3528: ALMA observa gás impactado por jactos jovens de buraco negro super-massivo

CIÊNCIA/ASTRONOMIA

Imagem reconstruida do aspecto de MG J0414+0534 caso os efeitos de lente gravitacional fossem “desligados”. As emissões da poeira e do gás ionizado em torno de um quasar podem ser vistas a vermelho. As emissões do gás monóxido de carbono são vistas a verde, que têm uma estrutura bipolar ao longo dos jatos.
Crédito: ALMA (ESO/NAOJ/NRAO), K. T. Inoue et al.

Usando o ALMA (Atacama Large Millimeter/submillimeter Array), os astrónomos obtiveram a primeira imagem de nuvens perturbadas de gás numa galáxia a 11 mil milhões de anos-luz de distância. A equipa descobriu que a perturbação é provocada por jactos jovens e poderosos libertados por um buraco negro super-massivo que reside no centro da galáxia hospedeira. Este resultado lançará luz sobre o mistério do processo evolutivo das galáxias no início do Universo.

É sabido que os buracos negros exercem uma forte atracção gravitacional na matéria circundante. No entanto, é menos conhecido que alguns buracos negros têm fluxos velozes de matéria ionizada, chamados jactos. Em algumas galáxias próximas, os jactos desenvolvidos expelem nuvens galácticas de gás, resultando na supressão de formação estelar. Portanto, para entender a evolução das galáxias, é crucial observar a interacção entre jactos de buracos negros e nuvens gasosas ao longo da história cósmica. No entanto, tem sido difícil obter evidências claras desta interacção, especialmente no início do Universo.

Para obter evidências tão claras, a equipa usou o ALMA para observar um objecto interessante conhecido como MG J0414+0534. Uma característica distintiva de MG J0414+0534 é que os caminhos que a sua luz percorre até à Terra são significativamente distorcidos pela gravidade de outra galáxia “lente” entre MG J0414+0534 e nós, provocando uma ampliação significativa.

“Esta distorção funciona como um ‘telescópio natural’ para permitir uma visão detalhada de objectos distantes,” diz Takeo Minezaki, professor da Universidade de Tóquio.

Outra característica é que MG J0414+0534 possui um buraco negro super-massivo com jactos bipolares no centro da galáxia hospedeira. A equipa conseguiu reconstruir a imagem “verdadeira” das nuvens gasosas, bem como dos jactos de MG J0414+0534, contabilidade cuidadosamente os efeitos gravitacionais exercidos pela galáxia “lente” interveniente.

“Combinando este telescópio cósmico e as observações de alta resolução do ALMA, obtivemos uma visão excepcionalmente nítida, que é 9000 vezes melhor do que a visão humana,” acrescenta Kouichiro Nakanishi, professor associado do projecto no NAOJ (National Astronomical Observatory of Japan)/SOKENDAI. “Com esta resolução extremamente alta, conseguimos obter a distribuição e o movimento nuvens gasosas em torno de jactos expelidos por um buraco negro super-massivo.”

Graças a uma resolução tão superior, a equipa descobriu que nuvens gasosas ao longo dos jactos têm movimentos violentos com velocidades de até 600 km/s, mostrando evidências claras de gás impactado. Além disso, descobriu-se que o tamanho das nuvens gasosas impactadas e dos jactos é muito menor do que o tamanho típico de uma galáxia com esta idade.

“Talvez estejamos a testemunhar a fase inicial da evolução dos jactos na galáxia,” diz Satoki Matsushita, investigador do Instituto de Astronomia e Astrofísica da Academia Sinica. “Pode ser tão cedo quanto algumas dezenas de milhares de anos após o lançamento dos jactos.”

“MG J0414+0534 é um exemplo excelente devido à jovem idade dos jatos,” sumariz Kaiki Inoue, professor na Universidade Kindai, Japão, e autor principal do artigo científico publicado na revista The Astrophysical Journal Letters. “Encontrámos evidências reveladoras da interacção significativa entre jatos e nuvens gasosas, mesmo na fase evolutiva inicial dos jactos. Acho que a nossa descoberta abrirá o caminho para uma melhor compreensão do processo evolutivo das galáxias no início do Universo.”

Astronomia On-line
31 de Março de 2020

 

spacenews

 

3516: Cometa interestelar Borisov está a desfazer-se

CIÊNCIA/ASTRONOMIA

Os astrónomos detectaram o cometa em Agosto de 2019 e estão a verificar agora que há evidências de que este se está a desfazer

As várias observações feitas pelos astrónomos ao cometa Borisov permitiram concluir que se tratava de um objecto vindo de fora do Sistema Solar e que estaria apenas de passagem. Agora, uma equipa de investigadores polacos fez duas observações e concluiu que o comportamento do cometa indicia que tem estado a ocorrer uma “fragmentação do núcleo”, descreve a publicação Space.com.

Ainda não foi confirmada qual a razão, mas está a ser equacionada a opção de que o fenómeno se deve a uma aproximação ao Sol. Já em Dezembro, os especialistas consideravam que as ‘razias’ ao Sol poderiam ter consequências semelhantes. O cometa interestelar é constituído por gelo e rochas, e as passagens próximas do astro-rei podem resultar nesta fragmentação que, ao que tudo indica, estará mesmo a acontecer.

A novidade da descoberta do Borisov prende-se com a antecedência com que este foi identificado. Durante mais de um ano, os astrónomos puderam acompanhar e estudar a sua viagem pelo nosso Sistema Solar.

Exame Informática
25.03.2020 às 14h12

 

spacenews

 

As estranhas órbitas dos discos planetários tipo-“Tatooine”

CIÊNCIA/ASTRONOMIA

Dois exemplos de discos proto-planetários alinhados e desalinhados em torno de estrelas binárias (discos circum-binários), observados com o ALMA. As órbitas das estrelas binárias foram acrescentadas para efeitos de claridade. Esquerda: no sistema estelar HD 98800 B, o disco está desalinhado com as estrelas do binário. As estrelas orbitam-se uma à outra (nesta imagem, na nossa direcção e na direcção contrária) em 315 dias. Direita: no sistema estelar AK Sco, o disco está em linha com a órbita das suas estrelas binárias. As estrelas orbitam-se uma à outra a cada 13,6 dias.
Crédito: ALMA (ESO/NAOJ/NRAO), I. Czekala e G. Kennedy; NRAO/AUI/NSF, S. Dagnello

Usando o ALMA (Atacama Large Millimeter/submillimeter Array), os astrónomos descobriram geometrias orbitais impressionantes em discos proto-planetários que rodeiam estrelas binárias. Embora os discos que orbitem os sistemas estelares duplos mais compactos partilhem quase o mesmo plano, os discos em torno de binários largos têm planos orbitais muito inclinados. Estes sistemas podem ensinar-nos mais sobre a formação planetária em ambientes complexos.

Ao longo das últimas duas décadas têm sido encontrados milhares de planetas em órbita de outras estrelas além do Sol. Alguns destes planetas orbitam duas estrelas, tal como o lar de Luke Skywalker, Tatooine (da saga “Star Wars”). Os planetas nascem em discos proto-planetários – temos agora observações maravilhosas destes discos graças ao ALMA – mas a maioria dos discos estudados até agora encontram-se em estrelas singulares. Os exoplanetas tipo-“Tatooine” formam-se em discos que rodeiam estrelas duplas, os chamados discos circum-binários.

O estudo dos locais de nascimento dos planetas “Tatooine” fornece uma oportunidade única de aprender como os planetas se formam em ambientes diferentes. Os astrónomos já sabem que as órbitas das estrelas binárias podem distorcer e inclinar o disco em seu redor, resultando num disco circum-binário desalinhado em relação ao plano orbital das suas estrelas hospedeiras. Por exemplo, num estudo de 2019 liderado por Grant Kennedy da Universidade de Warwick, no Reino Unido, o ALMA encontrou um disco circum-binário impressionante numa configuração polar.

“Com o nosso estudo, queríamos aprender mais sobre as geometrias típicas dos discos circum-binários,” disse o astrónomo Ian Czekala da Universidade da Califórnia em Berkeley, EUA. Czekala e a sua equipa usaram dados do ALMA para determinar o grau de alinhamento de dezanove discos proto-planetários em torno de estrelas binárias. “Os dados de alta resolução do ALMA foram críticos para o estudo de alguns dos mais pequenos e ténues discos circum-binários vistos até à data,” disse Czekala.

Os astrónomos compararam os dados do ALMA dos discos circum-binários com a dúzia de planetas tipo-“Tatooine” encontrados pelo telescópio espacial Kepler. Para sua surpresa, a equipa descobriu que o grau de desalinhamento entre as estrelas duplas e os seus discos circum-binários dependem fortemente do período orbital das estrelas hospedeiras. Quanto menor o período orbital da estrela binária, maior a probabilidade de hospedar um disco alinhado com a sua órbita. No entanto, os binários com períodos superiores a um mês geralmente hospedam discos desalinhados.

“Nós vemos uma clara sobreposição entre os discos pequenos, em órbita de binários compactos, e os planetas circum-binários encontrados com a missão Kepler,” disse Czekala. Dado que a missão primária do Kepler durou 4 anos, os astrónomos conseguiram descobrir planetas em torno de estrelas duplas que se orbitam uma à outra em menos de 40 dias. E todos estes planetas estavam alinhados com as suas órbitas estelares. Um mistério persistente era se haveriam muito planetas desalinhados que o Kepler teria dificuldade em encontrar. “Com o nosso estudo, sabemos agora que provavelmente não há uma grande população de planetas desalinhados que o Kepler falhou em descobrir, uma vez que os discos circum-binários em torno de binários compactos estão tipicamente alinhados com os seus hospedeiros estelares,” acrescentou Czekala.

Ainda assim, com base nesta descoberta, os astrónomos concluem que devem existir por aí planetas desalinhados em torno de estrelas duplas e que será uma população excitante de procurar com outros métodos de caça exoplanetária, como imagem directa e micro-lente (a missão Kepler da NASA usou o método de trânsito, que é uma das maneiras de encontrar um planeta).

Czekala agora quer descobrir por que razão existe uma correlação tão forte entre o (des)alinhamento do disco e o período orbital da estrela dupla. “Queremos usar as instalações existentes e futuras, como o ALMA e o VLA (Very Large Array) de próxima geração para estudar estruturas de disco em níveis requintados de precisão,” disse, “e tentar entender como os discos deformados ou inclinados afectam o ambiente de formação planetária e como isto pode influenciar a população de planetas que se formam dentro destes discos.”

“Esta investigação é um óptimo exemplo de como novas descobertas se baseiam em observações anteriores,” disse Joe Pesce, oficial da NSF (National Science Foundation) para o NRAO (National Radio Astronomy Observatory) e para o ALMA. “O discernimento das tendências na população de discos circum-binários só foi possível com base nos programas observacionais de arquivo realizados pela comunidade do ALMA em ciclos anteriores.”

Astronomia On-line
24 de Março de 2020

 

spacenews

 

3512: Asteróide potencialmente perigoso para Terra é captado em vídeo

CIÊNCIA/ASTRONOMIA

Chama-se (52768) 1998 OR2, é um asteróide numa órbita excêntrica, classificado como objecto próximo da Terra potencialmente perigoso. Faz parte do grupo Amor, isto é, é um asteróide que tem uma órbita entre Marte e a Terra. Além disso, o seu tamanho é imponente, tem cerca de 4 quilómetros de diâmetro. Descoberto em 24 de Julho de 1998, vai passar “perto” do nosso planeta no próximo dia 29 de Abril.

Como já havíamos falado, a NASA classifica-o como potencialmente perigoso e os astrónomos procuram-no para conseguirem filmar o corpo celeste. Assim, o vídeo conseguido traz alguma informação sobre este viajante do espaço.

NASA calculou 32 anos de órbita do (52768) 1998 OR2

O portal Space.com apresenta um vídeo captado no passado dia 16 de Março pelo astrónomo Gianluca Masi. Conforme podemos ver, as imagens captaram o (52768) 1998 OR2 no céu nocturno, quando estava a cerca de 30 milhões de quilómetros da Terra.

Como poderão ver, as imagens mostram em primeiro lugar como as trajectórias do asteróide (52768) 1998 OR2 e a Terra se aproximam de forma tão acentuada. Em seguida, a imagem é filtrada pelo telescópio com recurso a uma média de 10 exposições separadas por 180 segundos, em que o asteróide aparece como um ponto branco entre um mar de pequenas luzes estelares.

Tendo em conta os cálculos feitos até ao ano 2197, este asteróide não contempla qualquer perigoso para a Terra. Isto é, se nunca sair da sua trajectória, pelo menos até aquela data nenhuma assimulação de passagem o coloca em colisão com o nosso planeta.

Asteróide de visita à Terra no final de Abril

Este asteróide viaja a uma velocidade de cerca de 31 mil km/h. Na sua passagem mais perto de nós, voará a cerca de  7 milhões de quilómetros, ou 0,05 unidade astronómica (UA), algo como 16 vezes a distância entre a Terra e a Lua. Sim, é bem distante, mas este é um monstro que, em caso de colisão, faria estragos incalculáveis.

