfera de Saturno é alimentada pelos seus anéis

Primeiros estudos sobre as derradeiras observações da sonda Cassini, feitas há um ano, antes de ela se despenhar na atmosfera do planeta, mostram um mundo ainda cheio de mistérios. Resultados são publicados na Science

Saturno vista pela Cassini

Foto NASA/JPL-Caltech

Um ano depois do mergulho da Cassini na densa atmosfera de Saturno, surgem agora os primeiros estudos com base nas últimas observações que a sonda fez e enviou para Terra durante os momentos finais da sua missão – e da sua existência. E há novidades para contar. Entre elas, a da estreita, e até agora insuspeita, interacção entre o anel D, o mais próximo da superfície do planeta (os anéis de Saturno não são um contínuo, mas uma sucessão deles), e a sua atmosfera.

No estudo do último sopro da Cassini, os cientistas constataram que as partículas e elementos químicos presentes no anel D, como o metano, o dióxido de carbono ou o azoto estão constantemente “a cair” do anel para alimentar a atmosfera saturniana. Além disso, o anel D, justamente, contém um volume surpreendente de elementos orgânicos que também fazem aquele percurso anel-atmosfera.

A presença de tantos elementos orgânicos no anel interno de Saturno terá a ver com a passagem recente de um cometa, por ali, estimam os cientistas. Como é sabido, os núcleos destes astros viajantes são ricos em moléculas orgânicas, que são essenciais à existência da vida, tal como a conhecemos na Terra – existe até uma teoria de a vida é transportada através do espaço pelos cometas e que, por isso, deverá existir em muitos outros mundos, para além do nosso. As observações da Cassini mostraram, aliás, que a lua Encélado, de Saturno, é um dos mundos dos sistema solar onde existem essas moléculas necessárias à vida.

Com estes novos dados, Saturno revela-se um mundo ainda mais complexo e fascinante,

“O que percebemos é que há uma verdadeira cascata de elementos a cair do anel”, afirma Hunter Waite, que liderou o grupo que fez esse estudo sobre a relação entre o anel D e a atmosfera de Saturno, um dos seis que hoje publicado na revista Science e que, em conjunto, avaliam os últimos dados enviados pela Cassini, a 15 de Setembro do ano passado, pouco antes de se desintegrar na atmosfera do planeta.

Os anéis são maioritariamente feitos de pedaços de gelo e de poeiras, além daqueles elementos químicos. Na atmosfera, entre os mais abundantes, estão o hidrogénio, a água ou ainda o butano e o propano. “O tipo de elementos que usaríamos para fazer um grelhado no quintal”, graceja o astrónomo Kelly Miller, co-autor do estudo.

Um campo magnético diferente

Além dos estudo da atmosfera e dos anéis, que foram observados pela Cassini com uma proximidade inédita, a sonda registou ainda dados sobre o campo magnético do planeta e captou imagens das suas auroras boreais. E também aqui há novidades, já que os dados deixam antever ali um processo de geração do campo magnético que parece muito distinto do que acontece na Terra.

As observações sugerem que o campo magnético de Saturno é produzido por um complexo sistema de camadas no interior do planeta, com uma cintura de radiação adicional localizada no interior dos seus inconfundíveis anéis.

“Observamos a assinatura avassaladora de campos magnéticos em Saturno relacionados com os anéis, ou com padrões de vento na sua atmosfera”, descreve Gregory Hunt, físico do Imperial College de Londres, co-autor do estudo.

Sobre o muito que ainda não se sabe, e sobre os novos mistérios que estes dados fazer emergir, os cientistas não estão preocupados. “A missão da Cassini terminou há um ano, mas vamos continuar a olhar para os seus dados, que vão proporcionar-nos novas descobertas nos próximos anos”, garante Gregory Hunt.

Diário de Notícias
Filomena Naves
04 Outubro 2018 — 19:00

[vasaioqrcode]