23 Mar 2020
spacenews

3496: Astrónomos usam bolor para mapear as maiores estruturas do Universo

CIÊNCIA/ASTRONOMIA

Os astrónomos desenvolveram um algoritmo de computador, inspirado pelo comportamento do mofo limoso, e testaram-no contra uma simulação de computador do crescimento de filamentos de matéria escura no Universo. Os cientistas então aplicaram o algoritmo de bolor limoso aos dados contendo as localizações de mais de 37.000 galáxias mapeadas pelo SDSS (Sloan Digital Sky Survey). O algoritmo produziu um mapa tridimensional da estrutura da teia cósmica subjacente.
Seguidamente, analisaram a luz de 350 quasares distantes catalogados no Arquivo Espectroscópico do Legado Hubble. Estas distantes lanternas cósmicas são os brilhantes núcleos alimentados a buracos negros de galáxias activas, cuja luz brilha através do espaço e através da teia cósmica em primeiro plano.
Crédito: NASA, ESA e J. Burchett e O. Elek (UC Santa Cruz)

O comportamento de uma das criaturas mais humildes da natureza e dados de arquivo do Telescópio Espacial Hubble da NASA/ESA estão a ajudar os astrónomos a estudar as maiores estruturas do Universo.

O organismo unicelular conhecido como mofo limoso (Physarum polycephalum) constrói redes filamentosas complexas semelhantes a teias em busca de alimentos, sempre encontrando percursos quase óptimos para ligar locais diferentes.

Ao moldar o Universo, a gravidade constrói uma vasta estrutura filamentar em forma de teia de aranha, ligando galáxias e enxames de galáxias ao longo de pontes invisíveis de gás e matéria escura com centenas de milhões de anos-luz de comprimento. Há uma estranha semelhança entre as duas redes, uma produzida pela evolução biológica e a outra pela força primordial da gravidade.

A teia cósmica é a espinha dorsal em larga escala do cosmos, consistindo principalmente de matéria escura entrelaçada com gás, sobre a qual as galáxias são construídas. Embora não possamos ver a matéria escura, constitui a maior parte do material do Universo. Os astrónomos tiveram dificuldade em encontrar estas teias elusivas porque o gás no seu interior é demasiado ténue para ser detectado.

A existência de uma estrutura semelhante a uma teia de aranha, para o Universo, foi sugerida pela primeira vez em levantamentos galácticos na década de 1980. Desde esses estudos, a grande escala desta estrutura filamentar foi revelada por levantamentos subsequentes do céu. Os filamentos formam as fronteiras entre grandes vazios no Universo. Agora, uma equipa de investigadores recorreu ao bolor limoso para os ajudar a construir um mapa dos filamentos do Universo local (até 100 milhões de anos-luz da Terra) e a encontrar o gás no seu interior.

Desenvolveram um algoritmo de computador, inspirado pelo comportamento do mofo limoso, e testaram-no contra uma simulação de computador do crescimento de filamentos de matéria escura do Universo. Um algoritmo de computador é essencialmente uma receita que informa o computador exactamente quais as etapas a serem seguidas para resolver um problema.

Os cientistas então aplicaram o algoritmo de bolor limoso aos dados contendo as localizações de mais de 37.000 galáxias mapeadas pelo SDSS (Sloan Digital Sky Survey). O algoritmo produziu um mapa tridimensional da estrutura da teia cósmica subjacente.

Seguidamente, analisaram a luz de 350 quasares distantes catalogados no Arquivo Espectroscópico do Legado Hubble. Estas distantes lanternas cósmicas são os brilhantes núcleos alimentados a buracos negros de galáxias activas, cuja luz brilha através do espaço e através da teia cósmica em primeiro plano. Impressa nessa luz estava a assinatura reveladora do hidrogénio gasoso invisível que a equipa analisou em pontos específicos ao longo dos filamentos. Estes locais-alvo estão longe das galáxias, o que permitiu à equipa de investigação vincular o gás à estrutura de larga escala do Universo.

“É realmente fascinante que uma das formas mais simples de vida realmente permita desvendar mais sobre as estruturas de maior escala do Universo,” disse o investigador Joseph Burchett, da Universidade da Califórnia, EUA. “Usando a simulação de mofo limoso para encontrar a localização dos filamentos da teia cósmica, incluindo aqueles longe das galáxias, pudemos usar dados de arquivo do Telescópio Espacial Hubble para detectar e determinar a densidade do gás frio nos arredores desses filamentos invisíveis. Os cientistas detectam assinaturas deste gás há mais de meio século e agora provámos a expectativa teórica de que este gás compreende a teia cósmica.”

O levantamento ainda valida investigações que indicam que o gás intergaláctico está organizado em filamentos e também revela a que distância das galáxias o gás é detectado. Os membros da equipa ficaram surpresos ao encontrar gás associado aos filamentos da teia cósmica a mais de 10 milhões de anos-luz das galáxias.

Mas essa não foi a única surpresa. Também descobriram que a assinatura ultravioleta do gás fica mais forte nas regiões mais densas dos filamentos, mas que depois desaparece. “Achamos que esta descoberta nos diz mais sobre as interacções violentas que as galáxias têm nas regiões densas do meio intergaláctico, onde o gás se torna demasiado quente para detectar,” explicou Burchett.

Os cientistas voltaram-se para as simulações de bolor limoso quando procuravam uma maneira de visualizar a ligação teorizada entre a estrutura da teia cósmica e o gás frio, detectado em estudos espectroscópicos anteriores do Hubble.

Oskar Elek, na altura membro da equipa e cientista da computação na Universidade da Califórnia em Santa Cruz, descobriu online o trabalho de Sage Jenson, artista de Berlim. Entre os trabalhos de Jenson, visualizações artísticas fascinantes que mostram o crescimento de uma rede de bolor, parecida com tentáculos, movendo-se de uma fonte de alimento para outra. A arte de Jenson baseou-se no trabalho científico de 2010 de Jeff Jones, da Universidade do Oeste da Inglaterra, em Bristol, que detalhou um algoritmo para simular o crescimento destes organismos unicelulares.

A equipa de investigação foi inspirada pelo modo como o mofo limoso constrói filamentos complexos para capturar novos alimentos e como este mapeamento podia ser aplicado à forma como a gravidade molda o Universo, à medida que a teia cósmica constrói os filamentos entre galáxias e enxames de galáxias. Com base na simulação descrita no artigo de Jones, Elek desenvolveu um modelo tridimensional do crescimento do bolor para estimar a localização da estrutura filamentar da teia cósmica.

Esta análise da teia cósmica no Universo local também encaixa com observações publicadas no outono passado na revista Science da estrutura filamentar do Universo muito mais distante, a cerca de 12 mil milhões de anos-luz da Terra, perto do início do Universo. Nesse estudo, os astrónomos analisaram a luz energética de um jovem enxame de galáxias iluminando os filamentos de hidrogénio gasoso que as ligam.

Astronomia On-line
13 de Março de 2020

 

spacenews

 

3491: Uma peça do quebra-cabeças da química estelar pode mudar as nossas medições da expansão cósmica

CIÊNCIA/ASTRONOMIA

Ao examinar a abundância do elemento manganês, um grupo de astrónomos reviu as nossas melhores estimativas para os processos por trás das super-novas do tipo Ia.
Crédito: R. Hurt/Caltech-JPL, composição – departamento gráfico do Instituto Max Planck para Astronomia

Astrónomos liderados por Maria Bergemann (Instituto Max Planck para Astronomia) realizaram medições químicas de estrelas que podem mudar seriamente o modo como os cosmólogos medem a constante de Hubble e determinaram a quantidade da chamada energia escura no nosso Universo. Usando modelos aprimorados de como a presença de elementos químicos afectam o espectro de uma estrela, os investigadores descobriram que as chamadas super-novas tipo Ia têm propriedades diferentes das que se pensava anteriormente. Com base na suposição sobre o seu brilho, os cosmólogos usaram estas super-novas para medir a história de expansão do Universo. À luz dos novos resultados, é provável que essas premissas precisem de ser revistas.

Nos últimos dez anos, quando Maria Bergemann, líder do Grupo de Investigação Lise Meitner do Instituto Max Planck para Astronomia, desenvolveu maneiras aprimoradas de medir as propriedades químicas das estrelas, ela não sabia que o seu grupo poderia um dia afectar a maneira como os astrónomos medem a expansão cósmica, a constante de Hubble, e a quantidade de energia escura no nosso Universo. Mas, através de uma série de ligações imprevistas, é o que parece estar a acontecer agora. Usando as ferramentas de análise que Bergemann desenvolveu, os astrónomos foram capazes de rastrear a abundância dos elementos químicos manganês e ferro ao longo dos últimos 13 mil milhões de anos de história Galáctica. O seu resultado (inesperado) coloca restrições nas propriedades das explosões estelares, as denominadas Super-novas do Tipo Ia, necessárias para produzir o elemento.

Anteriormente, pensava-se que a maioria das super-novas do tipo Ia era provocada por uma estrela anã branca em órbita de uma estrela normal, sugando o hidrogénio das camadas exteriores da estrela. As abundâncias de manganês em estrelas da nossa Via Láctea mostram que, pelo contrário, três em cada quatro dessas explosões resultam de outros tipos de super-novas do tipo Ia. Um deles pode ser um cenário no qual duas anãs brancas se orbitam uma à outra. O outro cenário envolve uma anã branca, que acreta hélio de uma companheira e passa por detonações sequenciais “de fora para dentro”. A diferença entre o cenário padrão e os mecanismos alternativos de explosão para as SN Ia pode ter consequências fundamentais para a relação entre o brilho máximo, a maneira como o brilho muda ao longo do tempo e a escala de tempo geral destas explosões de super-nova. Isso, por sua vez, é importante para algumas das observações mais básicas da cosmologia. Essas observações usam super-novas do Tipo Ia como “velas padrão”, ou seja, fontes de luz cujo brilho intrínseco pode ser determinado a partir de observações. Através da comparação entre o brilho intrínseco de uma fonte e o seu brilho observado, os astrónomos podem determinar a distância da fonte. As detecções da chamada Energia Escura, que se pensa ser responsável por cerca de 70% da densidade energética total do nosso Universo, remontam a observações deste tipo, assim como as medições da constante de Hubble que especifica o actual ritmo de expansão do nosso Universo. Se as super-novas usadas nestas medições não forem velas padrão do mesmo tipo, mas sim pelo menos de dois tipos diferentes cujas propriedades intrínsecas são sistematicamente diferentes, as deduções cosmológicas vão precisar de ser revistas.

Modelando espectros estelares como nunca antes

As ferramentas de análise de Bergemann são as mais recentes de uma série de desenvolvimentos que podem ser traçados até Robert Bunsen e Gustav Kirchhoff, que inventaram a espectroscopia como ferramenta química em Heidelberg na segunda metade do século XIX. Eles descobriram que certas regiões estreitas brilhantes ou escuras de um espectro, linhas espectrais, podiam ser atribuídas à presença ou ausência de elementos químicos específicos. No início do século XX, os astrónomos estavam a usar modelos simplificados para essas linhas espectrais a fim de examinar a atmosfera das estrelas – levando à medição da temperatura, pressão de superfície e composição química das estrelas. Mas esses modelos assumiam que as estrelas eram esferas perfeitas (em contraste com a complexa estrutura tridimensional das estrelas reais) e que a sua pressão e força gravitacional estavam em equilíbrio (conhecido como equilíbrio hidrostático). Os modelos também assumiam, pelo menos localmente, “equilíbrio termodinâmico” entre o gás e a radiação – ou seja, em cada região pequena, a energia disponível teve tempo para se espalhar uniformemente entre as diferentes partes do sistema, permitindo-nos atribuir uma temperatura a cada região.

Os modelos das atmosferas estelares, e da radiação emitida pelas estrelas que não assumem o equilíbrio termodinâmico local são um desenvolvimento relativamente recente. Estes novos modelos são conhecidos como modelos “Non-LTE” (No Local Thermal Equilibrium, pois não assumem tal equilíbrio local). Estes modelos andam de mãos dadas com simulações tridimensionais da convecção sob a superfície da estrela, semelhante ao movimento da água a ferver numa panela, em que a matéria se move para cima em algumas regiões, para baixo noutras. Eles também incluem a interacção de plasma altamente dinâmico com a radiação da estrela. A teoria por trás do “Non-LTE” e da hidrodinâmica já havia sido formulada no final da década de 1970. No entanto, a aplicação destes modelos à análise da composição química de muitas estrelas na Galáxia só se tornou possível há aproximadamente 20 anos atrás. Foi quando os poderosos supercomputadores modernos se tornaram disponíveis para a investigação científica, coincidindo com os recentes avanços na descrição da estrutura atómica e das interacções luz-matéria que resultaram em dados robustos para a física atómica, necessários para os modelos “Non-LTE”. Bergemann trabalha em diferentes aspectos de tais modelos desde 2005, tornando-a uma das pioneiras no campo.

Para alguns elementos, principalmente o ferro, os novos métodos refinados produzem praticamente o mesmo resultado que os precursores simplificados. Mas para outros, existem diferenças notáveis. Bergemann e a sua equipa, incluindo Andrew Gallagher, Camilla Juul Hansen e Philipp Eitner encontraram um exemplo disso ao rastrear a evolução química do elemento manganês, um metal próximo do ferro na tabela periódica dos elementos. Gallagher conseguiu melhorar bastante o desempenho do código 3D “Non-LTE”. Hansen forneceu dados observacionais de alta qualidade cobrindo as regiões espectrais essenciais para as observações, que estão no ultravioleta próximo. Eitner, como estudante da Universidade de Heidelberg, trabalhou numa estrutura robusta para aplicar o “Non-LTE” à modelagem de espectros estelares. Ele também estendeu essa análise a casos em que podemos observar um espectro não para estrelas separadas, mas apenas para a luz combinada de várias estrelas num enxame estelar. Isto é essencial para a análise de enxames extra-galácticos de estrelas.

Traçando a história do manganês na nossa Galáxia e além

Ao analisarem 42 estrelas, os astrónomos foram capazes de reconstruir a história da produção de manganês na nossa Galáxia. Em termos de química, o Universo começou muito simples, com quase nada além de hidrogénio e hélio pouco depois do Big Bang, há 13,8 mil milhões de anos. Desde então e até agora foi produzida, no interior das estrelas, uma grande fracção de elementos mais pesados. Outros elementos – como o manganês e o ferro – são produzidos nas violentas explosões de super-nova que assinalam o fim da vida de certas estrelas. As super-novas dispersam a matéria da estrela, semeando o espaço em redor com elementos mais pesados. À medida que se formam estrelas de gerações posteriores, elas incorporam esses elementos mais pesados. Os traços espectrais destes elementos serão observáveis nas atmosferas das estrelas (a propósito, os elementos mais pesados no disco rodopiante de gás em torno da estrela recém-nascida são a base química para a formação de planetas e, no caso do nosso Sistema Solar, para a formação da vida num desses planetas. Sem esses elementos, nós não existiríamos, e nem a Terra).

Devido a este tipo de história química cumulativa, a abundância de elementos como o ferro na atmosfera de uma estrela é um indicador directo de há quanto tempo essa estrela nasceu. Usando espectros estelares de alta resolução de telescópios com 8-10 metros – o VLT (Very Large Telescope) do ESO e o Observatório Keck – Bergemann e colegas mediram as abundâncias de ferro e manganês para 42 estrelas, algumas com 13 mil milhões de anos. Usando a abundância de ferro como um indicador de idade de cada estrela em relação às outras, os astrónomos foram capazes de reconstruir a história da produção de manganês na nossa Galáxia. Para sua grande surpresa, esta nova e aprimorada análise mostrou que a proporção de manganês em relação ao ferro era bastante constante durante esse longo período. Estudos anteriores, menos refinados, descobriram uma tendência na produção de manganês que aumentava constantemente durante os 13 mil milhões de anos da história Galáctica. Ainda mais surpreendentemente, os astrónomos encontraram o mesmo rácio constante entre o manganês e o ferro em todas as diferentes regiões da nossa própria Galáxia, e também em galáxias próximas do Grupo Local. Pelo menos na nossa vizinhança cósmica, a relação manganês/ferro parece ser uma constante química universal.

Super-novas com um limite fundamental

É aqui que entram as super-novas. O manganês precisa de uma energia incrivelmente elevada, libertada nas explosões de super-nova, para se formar. Diferentes tipos de super-novas produzem ferro e manganês em diferentes proporções. Um dos contribuintes são as chamadas super-novas de colapso do núcleo, onde uma estrela massiva colapsa no final da sua vida, depois de esgotar o seu combustível nuclear no centro. As outras são mais interessantes neste contexto: se uma estrela anã branca, um remanescente de uma estrela parecida com o Sol, orbitar uma estrela gigante, a sua gravidade puxará o hidrogénio da estrela gigante para a sua própria superfície. Uma vez atingida uma massa limite, a chamada massa de Chandrasekhar, a anã branca torna-se instável, resultando numa explosão termonuclear, a chamada Super-nova do Tipo Ia. A massa limite segue os princípios fundamentais da física, como descoberto pela primeira vez por Subrahmanian Chandrasekhar em 1930. Tendo em conta o fundamental “limite de Chandrasekhar”, neste cenário a massa total da estrela explosiva e, portanto, o brilho total da explosão, são sempre mais ou menos os mesmos.

Isto é uma boa notícia para os astrónomos que acompanham a expansão do nosso cosmos: quando observam uma explosão destas, sabem o brilho na fonte; comparando esse brilho com o brilho observado, podem deduzir a distância da super-nova. Medindo o desvio para o vermelho da galáxia em que a explosão ocorreu (ou seja, a rapidez com que a galáxia se afasta de nós), os cosmólogos podem escrever uma relação entre o desvio para o vermelho e a distância, que lhes diz quão depressa o Universo está a expandir-se (codificada na chamada constante de Hubble) e também se essa expansão está a acelerar ou a tornar-se mais lenta com o tempo. A descoberta, no final dos anos 90, de que o nosso Universo está a acelerar, resultou no Prémio Nobel da Física de 2011 para Saul Perlmutter, Brian Schmidt e Adam Riess. A aceleração pode ser explicada assumindo que o nosso cosmos é preenchido com um ingrediente invulgar que os astrónomos chamam de “Energia Escura”.

Abordando as super-novas Ia de modo diferente

Essa, pelo menos, é a história até agora. Com as medições anteriores e menos precisas do manganês, os astrónomos concluíram que uma fracção significativa das Super-novas do Tipo Ia ocorre da maneira descrita acima, como uma anã branca que engole hidrogénio de uma companheira estelar gigante. Mas, para explicar o porquê de a relação manganês-ferro ter permanecido constante ao longo da história Galáctica, as coisas devem ter sido diferentes. Existem várias outras maneiras de produzir uma Super-nova do Tipo Ia. Para os observadores que medem a curva de luz da explosão, ou seja, a maneira como o seu brilho muda ao longo do tempo, estes cenários são indistinguíveis do cenário da anã branca com a gigante estelar.

Num caso especial, uma estrela acreta matéria de uma companheira que leva à instabilidade nuclear na camada externa de hélio, despoletando uma explosão fora do centro e uma frente de detonação. Esta frente ardente propaga-se para o núcleo da estrela a velocidades supersónicas, desencadeando outra detonação no núcleo de carbono-oxigénio da anã branca. Este cenário é conhecido como SN Ia de detonação dupla.

No outro caso, as protagonistas são duas anãs brancas em íntima órbita uma da outra. Quando as estrelas ficam assim tão próximas que, na verdade, o seu gás externo gira em torno delas como um invólucro comum, as ondas gravitacionais emitidas pelo binário forçam as anãs brancas a aproximarem-se ainda mais. À medida que as duas anãs brancas se fundem, o resultado é uma explosão termonuclear.

Por último, mas não menos importante, até as anãs brancas binárias podem sofrer uma detonação dupla, resultando numa SN Ia de “detonação dupla, duplamente degenerada e dinamicamente accionada”.

Em todos estes cenários alternativos, o brilho dessa explosão não é fixado por uma constante física. As explosões de detonação dupla não exigem que a estrela atinja um limite de massa de Chandrasekhar: de facto, explodem com massas mais baixas e são, portanto, chamadas de explosões sub-Chandrasekhar. Numa fusão violenta, o objecto explosivo combinado pode ser menos ou mais massivo do que o limite de Chandrasekhar. As explosões de massa sub-Chandrasekhar devem ser um pouco menos brilhantes, enquanto as explosões super-Chandrasekhar devem ser mais brilhantes do que as suas primas de massa Chandrasekhar. Isto são más notícias para os cosmólogos que confiam nas velas padrão das Super-novas do Tipo Ia, onde tais explosões devem ter um brilho intrínseco uniforme e bem definido. O que é ainda pior é que, para explicar a proporção constante observada de manganês para ferro, Bergemann e colegas precisaram de assumir que três-quartos de todas as Super-novas do Tipo Ia na nossa Galáxia são devidos a explosões de anãs brancas binárias compactas ou devidos a explosões de detonação dupla. As super-novas Ia não padronizadas são a regra, não a excepção.

Próximos passos

É aqui que está o assunto de momento. Não há dúvida que outros grupos colocarão os resultados de Bergemann e colegas à prova. Mesmo agora, existem dados corroborantes: um grupo de astrónomos liderados por Evan Kirby e Mia de los Reyes, do Instituto de Tecnologia da Califórnia, descobriu resultados semelhantes para várias galáxias anãs.

O próximo lançamento de dados (DR3) do satélite Gaia da ESA, previsto para 2021, poderá produzir dados adicionais sobre a prevalência de anãs brancas binárias, potencialmente reforçando o argumento para o novo tipo de Super-nova Ia. Muito mais tarde, o detector espacial de ondas gravitacionais, LISA, com lançamento previsto para 2034, poderá detectar as ondas gravitacionais de fusões de anãs brancas a grandes distâncias, permitindo uma verificação directa das previsões de Bergemann e colegas.

Entretanto, os cosmólogos estarão ocupados a verificar quais as consequências que o novo tipo de Super-nova pode ter para as suas deduções sobre o Universo como um todo. Num aspecto, as correcções esperadas podem até ser bem-vindas: actualmente, há uma discrepância sobre a constante de Hubble medida com a utilização de super-novas do Tipo Ia e a constante de Hubble medida com a radiação cósmica de fundo das fases iniciais do nosso cosmos. Os novos resultados das Super-novas Ia podem ajudar a tornar os actuais modelos cosmológicos e observações mais consistentes. Em suma, uma demonstração impressionante da interconectividade da investigação astronómica. Ao desenvolver um novo método de analisar a química das estrelas, podemos acabar por mudar a nossa visão do Universo como um todo.

Astronomia On-line
10 de Março de 2020

 

spacenews

 

3490: ALMA avista estrela idosa e metamorfósica

CIÊNCIA/ASTRONOMIA

Imagem ALMA do velho sistema W43A. A alta velocidade dos jactos bipolares ejectados da estrela antiga central podem ser vistos a azul, os fluxos de baixa velocidade têm cor verde e as nuvens poeirentas incorporadas pelos jactos estão a laranja.
Crédito: ALMA (ESO/NAOJ/NRAO), Tafoya et al.

Usando o ALMA (Atacama Large Millimeter/submillimeter Array), uma equipa internacional de astrónomos capturou o momento exacto em que uma estrela antiga começa a alterar o seu ambiente. A estrela ejectou jactos velozes e bipolares de gás que estão agora a colidir com o material circundante; a idade estimada do jacto observado corresponde a menos de 60 anos. Estas são características-chave para entender como são produzidas as formas complexas das nebulosas planetárias.

As estrelas parecidas com o Sol evoluem para gigantes vermelhas e inchadas na fase final das suas vidas. Aí, a estrela expele gás para formar um remanescente chamado nebulosa planetária. Existe uma grande variedade nas formas das nebulosas planetárias; algumas são esféricas, mas outras são bipolares ou apresentam estruturas complicadas. Os astrónomos estão interessados nas origens desta variedade, mas a poeira e o gás espesso expelidos por uma estrela velha obscura o sistema e dificultam a investigação do funcionamento interno do processo.

Para resolver este problema, uma equipa de astrónomos liderada por Daniel Tafoya da Universidade de Tecnologia de Chalmers, Suécia, apontou o ALMA para W43A, um antigo sistema estelar na direcção da constelação de Águia.

Graças à alta resolução do ALMA, a equipa obteve uma visão muito detalhada do espaço em torno de W43A. “As estruturas mais notáveis são os seus pequenos jactos bipolares,” diz Tafoya, autor principal do estudo publicado na revista The Astrophysical Journal Letters. A equipa descobriu que a velocidade dos jactos é tão alta quanto 175 km/s, o que é muito maior do que as estimativas anteriores. Com base nesta velocidade e no tamanho dos jactos, a equipa calculou a idade dos jactos como sendo inferior ao tempo de vida do ser humano.

“Considerando a juventude dos jactos em comparação com a vida útil de uma estrela, é seguro dizer que estamos a testemunhar o ‘momento exacto’ em que os jactos começaram a empurrar o gás circundante,” explica Tafoya. “Quando os jactos esculpem o material circundante em aproximadamente 60 anos, uma única pessoa pode observar o progresso durante a sua vida.”

De facto, a imagem ALMA mapeia claramente a distribuição de nuvens empoeiradas incorporadas pelos jactos, o que é uma evidência reveladora de que está a impactar o ambiente.

A equipa assume que esta incorporação é a chave para produzir uma nebulosa planetária de forma bipolar. No seu cenário, a estrela idosa originalmente ejecta gás esfericamente e o núcleo da estrela perde o seu invólucro. Se a estrela tiver uma companheira, o seu gás é “derramado” para o núcleo da estrela moribunda e uma porção deste novo gás forma os jactos. Portanto, ter ou não uma companheira é um factor importante para determinar a estrutura da nebulosa planetária resultante.

“W43A é um dos objectos peculiares de nome ‘fonte de água’,” diz Hiroshi Imai da Universidade de Kagoshima, Japão, membro da equipa. “Algumas estrelas antigas mostram emissões de rádio características das moléculas de água. Nós supomos que manchas destas emissões de água indicam a região da interface entre os jactos e o material circundante. Nós chamamos-lhe ‘fontes de água’ e pode ser um sinal de que a fonte central é um sistema binário que lança um novo jacto.”

“Existem apenas 15 objectos ‘fonte de água’ identificados até ao momento, apesar do facto de existirem mais de 100 mil milhões de estrelas na nossa Via Láctea,” explica José Francisco Goméz do Instituto de Astrofísica da Andaluzia, Espanha. “Isto porque provavelmente a vida útil dos jactos é bastante curta, de modo que temos muita sorte em observar objectos tão raros.”

Astronomia On-line
10 de Março de 2020

 

spacenews

 

3486: Gaia sugere que distorção da Via Láctea foi provocada por colisão galáctica

CIÊNCIA/ASTRONOMIA

O disco galáctico da Via Láctea, a nossa Galáxia, não é achatado mas distorcido para cima num lado e para baixo no outro. Dados do satélite de mapeamento estelar da ESA, Gaia, fornecem novas informações sobre o comportamento da distorção e das suas possíveis origens.
As duas galáxias mais pequenas perto do canto inferior direito são as Nuvens de Magalhães, duas galáxias satélite da Via Láctea.
Crédito: Stefan Payne-Wardenaar; Nuvens de Magalhães: Robert Gendler/ESO

Os astrónomos ponderam há anos porque é que a nossa Galáxia, a Via Láctea, é distorcida. Dados do satélite de mapeamento estelar da ESA, Gaia, sugerem que a distorção pode ser provocada por uma colisão, em curso, com outra galáxia mais pequena, que envia ondulações através do disco galáctico como uma rocha atirada para a água.

Os astrónomos sabem desde o final da década de 1950 que o disco da Via Láctea – onde reside a maioria das centenas de milhares de milhões de estrelas – não é plano, mas um pouco curvo para cima num lado e para baixo no outro. Durante anos, debateram o que está a provocar esta distorção. Propuseram várias teorias, incluindo a influência do campo magnético intergaláctico ou os efeitos de um halo de matéria escura, uma grande quantidade de matéria invisível que se pensa rodear as galáxias. Se tal halo tivesse uma forma irregular, a sua força gravitacional podia dobrar o disco galáctico.

Mais depressa do que o esperado

Com o seu levantamento único de mais de mil milhões de estrelas na nossa Galáxia, o Gaia pode ser a chave para resolver este mistério. Uma equipa de cientistas que utiliza dados do segundo lançamento do Gaia confirmou agora pistas anteriores de que esta distorção não é estática, mas que muda a sua orientação ao longo do tempo. Os astrónomos chamam a este fenómeno precessão e pode ser comparado à oscilação de um pião à medida que o seu eixo gira.

Além disso, a velocidade com que a distorção precede é muito superior ao esperado – mais rápida do que o campo magnético intergaláctico ou do que o halo de matéria escura podiam permitir. Isto sugere que a distorção deve ser provocada por outra coisa. Algo mais poderoso – como uma colisão com outra galáxia.

“Nós medimos a velocidade da distorção comparando os dados com os nossos modelos. Com base na velocidade obtida, a distorção completaria uma rotação em torno do centro da Via Láctea em 600 a 700 milhões de anos,” diz Eloisa Poggio, do Observatório Astrofísico de Turim, na Itália, autora principal do estudo, publicado na revista Nature. “Isto é muito mais depressa do que esperávamos, com base em previsões de outros modelos, como aqueles que observam os efeitos do halo não esférico.”

O poder estelar do Gaia

A velocidade da distorção é, no entanto, inferior à velocidade a que as estrelas propriamente ditas orbitam o centro galáctico. O Sol, por exemplo, completa uma rotação em cerca de 220 milhões de anos.

Estas informações só foram possíveis graças à capacidade sem precedentes da missão Gaia em mapear a nossa Galáxia, a Via Láctea, em 3D, determinando com precisão as posições de mais de mil milhões de estrelas no céu e estimando a sua distância. O telescópio parecido com um disco voador também mede as velocidades nas quais as estrelas individuais se movem no céu, permitindo que os astrónomos “vejam o filme” da história da Via Láctea para trás e para a frente no tempo, ao longo de milhões de anos.

“É como ter um carro e tentar medir a velocidade e a direcção da viagem deste carro ao longo de um período muito curto e, com base nesses valores, tentar modelar a trajectória passada e futuro do carro,” diz Ronald Drimmel, investigador do Observatório Astrofísico de Turim e co-autor do artigo. “Se fizermos essas medições para muitos carros, podemos modelar o fluxo de tráfego. Da mesma forma, medindo os movimentos aparentes de milhões de estrelas no céu, podemos modelar processos em larga escala, como o movimento da distorção.”

Sagitário?

Os astrónomos ainda não sabem qual é a galáxia que pode estar a provocar a ondulação nem quando a colisão começou. Um dos candidatos é Sagitário, uma galáxia anã que orbita a Via Láctea, que se pensa ter atravessado o disco galáctico da Via Láctea várias vezes no passado. Os astrónomos pensam que Sagitário será gradualmente absorvida pela Via Láctea, um processo que já está em andamento.

“Com o Gaia, pela primeira vez, temos uma grande quantidade de dados sobre uma grande quantidade de estrelas, cujo movimento é medido com precisão para que possamos tentar entender os movimentos em larga escala da galáxia e modelar a sua história de formação,” diz Jos de Bruijne, vice-cientista do projecto Gaia da ESA. “Isto é algo único. Esta é realmente a revolução do Gaia.”

Por mais impressionantes que a distorção e a sua precessão pareçam ser à escala galáctica, os cientistas asseguram que não tem efeitos visíveis na vida no nosso planeta.

Distante o suficiente

“O Sol está a uma distância de 26.000 anos-luz do centro galáctico, onde a amplitude da distorção é muito pequena,” diz Eloisa. “As nossas medições foram dedicadas principalmente às partes externas do disco galáctico, a 52.000 anos-luz do centro galáctico e além.”

O Gaia já tinha descoberto anteriormente evidências de colisões entre a Via Láctea e outras galáxias no passado recente e distante, que ainda podem ser observadas nos padrões de movimento de grandes grupos de estrelas milhares de milhões de anos após os eventos terem ocorrido.

Entretanto, o satélite, actualmente no seu sexto ano de missão, continua a estudar o céu e um consórcio europeu está ocupado a processar e a analisar os dados que continuam a ser transmitidos para a Terra. Os astrónomos de todo o mundo estão ansiosos pelos próximos dois lançamentos de dados do Gaia, planeados para o final de 2020 e para a segunda metade de 2021, respectivamente, para continuar a enfrentar os mistérios da galáxia a que chamamos casa.

Astronomia On-line
6 de Março de 2020

 

spacenews

 

E se os misteriosos planetas de “algodão doce” tiverem na realidade anéis?

CIÊNCIA/ASTRONOMIA

Impressão de artista do modelo de Piro e Vissapragada de um anel com anéis a transitar em frente da sua estrela hospedeira. Os cientistas usaram estes modelos para restringir quais dos planetas super-inchados conhecidos podem ser explicados por anéis.
Crédito: Robin Dienel e cortesia do Instituto Carnegie para Ciência

De acordo com uma nova investigação publicada na revista The Astronomical Journal, por Anthony Piro do Instituto Carnegie para Ciência e Shreyas Vissapragada do Caltech, alguns dos exoplanetas de densidade extremamente baixa, chamados planetas de “algodão doce”, podem na realidade ter anéis.

Estes planetas super-inchados são conhecidos por terem raios extremamente grandes para as suas massas – o que lhes daria densidades aparentemente incrivelmente baixas. Os corpos com este nome adorável têm confundido os cientistas desde que foram descobertos, porque são diferentes de quaisquer planetas no nosso Sistema Solar e desafiam as nossas ideias do aspecto dos planetas distantes.

“Começámos a pensar, e se estes planetas não forem como algodão doce,” disse Piro. “E se estes planetas super-inchados só parecem muito grandes porque estão na verdade cercados por anéis?”

No nosso próprio Sistema Solar, todos os planetas gigantes de gás e gelo têm anéis, o exemplo mais conhecido sendo os majestosos anéis de Saturno. Mas tem sido difícil para os astrónomos descobrir planetas com anéis em órbita de estrelas distantes.

Os raios dos exoplanetas são medidos durante o trânsito – quando o exoplaneta cruza a frente da sua estrela hospedeira, provocando uma queda na luz estelar. Quanto maior a diminuição de brilho, maior o exoplaneta.

“Começámos a pensar: se olhássemos para o Sistema Solar, a partir de um mundo distante, será que conseguíamos reconhecer Saturno como um planeta com anéis, ou pareceria um planeta inchado para um astrónomo alienígena,” perguntou Vissapragada.

Para testar esta hipótese, Piro e Vissapragada simularam o aspecto de um exoplaneta com anéis para um astrónomo com instrumentos de alta precisão que observava o seu trânsito em frente da estrela-mãe. Também investigaram os tipos de materiais no anel que poderiam explicar as observações de super-inchados.

O seu trabalho demonstrou que os anéis podem explicar alguns, mas não todos, os planetas super-inchados que a missão Kepler da NASA descobriu até agora.

“Estes planetas tendem a orbitar em íntima proximidade as suas estrelas hospedeiras, o que significa que os anéis teriam que ser rochosos e não gelados,” explicou Piro. “Mas os raios dos anéis rochosos só podem ter um determinado tamanho, a não ser que as rochas sejam muito porosas, de modo que nem todos os super-inchados encaixariam nestas restrições.”

Segundo Piro e Vissapragada, três super-inchados são candidatos especialmente bons para anéis – Kepler-87c e 177c, assim como HIP 41378f.

As observações de acompanhamento para confirmar o seu trabalho só serão possíveis depois do lançamento do Telescópio Espacial James Webb da NASA, previsto para o ano que vem, porque os actuais telescópios terrestres e espaciais não têm a precisão necessária para confirmar a presença de anéis em redor destes mundos distantes.

Se alguns dos super-inchados forem confirmados como planetas com anéis, isto melhoraria a compreensão dos astrónomos de como estes sistemas planetários se formaram e evoluíram em torno das suas estrelas hospedeiras

Astronomia On-line
6 de Março de 2020

 

spacenews

 

3483: Cálculo que mede a expansão do universo pode estar errado. Descoberta estelar abala a cosmologia

CIÊNCIA/COSMOLOGIA

A equação que mede o ritmo de expansão do universo pode ter de ser repensada. A quantidade de elementos pesados em estrelas sugere que podemos estar a fazer mal as contas sobre a idade do universo.

É um verdadeiro terramoto para o mundo da cosmologia. Uma equipa de astrónomos do Instituto Max Planck registou medições químicas estelares que podem colocar em xeque a forma como se mede a expansão do universo.

Afinal, as estrelas utilizadas para medir a forma como o universo cresce — as super-nova tipo Ia — têm propriedades diferentes do que se julgava. Ao contrário do que se pensava, a quantidade de manganês e ferro obedece a uma taxa fixa, ou seja, não aumenta ao longo do tempo. Isso sugere que existem outras formas de essas super-novas aconteceram — formas desconhecidas para os astrónomos.

Se assim for, a constante de Hubble — a taxa de expansão do universo na equação da Lei de Hubble, que serve para calcular distâncias no universo — pode não ser sempre válida, uma vez que ela parte do princípio que o brilho de todas essas explosões é constante, o que pode não ser verdade. Ou seja, a forma como calculamos a idade do universo e o papel da matéria negra para a expansão do espaço podem não correctos.

O caótico mundo de uma super-nova

Imagine que é um astronauta a vaguear pela Via Láctea e que testemunha a maior explosão a que a humanidade alguma vez assistiu — o trágico fim de uma estrela.  Essa explosão é uma super-nova do tipo Ia, um autêntico berço de alguns dos elementos pesados no universo, como o manganês e o ferro. Foi por isso que estes astrónomos as escolheram para calcular a abundância destes elementos ao longo dos últimos 13 mil milhões de anos.

G299, o resultado de uma super-nova do tipo Ia. Créditos: NASA/CXC/U.Texas

Fizeram-no estudando o espectro emitido pelas estrelas, uma espécie de impressão digital dos corpos luminosos que permite saber que elementos a compõem, uma vez que cada um deles tem uma assinatura. Quanto mais abundante for a quantidade de ferro detectada, mais velha é a estrela. Era como viajar no tempo.

Foi aqui que os astrónomos começaram a encontrar os dados mais surpreendentes. Ao contrário do que esperavam, a proporção de manganês e de ferro era constante ao longo de todos esses anos. Pensava-se que, à medida que o universo envelhecia, a quantidade de manganês aumentaria. Mas afinal não: havia uma constante entre a quantidade de manganês e de ferro. Essa constante verificava-se tanto dentro da Via Láctea como noutras galáxias.

Como pode a química abalar a cosmologia?

Até agora, assumia-se que as super-novas tipo Ia ocorriam quando uma anã branca (os restos mortais de uma estrela como o Sol) que orbitava uma outra estrela, sugando-lhe o hidrogénio à superfície, rebentava ao atingir o limite de massa que conseguia suportar.

Uma ilustração com o modelo actualmente aceite para a criação de uma super-nova do tipo Ia. Créditos: ESA/ATG medialab/C. Carreau

O que é o desvio para o vermelho?

É o limite de Chandrasekhar que, por ser constante, significa que a quantidade de matéria que explode e o brilho provocado pelo fenómeno é sempre o mesmo. Esse valor é usado pelos astrónomos para medir a velocidade a que o universo se está a expandir. Sabendo exactamente o brilho provocado pela explosão de uma super-nova, basta compará-lo ao que é observável na Terra para calcular a distância entre os dois através do desvio para o vermelho.

Calculando a velocidade a que esse desvio para o vermelho ocorre, os astrónomos conseguem saber não só a rapidez com que a galáxia onde a super-nova ocorreu se está a afastar de nós, como também a velocidade de expansão do universo. E é isso que está espelhado na constante de Hubble, um número que reflete a taxa com que o universo continua a crescer.

Acontece que, se a proporção entre a quantidade de manganês e de ferro parece constante ao longo do tempo, é porque podem existir outras formas a partir das quais as super-novas do tipo Ia nascem — formas essas que nada têm a ver com o limite de Chandrasekhar, o que pode significa que o brilho emitido por essas explosões não é sempre o mesmo como se assumia até agora. Logo, não seria cientificamente válido medir o ritmo de expansão do universo a partir de uma fonte de luz que, afinal, não emite sempre o mesmo brilho.

Nada disto é definitivo. Para dar solidez a esta teoria, é preciso que outras equipas científicas cheguem aos mesmos resultados e, entretanto, esperar por eventuais sinais desses fenómenos através da detecção de ondas gravitacionais e por dados de satélite. Para já, no entanto, os cosmólogos vão estar ocupados a pensar mais à frente. E a ponderar o que pode esta descoberta significar para aquilo que sabemos (ou julgamos saber) sobre a história do universo.

Título do artigo alterado às 10h para clarificar as consequências da teoria construída pelos investigadores com base nas medições químicas feitas em 43 estrelas.

Observador
Marta Leite Ferreira
05 Mar 2020, 09:00

 

spacenews

 

3478: Descoberta explosão recorde por buraco negro

CIÊNCIA/ASTRONOMIA

As evidências da maior explosão alguma vez vista no Universo surgem de uma combinação de dados de raios-X obtidos pelo Chandra e pelo XMM-Newton, com dados de rádio obtidos pelo MWA e pelo GMRT. A erupção foi desencadeada por um buraco negro localizado na galáxia central do enxame, que expeliu jactos e esculpiu uma grande cavidade no gás quente em redor. Os investigadores estimam que esta explosão libertou cinco vezes mais energia do que o recordista anterior e centenas de milhares de vezes mais do que um típico enxame galáctico. Crédito: raios-X – NASA/CXC/NRL/S. Giacintucci, et al., XMM-Newton; ESA/XMM-Newton; rádio – NCRA/TIFR/GMRT; infravermelho – 2MASS/UMass/IPAC-Caltech/NASA/NSF

Foi encontrada a maior explosão já vista no Universo. Esta gigantesca erupção recorde veio de um buraco negro num distante enxame galáctico a centenas de milhões de anos-luz de distância.

“De certa forma, esta explosão é semelhante ao modo como a erupção do Monte Santa Helena em 1980 destruiu o topo da montanha,” disse Simona Giacintucci do Laboratório Naval de Investigação em Washington, DC, EUA, autora principal do estudo. “Uma diferença fundamental é que podíamos colocar quinze Vias Lácteas seguidas na cratera criada pela erupção que perfurou o gás quente do enxame.”

Os astrónomos fizeram esta descoberta usando dados de raios-X do Observatório de raios-X Chandra da NASA, do XMM-Newton da ESA, e dados rádio do MWA (Murchison Widefield Array) na Austrália e do GMRT (Giant Metrewave Radio Telescope) na Índia.

A incomparável explosão foi detectada no enxame galáctico de Ofiúco, que fica a cerca de 390 milhões de anos-luz da Terra. Os enxames de galáxias são as maiores estruturas do Universo mantidas juntas pela gravidade, contendo milhares de galáxias individuais, matéria escura e gás quente.

No centro do enxame de Ofiúco, existe uma grande galáxia que contém um buraco negro super-massivo. Os cientistas pensam que a fonte da erupção gigantesca é este buraco negro.

Embora os buracos negros sejam famosos por puxar material na sua direcção, normalmente expelem quantidades prodigiosas de material e energia. Isto ocorre quando a matéria que cai em direcção ao buraco negro é redireccionada para jactos, ou feixes, expelidos para o espaço e que chocam com qualquer material circundante.

As observações do Chandra relatadas em 2016 revelaram pela primeira vez pistas da explosão gigante no enxame de galáxias de Ofiúco. Norbert Werner e colegas divulgaram a descoberta de uma invulgar borda curva na imagem do enxame pelo Chandra. Consideraram se isso representava parte da parede de uma cavidade no gás quente criado pelos jactos do buraco negro super-massivo. No entanto, descartaram essa possibilidade, em parte porque seria necessária uma quantidade enorme de energia para o buraco negro criar uma cavidade tão grande.

O estudo mais recente por Giacintucci e colegas mostra que ocorreu, de facto, uma enorme explosão. Primeiro, mostraram que a aresta curva também é detectada pelo XMM-Newton, confirmando a observação do Chandra. O seu avanço crucial foi a utilização de novos dados de rádio do MWA e do arquivo do GMRT para mostrar que a orla curva faz realmente parte da parede de uma cavidade, porque faz fronteira com uma região cheia de emissão de rádio. Esta emissão é de electrões acelerados até quase à velocidade da luz. A aceleração provavelmente teve origem no buraco negro super-massivo.

“Os dados de rádio cabem dentro dos de raios-X como uma mão numa luva,” disse Maxim Markevitch do Centro de Voo Espacial Goddard da NASA em Greenbelt, no estado norte-americano de Maryland. “Este é o argumento decisivo que nos diz que ocorreu aqui uma erupção de tamanho sem precedentes.”

A quantidade de energia necessária para criar a cavidade em Ofiúco é cerca de cinco vezes maior que o recordista anterior, MS 0735+74, e centenas de milhares de vezes maior que os enxames típicos.

A erupção do buraco negro deve ter terminado porque os cientistas não vêm nenhuma evidência de jactos actuais nos dados de rádio. Este desligar pode ser explicado pelos dados do Chandra, que mostram que o gás mais denso e mais frio visto em raios-X está actualmente localizado numa posição diferente da galáxia central. Se este gás se tiver afastado da galáxia, terá privado o buraco negro de combustível para o seu crescimento, desligando os jactos.

Este deslocamento de gás é provavelmente provocado pelo “vascolejar” do gás em torno do meio do enxame, como vinho num copo. Normalmente, a fusão de dois enxames de galáxias desencadeia tal agitação, mas aqui pode ter sido despoletada pela erupção.

Um enigma é que apenas é vista uma região gigante de emissão de rádio, pois estes sistemas geralmente contêm duas em lados opostos do buraco negro. É possível que o gás do outro lado da cavidade do enxame seja menos denso, de modo que as emissões de rádio desvaneceram mais rapidamente.

“Como costuma ser o caso na astrofísica, precisamos realmente de observações em vários comprimentos de onda para entender verdadeiramente os processos físicos em funcionamento,” disse Melanie Johnston-Hollitt, co-autora do ICRAR (International Centre for Radio Astronomy) na Austrália. “Graças às informações combinadas de telescópios de raios-X e de rádio, conseguimos revelar esta fonte extraordinária, mas serão necessários mais dados para responder às muitas perguntas restantes que este objecto coloca.”

O artigo que descreve estes resultados foi publicado na edição de 27 de Fevereiro da revista The Astrophysical Journal.

Astronomia On-line
3 de Março de 2020

 

spacenews

 

Um “Jekyll e Hyde” cósmico

CIÊNCIA/ASTRONOMIA

Nesta nova imagem de Terzan 5 (direita), os raios-X fracos, médios e altamente energéticos detectados pelo Chandra têm a cor vermelha, verde e azul, respectivamente. À esquerda, uma imagem do Telescópio Espacial Hubble mostra o mesmo campo no visível.
Credito: raios-X – NASA/CXC/Universidade de Amesterdão/N. Degenaar, et al.; óptico – NASA, ESA

De acordo com observações do Observatório de raios-X Chandra da NASA e do VLA (Karl F. Jansky Very Large Array) da NSF (National Science Foundation), um sistema estelar binário tem vindo a alternar entre dois alter-egos. Usando quase uma década e meia de dados do Chandra, os investigadores notaram que um par estelar se comporta como um tipo de objecto antes de mudar a sua identidade e depois regressa ao seu estado original ao fim de alguns anos. Este é um exemplo raro de um sistema estelar que altera o seu comportamento desta maneira.

Os astrónomos encontraram esta volátil estrela dupla, ou sistema binário, numa densa colecção de estrelas, o enxame globular Terzan 5, localizado a mais ou menos 20.000 anos-luz da Terra, na Via Láctea. Esta dupla estelar, conhecida como Terzan 5 CX1, tem uma estrela de neutrões (o remanescente extremamente denso deixado para trás por uma explosão de super-nova) em órbita íntima com uma estrela semelhante ao Sol, mas com menos massa.

Em sistemas binários como Terzan 5 CX1, a estrela de neutrões mais pesada puxa o material da companheira de massa inferior para um disco circundante. Os astrónomos podem detectar estes denominados discos de acreção graças à sua brilhante radiação em raios-X e referem-se a estes objectos como “binários de raios-X de baixa massa.”

O material giratório no disco cai sobre a superfície da estrela de neutrões, acelerando a sua rotação. A estrela de neutrões pode girar cada vez mais depressa até que a esfera com aproximadamente 16 km de diâmetro, com mais massa do que o Sol, gira centenas de vezes por segundo. Eventualmente, a transferência de matéria diminui e o material restante é varrido pelo campo magnético giratório da estrela de neutrões, que se torna num pulsar de milissegundo. Os astrónomos detectam pulsos de ondas de rádio destes pulsares de milissegundo enquanto o feixe de ondas de rádio da estrela de neutrões aponta para a Terra durante cada rotação.

Embora os cientistas esperem que a evolução completa de um binário de raios-X de baixa massa para um pulsar de milissegundo ocorra ao longo de vários milhares de milhões de anos, existe um período de tempo em que o sistema pode alternar rapidamente entre estes dois estados. As observações de Terzan 5 CX1 pelo Chandra mostram que estava a agir como um binário de raios-X de baixa massa em 2003, porque era mais brilhante em raios-X do que qualquer uma das dezenas de outras fontes no enxame globular. Isto era um sinal de que a estrela de neutrões provavelmente estava a acumular matéria.

Nos dados do Chandra obtidos de 2009 a 2014, Terzan 5 CX1 havia se tornado cerca de dez vezes mais fraco em raios-X. Os astrónomos também o detectaram como uma fonte de rádio com o VLA em 2012 e 2014. A quantidade de emissão de rádio e raios-X e os espectros correspondentes (a quantidade de emissão em diferentes comprimentos de onda) concordam com as expectativas de um pulsar de milissegundo. Embora os dados rádio usados não permitam uma busca por pulsos de milissegundo, estes resultados implicam que Terzan 5 CX1 passou por uma transformação, passando a comportar-se como um pulsar de milissegundo e que estava a ejectar material. Quando o Chandra observou Terzan 5 CX1 novamente em 2016, tornou-se mais brilhante em raios-X e voltou a agir novamente como um binário de raios-X de baixa massa.

Para confirmar este padrão de comportamento “Jekyll e Hyde”, os astrónomos precisam de detectar pulsos de rádio enquanto Terzan 5 CX1 é fraco em termos de raios-X. Estão planeadas mais observações no rádio e em raios-X para procurar este comportamento, além de pesquisas sensíveis de pulsos nos dados existentes. Apenas se conhecem três exemplos confirmados destes sistemas que mudam de identidade, o primeiro descoberto em 2013 usando o Chandra e vários outros telescópios de raios-X e rádio.

O estudo do binário “Jekyll e Hyde” foi liderado por Arash Bahramian do ICRAR (International Center for Radio Astronomy Research), Austrália, e publicado na edição de 1 de Setembro de 2018 da revista The Astrophysical Journal.

Dois outros estudos recentes usaram observações de Terzan 5 pelo Chandra para estudar como as estrelas de neutrões de dois diferentes binários de raios-X de baixa massa se recuperam depois de terem recebido grandes quantidades de material despejado na superfície por uma estrela companheira. Tais estudos são importantes para entender a estrutura da camada externa de uma estrela de neutrões, conhecida como crosta.

Num destes estudos, o do binário de raios-X de baixa massa Swift J174805.3–244637 (T5 X-3 para abreviar), o material despejado na estrela de neutrões durante uma explosão de raios-X detectada em 2012 pelo Chandra aqueceu a crosta da estrela. A crosta da estrela de neutrões então arrefeceu, levando cerca de cem dias para voltar à temperatura observada antes da explosão. O ritmo de arrefecimento está de acordo com um modelo de computador deste processo.

Num estudo separado de outro binário de raios-X de baixa massa em Terzan 5, IGR J17480–2446 (T5 X-2 para abreviar), a estrela de neutrões ainda estava a arrefecer quando a sua temperatura foi registada cinco anos e meio depois de se saber ter tido um surto. Estes resultados mostram que a capacidade da crosta desta estrela de neutrões em transferir ou conduzir calor pode ser menor do que a que os astrónomos encontraram noutras estrelas de neutrões a arrefecer ou em binários de raios-X de baixa massa. Esta diferença na capacidade de conduzir calor pode estar relacionada com o facto de T5 X-2 ter um campo magnético maior em comparação com outras estrelas de neutrões em arrefecimento, ou ser muito mais jovem do que T5 X-3.

O trabalho sobre a estrela de neutrões de arrefecimento rápido, liderado por Nathalie Degenaar da Universidade de Amesterdão, Países Baixos, foi publicado na edição de Junho de 2015 da revista Monthly Notices of the Royal Astronomical Society. O estudo da estrela de neutrões de arrefecimento lento, liderado por Laura Ootes, na altura da Universidade de Amesterdão, foi publicado na edição de Julho de 2019 da revista Monthly Notices of the Royal Astronomical Society.

Astronomia On-line
3 de Março de 2020

 

spacenews

 

3473: Astrónomos descobrem a maior explosão desde o Big Bang

CIÊNCIA/ASTRONOMIA

Cientistas descobriram a maior explosão desde o Big Bang: cinco vezes maior do que qualquer outra registada desde o início do universo. O primeiro sinal da explosão foi observado em 2016.

Astrónomos dos EUA e da Austrália descobriram a maior explosão no espaço desde o Big Bang, que deu início ao universo. A explosão libertou cinco vezes mais energia do que a segunda maior explosão registada desde o início do universo e os cientistas avançam que terá tido origem num buraco negro super-massivo, escreve a BBC. O primeiro sinal de explosão foi observado em 2016.

Já vimos explosões nos centros de galáxias antes, mas esta é realmente muito grande”, disse Melanie Johnston-Holitt, professora do Centro Internacional de Pesquisa em Radioastronomia (ICRAR), na Austrália, à Deutsche Welle. “E não sabemos porque é que é tão grande”, acrescentou.

Segundo os cientistas, a explosão já terminou e são agora necessárias observações mais aprofundadas para se determinar o que aconteceu. “Fizemos esta descoberta com a Fase 1 do MWA, quando o telescópio tinha 2048 antenas apontadas para o céu. Em breve, reuniremos observações com 4096 antenas, que devem ser 10 vezes mais sensíveis. Acho isto muito emocionante”, disse Johnston-Hollitt.

A explosão ocorreu a cerca de 390 milhões de anos-luz de distância, no centro do aglomerado de galáxias de Ophiuchus, e foi descoberta graças ao Observatório de raios-X Chandra da NASA, um telescópio espacial, e ao uso de telescópios terrestres e do Observatório Europeu do Sul.

Em 2016, as imagens captadas pelo telescópio espacial revelaram uma curva pouco comum no conglomerado que poderia ser a parede de um buraco, mas uma possível erupção foi descartada pelos cientistas, uma vez que seria necessária uma grande quantidade de energia. Mais recentemente, a curvatura revelou ser realmente um buraco negro.

Os cientistas, no entanto, duvidaram da sua descoberta, devido ao tamanho do buraco, que equivalia a 15 Vias Lácteas – um número elevado em relação à anterior detentora do recorde. Os novos dados do radiotelescópio de baixa frequência australiano Murchison Widefield Array (MWA)  e do radiotelescópio indiano Giant Metrewave Radio Telescope (GMRT) vieram finalmente confirmar as suspeitas.

Observador
28 Fev 2020, 10:04

 

robotstargate@gmail.com

 

3472: Terra tem uma segunda Lua em órbita e é do tamanho de um automóvel

CIÊNCIA/ASTRONOMIA

O novo satélite estará na órbita terrestre durante algum tempo, de forma temporária. Trata-se de um pequeno asteróide e é a segunda mini-Lua a ser descoberta.

Mini-Lua foi descoberta por cientistas do projecto Catalina Sky Survey, financiado pela NASA
© Catalina Sky Survey

A Terra tem uma segunda “mini-Lua”, um asteróide que é do tamanho de um automóvel e estará na órbita terrestre há três anos, revelam os astrónomos que descobriram este objecto. Não deve ficar por muito mais tempo: em Abril apontam os cientistas, deve sair da órbita.

Com aproximadamente 1,9 a 3,5 metros de diâmetro, o objecto foi observado na noite de 15 de Fevereiro pelos investigadores Kacper Wierzchos e Teddy Pruyne, do projeto Catalina Sky Survey (CSS), financiado pela NASA (a agência espacial americana), no estado do Arizona.

Grande Notícia. A Terra tem um novo objecto capturado temporariamente/Possível mini-Lua chamada 2020 CD3“, que pode ser um asteróide tipo C [com uma importante composição de carvão, muito escuro], tuitou Wierzchos na quarta-feira.

Kacper Wierzchos @WierzchosKacper

BIG NEWS (thread 1/3). Earth has a new temporarily captured object/Possible mini-moon called 2020 CD3. On the night of Feb. 15, my Catalina Sky Survey teammate Teddy Pruyne and I found a 20th magnitude object. Here are the discovery images.

O cientista disse que a informação é “importante”, porque “é apenas o segundo asteróide conhecido a orbitar a Terra, depois do 2006 RH120, também descoberto pelo CSS. A sua rota indica que entrou na órbita terrestre há três anos, acrescentou.

O centro de planetas menores do Observatório Astrofísico Smithsonian, que acumula informação sobre os objectos menores do sistema solar, disse que “nenhum vínculo com um objecto artificial foi encontrado”. Por outras palavras: trata-se, sem qualquer dúvida, de um asteróide capturado pela gravidade terrestre.

A dinâmica orbital “indica que este objecto está temporariamente ligado à Terra”.

Este novo vizinho terrestre não está numa órbita estável e é pouco provável que permaneça nessa posição por muito tempo.

“Está a afastar-se do sistema Terra-Lua, enquanto conversamos”, e deve sair em Abril, disse o investigador Grigori Fedorets, da Queen’s University, de Belfast, à revista “New Scientist“.

O único asteróide até agora conhecido a gravitar em torno da Terra, o 2006 RH120, esteve em órbita de Setembro de 2006 a Junho de 2007.

Diário de Notícias

DN/AFP
27 Fevereiro 2020 — 19:23

 

robotstargate@gmail.com

 

 

3471: Estudante de astronomia descobre 17 planetas e um pode ser habitável

CIÊNCIA/ASTRONOMIA

Michelle Kunimoto, uma estudante de astronomia da Universidade da Colúmbia Britânica, descobriu 17 novos planetas. Na sua investigação, a jovem candidata a astrónoma poderá ter encontrado também um mundo potencialmente habitável, sensivelmente do tamanho da Terra. Estas descobertas foram conseguidas depois de analisados os dados recolhidos pela missão Kepler da NASA.

Durante a sua missão original de quatro anos, o satélite Kepler procurou mundos extras-solares, especialmente aqueles encontrados na chamada zona habitável das suas estrelas, onde a água líquida poderia existir na superfície.

Descoberto planeta com tamanho próximo da Terra

As novas descobertas, publicadas no The Astronomical Journal, incluem um daqueles planetas muito procurados e particularmente raros. Oficialmente chamado KIC-7340288 b, o planeta descoberto por Kunimoto é uma vez e meia o tamanho da Terra, pequeno o suficiente para ser considerado rochoso, em vez de gasoso como os planetas gigantes do Sistema Solar, e está localizado na área habitável da sua estrela.

Este planeta está a cerca de mil anos-luz de distância, então não chegaremos lá em breve! Mas esta é uma descoberta realmente empolgante, já que até agora apenas quinze pequenos planetas confirmados foram encontrados na zona habitável nos dados de Kepler.

Referiu Kunimoto,  candidata ao doutoramento no departamento de física e astronomia.

NDTV @ndtv

17 new planets including habitable Earth-sized world discovered. https://www.ndtv.com/science/17-new-planets-including-habitable-earth-sized-world-discovered-by-university-of-british-columbia-ub-2187518 

Para dar a volta ao seu sol, o planeta demora cerca de 142 dias (terrestres), tem, por isso, um ano curto, face à Terra. Isto porque a sua estrela é orbitada a 0,444 unidades astronómicas (AU, a distância entre a Terra e o Sol). Em termos comparativos, está um pouco além da órbita de Mercúrio no nosso Sistema Solar. No entanto, o planeta recebe aproximadamente um terço da luz que a Terra obtém do Sol.

Michelle Kunimoto analisou os dados recuperados pela missão Kepler da NASA – UCB

E os outros 16 planetaS?

Dos outros 16 novos planetas descobertos, o menor tem apenas dois terços do tamanho da Terra, um dos menores que já foram encontrados com o Kepler até agora. O resto varia até oito vezes o tamanho da Terra.

Mas não é a primeira vez que a talentosa Kunimoto descobre novos mundos. A estudante de facto tem queda para a ciência dos astros. Na sua caminhada, ela havia já descoberto 4 planetas durante a sua graduação na UBC. Como muitos outros astrónomos, usa o que é conhecido como “método de trânsito” para procurar candidatos entre as aproximadamente 200 000 estrelas observadas pela missão Kepler.

Sempre que um planeta passa na frente da estrela, ele bloqueia uma parte da luz e causa uma diminuição temporária no brilho. Assim, quando são detectados estes mergulhos, conhecidos como trânsitos, podemos começar a recolher informações sobre o planeta, como o seu tamanho e quanto tempo leva para orbitar.

Explicou Kunimoto.

Um mundo de novos planetas e estrelas para se descobrir

Além das novas descobertas, a jovem conseguiu observar milhares de planetas Kepler conhecidos. Na base do seu trabalho, está o método de trânsito, que ajudará a analisar novamente o vasto mundo de exoplanetas. Assim, poderá tentar perceber quantos planetas podem existir para estrelas com temperaturas diferentes, quantos são do tamanho da Terra e quantos estarão na chamada zona habitável.

Terra 2.0: astrónomos dizem que há um planeta semelhante ao nosso

A Humanidade terá um dia de sair deste planeta para outro, segundo já afirmaram vários especialistas. Contudo, a mudança será complicada se Marte for a opção, falta tudo. Nesse modo, a busca por uma … Continue a ler Terra 2.0: astrónomos dizem que há um planeta semelhante ao nosso

 

3470: Grande exoplaneta pode ter as condições ideais para a vida

CIÊNCIA/ASTRONOMIA

Impressão de artista do exoplaneta K2-18b.
Crédito: Amanda Smith

Os astrónomos descobriram que um exoplaneta com mais do dobro do tamanho da Terra é potencialmente habitável, alargando a busca por vida a planetas significativamente maiores que a Terra, mas mais pequenos que Neptuno.

Uma equipa da Universidade de Cambridge usou a massa, o raio e os dados atmosféricos do exoplaneta K2-18b e determinou que é possível que o planeta hospede água líquida em condições habitáveis sob a sua atmosfera rica em hidrogénio. Os resultados foram divulgados na revista The Astrophysical Journal Letters.

O exoplaneta K2-18b, a 124 anos-luz de distância, tem 2,6 vezes o raio e 8,6 vezes a massa da Terra, e orbita a sua estrela dentro da zona habitável, onde as temperaturas podem permitir a existência de água líquida. O planeta foi objecto de uma cobertura significativa por parte da comunicação social no outono de 2019, quando duas equipas diferentes relataram a detecção de vapor de água na sua atmosfera rica em hidrogénio. No entanto, a extensão da atmosfera e as condições por baixo continuavam desconhecidas.

“O vapor de água já foi detectado nas atmosferas de vários exoplanetas, mas mesmo que o planeta esteja na zona habitável, isso não significa necessariamente que existam condições habitáveis à superfície,” disse o Dr. Nikku Madhusudhan do Instituto de Astronomia de Cambridge, que liderou a nova investigação. “Para estabelecer as perspectivas de habitabilidade, é importante obter uma compreensão unificada das condições interiores e atmosféricas do planeta – em particular, se a água líquida pode existir sob a atmosfera.”

Dado o grande tamanho de K2-18b, sugeriu-se que seria mais como uma versão mais pequena de Neptuno do que uma versão maior da Terra. Espera-se que um “mini-Neptuno” tenha um “invólucro” significativo de hidrogénio em redor de uma camada de água a alta pressão, com um núcleo interno de rocha e ferro. Se o invólucro de hidrogénio for demasiado espesso, a temperatura e pressão à superfície da camada de água seriam demasiado grandes para suportar vida.

Agora, Madhusudhan e a sua equipa mostraram que, apesar do tamanho de K2-18b, o seu invólucro de hidrogénio não é necessariamente muito espesso e a camada de água pode ter as condições ideais para suportar vida. Usaram as observações existentes da atmosfera, bem como a massa e o raio, para determinar a composição e a estrutura da atmosfera e do interior usando modelos numéricos detalhados e métodos estatísticos para explicar os dados.

Os investigadores confirmaram que a atmosfera é rica em hidrogénio com uma quantidade significativa de vapor de água. Também descobriram que os níveis de outras substâncias químicas, como metano e amónia, estavam abaixo do esperado para uma tal atmosfera. Ainda não se sabe se esses níveis podem ser atribuídos a processos biológicos.

A equipa usou então as propriedades atmosféricas como condições limite para modelos do interior planetário. Exploraram uma ampla gama de modelos que podiam explicar as propriedades atmosféricas, bem como a massa e raio do planeta. Isto permitiu-lhes obter a gama de possíveis condições no interior, incluindo o tamanho do invólucro de hidrogénio e as temperaturas e pressões na camada de água.

“Queríamos saber a espessura do invólucro de hidrogénio – qual a profundidade deste hidrogénio,” disse o co-autor Matthew Nixon, estudante de doutoramento do Instituto de Astronomia de Cambridge. “Embora esta seja uma pergunta com várias soluções, mostrámos que não precisamos de muito hidrogénio para explicar todas as observações.”

Os investigadores descobriram que a extensão máxima do invólucro de hidrogénio permitida pelos dados é de cerca de 6% da massa do planeta, embora a maioria das soluções exija muito menos. A quantidade mínima de hidrogénio é cerca de um milionésimo da massa, semelhante à fracção de massa da atmosfera da Terra. Em particular, vários cenários permitem um mundo oceânico, com água líquida por baixo da atmosfera a pressões e temperaturas semelhantes às encontradas nos oceanos da Terra.

Este estudo abre a busca por condições habitáveis e por assinaturas biológicas para lá do Sistema Solar a exoplanetas significativamente maiores que a Terra, além dos exoplanetas parecidos com a Terra. Em adição, planetas como K2-18b são mais acessíveis a observações atmosféricas com instalações observacionais actuais e futuras. As restrições atmosféricas obtidas neste estudo podem ser refinadas usando observações futuras com grandes instalações, como o futuro Telescópio Espacial James Webb.

Astronomia On-line
28 de Fevereiro de 2020

 

spacenews

 

3463: Como as estrelas recém-nascidas se preparam para o nascimento dos planetas

CIÊNCIA/ASTRONOMIA

O ALMA e o VLA observaram mais de 300 proto-estrelas e seus jovens discos proto-planetários em Orionte. Esta imagem mostra um subconjunto de estrelas, incluindo alguns binários. Os dados do ALMA e do VLA complementam-se uns aos outros: o ALMA vê a estrutura do disco externo (a azul) e o VLA observa o disco interno e o núcleo estelar (laranja).
Crédito: ALMA (ESO/NAOJ/NRAO), J. Tobin; NRAO/AUI/NSF, S. Dagnello

Uma equipa internacional de astrónomos usou dois dos radiotelescópios mais poderosos do mundo para criar mais de trezentas imagens de discos de formação planetária em torno de estrelas muito jovens nas Nuvens de Orionte. Estas imagens revelam novos detalhes sobre os locais de nascimento dos planetas e sobre os estágios iniciais da formação estelar.

A maioria das estrelas do Universo é acompanhada por planetas. Estes planetas nascem em anéis de poeira e gás, chamados discos proto-planetários. Mesmo estrelas muito jovens estão cercadas por estes discos. Os astrónomos querem saber exactamente quando estes discos começam a se formar e qual o seu aspecto. Mas as estrelas jovens são muito fracas e existem densas nuvens de poeira e gás em seu redor, nos berçários estelares. Somente complexos de radiotelescópios altamente sensíveis conseguem localizar os pequenos discos em redor destas estrelas infantis por entre o material densamente compacto nestas nuvens.

Nesta nova investigação, os astrónomos apontaram o VLA (Karl G. Jansky Very Large Array) da NSF (National Science Foundation) e o ALMA (Atacama Large Millimeter/submillimeter Array) para uma região no espaço onde nascem muitas estrelas: as Nuvens Moleculares de Orionte. Este levantamento, de nome VANDAM (VLA/ALMA Nascent Disk and Multiplicity), é até à data o maior levantamento de estrelas jovens e dos seus discos.

As estrelas muito jovens, também chamadas proto-estrelas, formam-se em nuvens de gás e poeira no espaço. O primeiro passo na formação de uma estrela é o colapso destas nuvens densas devido à gravidade. À medida que a nuvem colapsa, começa a girar – formando um disco achatado em torno da proto-estrela. O material do disco continua a alimentar a estrela e a fazê-la crescer. Eventualmente, o material restante no disco deverá formar planetas.

Muitos aspectos destes primeiros estágios da formação estelar, e de como o disco se forma, ainda não são claros. Mas esta nova investigação fornece algumas pistas em falta, pois o VLA e o ALMA espiaram através das nuvens densas e observaram centenas de proto-estrelas e seus discos em vários estágios de formação.

Jovens discos de formação planetária

“Este levantamento revelou a massa e o tamanho médio destes discos proto-planetários muito jovens,” disse John Tobin, do NRAO (National Radio Astronomy Observatory) em Charlottesville, no estado norte-americano da Virgínia, e líder da equipa científica. “Agora podemos compará-los com discos mais antigos que também foram estudados intensivamente com o ALMA.”

O que Tobin e a sua equipa descobriram, é que discos muito jovens podem ter tamanho semelhante, mas são, em média, muito mais massivos do que os discos mais antigos. “Quando uma estrela cresce, consome cada vez mais material do disco. Isto significa que os discos mais jovens têm muito mais matéria-prima da qual os planetas podem formar-se. Possivelmente já começaram a ser formados, em torno de estrelas muito jovens, planetas maiores.”

Quatro proto-estrelas especiais

Entre as centenas de imagens deste levantamento, quatro proto-estrelas parecem diferentes das outras e chamaram a atenção dos cientistas. “Estas estrelas recém-nascidas pareciam muito irregulares e desajeitadas,” disse Nicole Karnath, membro da equipa e da Universidade de Toledo, Ohio (agora no Centro Científico do SOFIA). “Pensamos que estão num dos estágios mais iniciais da formação estelar e algumas talvez ainda nem se tenham transformado em proto-estrelas.”

A descoberta destes quatro objectos, pelos cientistas, é especial. “Raramente encontramos mais do que um objecto irregular numa observação,” acrescentou Karnath, que usou quatro destas estrelas infantis para propor um caminho esquemático para os estágios iniciais da formação estelar. “Não temos a certeza da sua idade, mas têm provavelmente menos de dez mil anos.”

Para serem definidas como uma típica proto-estrela (classe 0), as estrelas não devem apenas ter um disco giratório achatado em seu redor, mas também um fluxo – expelindo material em direcções opostas – que limpa a nuvem densa em torno das estrelas e as torna opticamente visíveis. Este fluxo é importante, porque impede que as estrelas descontrolem a sua rotação enquanto crescem. Mas exactamente quando é que estes fluxos começam, é uma questão em aberto na astronomia.

Uma das estrelas infantis neste estudo, chamada HOPS 404, possui um fluxo de apenas dois quilómetros por segundo (um típico fluxo proto-estelar tem 10-100 km/s). “É um grande sol inchado que ainda está a acumular muita massa e que apenas começou o seu fluxo para perder momento angular e assim continuar a crescer,” explicou Karnath. “Este é um dos fluxos mais pequenos que já vimos e apoia a nossa teoria do aspecto do primeiro passo na formação de uma proto-estrela.”

Combinando o ALMA e o VLA

A excelente resolução e sensibilidade desta investigação, fornecidas pelo ALMA e pelo VLA, foram cruciais para entender as regiões exteriores e interiores das proto-estrelas e dos seus discos. Embora o ALMA possa examinar em grande detalhe o material denso e empoeirado em torno de proto-estrelas, as imagens do VLA obtidas a maiores comprimentos de onda foram essenciais para entender as estruturas internas das proto-estrelas mais jovens a escalas mais pequenas do que o nosso Sistema Solar.

“A combinação do ALMA e do VLA deu-nos o melhor dos dois mundos,” disse Tobin. “Graças a estes telescópios, começamos a entender o início da formação planetária.”

Astronomia On-line
25 de Fevereiro de 2020

 

spacenews

 

3462: Planeta com ano de 18 horas à beira da destruição

CIÊNCIA/ASTRONOMIA

Impressão de artista de um Júpiter quente orbitando muito perto de uma estrela.
Crédito: Universidade de Warwick/Mark Garlick

Astrónomos da Universidade de Warwick observaram um exoplaneta orbitando uma estrela em pouco mais de 18 horas, o período orbital mais curto já observado para um planeta do seu tipo.

Isto significa que a duração do ano para este Júpiter quente – um gigante gasoso semelhante em tamanho e composição com Júpiter, no nosso próprio Sistema Solar – é inferior a um dia terrestre.

O achado foi divulgado num artigo científico publicado dia 20 de Fevereiro na revista Monthly Notices of the Royal Astronomical Society e os cientistas pensam que pode ajudar a descobrir se os planetas deste género estão, ou não, numa espiral destrutiva em direcção aos seus sóis.

O planeta NGTS-10b foi descoberto a cerca de 1000 anos-luz de distância da Terra, como parte do NGTS (Next-Generation Transit Survey), um levantamento exoplanetário sediado no Chile que visa descobrir planetas do tamanho de Neptuno usando o método de trânsito. Isto envolve a observação de estrelas em busca de uma queda no brilho, indicativa da passagem de um planeta à sua frente.

A qualquer momento o levantamento observa 100 graus quadrados do céu, que inclui cerca de 100.000 estrelas. Dessas 100.000 estrelas, esta chamou a atenção dos astrónomos devido aos mergulhos muito frequentes no brilho estelar provocados pela rápida órbita do planeta.

O autor principal Dr. James McCormac, do Departamento de Física da Universidade de Warwick, disse: “Estamos empolgados em anunciar a descoberta de NGTS-10b, um planeta do tamanho de Júpiter com um período extremamente curto que orbita uma estrela não muito diferente do nosso Sol. Também estamos satisfeitos com o facto do NGTS continuar a empurrar as fronteiras da ciência terrestre de trânsitos exoplanetários através da descoberta de classes raras de exoplanetas.

“Embora, em teoria, os Júpiteres quentes com períodos orbitais curtos (menos de 24 horas) sejam os mais fáceis de detectar devido ao seu grande tamanho e trânsitos frequentes, provaram ser extremamente raros. Das centenas de Júpiteres quentes actualmente conhecidos, apenas sete têm um período orbital inferior a um dia.”

NGTS-10b orbita tão depressa porque está muito próximo do seu sol – a apenas o dobro do diâmetro da estrela que, no contexto do nosso Sistema Solar, a posicionaria 27 vezes mais perto do que Mercúrio está do nosso próprio Sol. Os cientistas notaram que está perigosamente perto do ponto em que as forças de maré da estrela acabariam por destruir o planeta.

É provável que o planeta sofra bloqueio de maré, de modo que um lado está constantemente virado para a estrela e constantemente quente – os astrónomos estimam que a temperatura média seja superior a 1000º C. A estrela, propriamente dita, tem mais ou menos 70% do raio do Sol e é 1000º C mais fria que o Sol, com cerca de 4000º C. NGTS-10b também é um excelente candidato para caracterização atmosférica com o Telescópio Espacial James Webb.

Usando fotometria de trânsito, os cientistas sabem que o planeta é 20% maior do que o nosso Júpiter e tem pouco mais de duas vezes a sua massa, de acordo com medições da velocidade radial, capturadas num ponto conveniente do seu ciclo de vida para ajudar a responder perguntas sobre a evolução deste tipo de planetas.

Os planetas massivos geralmente formam-se muito longe da estrela e depois migram por meio de interacções com o disco enquanto o planeta ainda está a formar-se, ou por meio de interacções com planetas adicionais muito mais tarde na sua vida. Os astrónomos planeiam solicitar tempo de observação para obter medições de alta precisão de NGTS-10b e continuar a observá-lo na próxima década para determinar se permanecerá nesta órbita por algum tempo – ou se entrará numa espiral da morte em direcção à sua estrela.

O co-autor Dr. David Brown acrescenta: “Pensa-se que estes planetas de período extremamente curto migram dos confins dos seus sistemas solares e acabam sendo consumidos ou perturbados pela estrela. Ou temos muita sorte de os avistar neste período orbital curto, ou os processos pelos quais o planeta migra para a estrela são menos eficientes do que imaginamos; nesse caso, poderá viver nesta configuração durante muito mais tempo.”

O co-autor Dr. Daniel Bayliss disse: “Nos próximos dez anos, pode ser possível ver este planeta a espiralar. Vamos poder usar o NGTS para o monitorizar ao longo de uma década. Se pudéssemos ver que o período orbital estava a começar a diminuir e o planeta a começar a espiralar, isso dir-nos-ia muito sobre a estrutura do planeta que ainda não sabemos.”

“Tudo o que sabemos sobre a formação planetária diz-nos que os planetas e as estrelas formam-se ao mesmo tempo. O melhor modelo que temos sugere que a estrela tem cerca de 10 mil milhões de anos e assumimos que o planeta também tem. Ou estamos a vê-lo nos últimos estágios da sua vida, ou de alguma forma é capaz de viver aqui por mais tempo do que devia.”

Astronomia On-line
25 de Fevereiro de 2020

 

spacenews

 

3456: A descoberta de Tombaugh revolucionou o conhecimento do nosso Sistema Solar

CIÊNCIA/ASTRONOMIA

A sonda New Horizons da NASA capturou esta imagem melhorada e de alta resolução de Plutão no dia 14 de Julho de 2015. A imagem combina imagens azuis, vermelhas e infravermelhas obtidas com o instrumento Ralph/MVIC (Multispectral Visual Imaging Camera). A superfície de Plutão mostra uma diversidade incrível de cores subtis, melhoradas nesta imagem para um arco-íris de azuis pálidos, amarelos, laranjas e vermelhos profundos. Muitas formações têm as suas cores distintas, contando uma complexa história geológica e climatológica que os cientistas apenas começaram a descodificar. A imagem resolve detalhes e cores a escalas tão pequenas quanto 1,3 km.
Crédito: NASA/Laboratório de Física Aplicada da Universidade Johns Hopkins/SwRI

Na passada terça-feira, 18 de Fevereiro, comemorou-se os 90 anos da descoberta de Plutão, por Clyde Tombaugh, um jovem astrónomo que trabalhava no Observatório Lowell em Flagstaff, no estado norte-americano do Arizona. Ao fazê-lo, abriu, sem saber, a porta para a vasta “terceira zona” do Sistema Solar que agora conhecemos como Cintura de Kuiper, que contém inúmeros planetesimais e planetas anões – a terceira classe de planetas no nosso Sistema Solar.

O homónimo do Observatório Lowell, Percival Lowell, propôs pela primeira vez a existência de um “Planeta X” algures para lá da órbita de Neptuno. Incapaz de o encontrar antes da sua morte em 1916, a procura pelo Planeta X parou por quase uma década, até renovada quando Tombaugh foi contratado em 1929. Tombaugh encontrou o objecto no dia 18 de Fevereiro de 1930, aos 24 anos de idade, usando um comparador Zeiss, um dispositivo que lhe permitia identificar objectos em movimento contra os campos estelares de fundo que havia fotografado.

“O que Tombaugh não sabia na altura era que o Planeta X lançaria a era da exploração da terceira zona do Sistema Solar,” disse Thomas Zurbuchen, administrador associado do Directorado de Missões Científicas da NASA. “A ciência baseia-se na ciência, e esta descoberta ajudou a pavimentar o caminho para a exploração desta região desconhecida pela New Horizons.”

Embora tenha morrido em 1997, parte das cinzas de Tombaugh estavam a bordo da sonda New Horizons da NASA quando foi lançada a partir da Estação da Força Aérea de Cabo Canaveral, Florida, em Janeiro de 2006. Estas cinzas, transportadas num pequeno receptáculo metálico, viajaram com a New Horizons numa viagem de nove anos e 5,25 mil milhões de quilómetros até Plutão para fazer a primeira exploração do planeta de Tombaugh.

A nave espacial passou por Plutão e pelas suas cinco luas no dia 15 de Julho de 2015, chegando a 12.500 km da superfície e fornecendo as agora icónicas imagens de Plutão e do seu coração, bem como de todas as cinco luas: Caronte, Nix, Hidra, Estige e Cérebro. A passagem revolucionou a compreensão da humanidade sobre o sistema de Plutão e sobre os planetas anões. Da variedade nas suas formações geológicas, à sua atmosfera complexa, às suas intrigantes luas, Plutão mostrou um nível de diversidade física e complexidade que poucos esperavam encontrar.

Uma vez imaginado por alguns como apenas uma rocha gelada, a New Horizons descobriu que Plutão é na verdade geologicamente activo. De estranhas e “afiadas” montanhas de metano a glaciares de azoto, de vulcões de gelo e à presença agora suspeita de um oceano de água líquida no interior do planeta, Plutão fez literalmente com que os cientistas planetários repensassem o quão complexos e activos até os planetas pequenos podem ser. Plutão também possui uma brilhante atmosfera azul de azoto, repleta de neblinas que se estendem meio milhão de metros no seu céu e possíveis neblinas e nevoeiros.

Após o sucesso do “flyby” por Plutão, a NASA estendeu a missão da New Horizons para passar por um pequeno objecto da Cintura de Kuiper mais de 1,6 mil milhões de quilómetros para lá de Plutão. No dia 1 de Janeiro de 2019, a New Horizons trouxe foco a esse corpo antigo, Arrokoth e, ao fazê-lo, revelou como os planetesimais – os blocos de construção de planetas como Plutão – foram formados.

“Olhando para trás, a descoberta de Tombaugh foi muito mais do que apenas a descoberta do nono planeta,” disse Alan Stern, investigador principal da New Horizons, do SwRI (Southwest Research Institute). “Foi o prenúncio de uma região totalmente nova do Sistema Solar e de dois tipos diferentes e completamente novos de corpos – planetas anões e objectos da Cintura de Kuiper. Eu só queria que Clyde tivesse vivido para ver tudo o que a New Horizons descobriu e quão incrivelmente bonito Plutão é.”

Astronomia On-line
21 de Fevereiro de 2020

 

spacenews

 

3447: Telescópio do ESO observa superfície de Betelgeuse a diminuir de brilho

CIÊNCIA/ASTRONOMIA

Este mosaico de comparação mostra a estrela Betelgeuse antes e depois da diminuição de brilho. As observações obtidas em Janeiro e Dezembro de 2019 com o instrumento SPHERE, montado no Very Large Telescope do ESO, mostram o quanto a estrela desvaneceu e como é que a sua forma aparente variou.
Crédito: ESO/M. Montargès et al.

Com o auxílio do VLT (Very Large Telescope) do ESO, os astrónomos capturaram a diminuição de brilho de Betelgeuse, uma estrela super-gigante vermelha localizada na constelação de Orionte. As novas imagens da superfície da estrela mostram não apenas a super-gigante vermelha a desvanecer em brilho, mas também a variação da sua forma aparente.

Betelgeuse tem sido um farol no céu nocturno para os observadores estelares, no entanto durante o último ano temos assistido a uma diminuição do seu brilho. Nesta altura Betelgeuse apresenta cerca de 36% do seu brilho normal, uma variação considerável, visível até a olho nu. Tanto os entusiastas da astronomia como os cientistas pretendiam descobrir o porquê desta diminuição de brilho sem precedentes.

Uma equipa liderada por Miguel Montargès, astrónomo na KU Leuven, Bélgica, tem estado desde Dezembro a observar a estrela com o VLT do ESO, com o objectivo de compreender porque é que esta se está a tornar mais ténue. Entre as primeiras observações da campanha encontra-se uma imagem da superfície de Betelgeuse, obtida no final do ano passado com o instrumento SPHERE.

A equipa tinha também observado a estrela com o SPHERE em Janeiro de 2019, antes da diminuição do seu brilho, dando-nos assim uma imagem do antes e do depois de Betelgeuse. Obtidas no óptico, as imagens destacam as mudanças que ocorreram na estrela, tanto em brilho como em forma aparente.

Muitos entusiastas da astronomia perguntam-se se esta diminuição de brilho da Betelgeuse significará que a estrela está prestes a explodir. Tal como todas as super-gigantes, um dia Betelgeuse transformar-se-á numa super-nova, no entanto os astrónomos não pensam que seja isso que está a acontecer actualmente, tendo formulado outras hipóteses para explicar o que está exactamente a causar as variações em forma e brilho observadas nas imagens SPHERE. “Os dois cenários em que estamos a trabalhar são um arrefecimento da superfície devido a actividade estelar excepcional ou ejecção de poeiras na nossa direcção,” explica Montargès. “Claro que o nosso conhecimento de super-gigantes vermelhas é ainda incompleto e este é um trabalho em curso, por isso podemos ainda ter alguma surpresa.”

Montargès e a sua equipa usaram o VLT instalado no Cerro Paranal, no Chile, para estudar a estrela, a qual se encontra a mais de 700 anos-luz de distância da Terra, e tentar encontrar pistas que apontem para o porquê da diminuição do seu brilho. “O Observatório do Paranal do ESO é uma das poucas infra-estruturas capazes de obter imagens da superfície de Betelgeuse,” diz Montargès. Os instrumentos montados no VLT permitem efectuar observações desde o visível ao infravermelho médio, o que significa que os astrónomos podem observar tanto a superfície da estrela como o material que a circunda. “Esta é a única maneira de compreendermos o que está a acontecer a esta estrela.”

Outra imagem nova, obtida com o instrumento VISIR montado no VLT, mostra a radiação infravermelha emitida pela poeira que circundava Betelgeuse em Dezembro de 2019. Estas observações foram realizadas por uma equipa liderada por Pierre Kervella do Observatório de Paris, França, que explicou que o comprimento de onda capturado nesta imagem é semelhante ao detectado por câmaras que detectam calor. As nuvens de poeira, que se assemelham a chamas na imagem VISIR, formam-se quando a estrela lança a sua matéria para o espaço.

“A frase ‘somos todos feitos de poeira estelar’ é algo que ouvimos muito na astronomia popular, mas donde é que vem exactamente esta poeira?” pergunta Emily Cannon, estudante de doutoramento na KU Leuven, que trabalha com imagens SPHERE de super-gigantes vermelhas. “Ao longo das suas vidas, as super-gigantes vermelhas como Betelgeuse criam e ejectam enormes quantidades de material ainda antes de explodirem sob a forma de super-novas. A tecnologia moderna permite-nos estudar estes objectos, situados a centenas de anos-luz de distância de nós, com um detalhe sem precedentes, dando-nos a oportunidade de desvendar o mistério que dá origem a esta perda de massa.”

Astronomia On-line
18 de Fevereiro de 2020

 

spacenews

 

3444: Quantos planetas existem no universo?

CIÊNCIA/ASTRONOMIA

Vivemos numa era onde a tecnologia tem revelado imensos novos mundos, estrelas, buracos negros e até possíveis planetas capazes, teoricamente, de albergar vida. No entanto, com tanta tecnologia, será possível termos uma ideia de quantos planetas poderão existir no universo?

Os astrónomos estimam que existem milhares de milhões de mundos além do nosso sistema solar. Mas quantos?

A nossa estrela tem 8 planetas. Será uma média?

Os astrónomos estimam que exista aproximadamente um exoplaneta por estrela na nossa galáxia. É claro que algumas estrelas têm muitos planetas – o nosso próprio Sol tem oito. E algumas estrelas não têm nenhum. Contudo, se uma estrela viver o suficiente, a regra é formar planetas.

Isso não significa que os astrónomos possam mapear todos estes milhões de estrelas. Quando se trata de exoplanetas que foram medidos ou contados de alguma forma, os números são muito menores.

Contador de planetas continua a contar

O contador de exoplanetas conhecidos – até este momento – está em 4126 mundos confirmados. No entanto, os astrónomos são surpreendentemente bons a descobrir o que não podem ver através deste vasto Universo.

Na verdade, actualmente a tecnologia dos telescópios ainda é pouco poderosa e precisa para detectar e contar os planetas mais furtivos, aqueles que são muito pequenos, os que estão muito distantes das suas estrelas ou aqueles que orbitam estrelas muito distantes da Terra.

Além disso, há regiões do espaço em que os astrónomos estão bastante confiantes de que encontraram todos os exoplanetas dentro de um determinado intervalo.

Ao combinar o conhecimento do que eles podem ver – os exoplanetas conhecidos – com o conhecimento do que eles não podem ver – as partes do espaço actualmente além da nossa capacidade de investigar – os astrónomos determinaram que deve haver cerca de um planeta por estrela na nossa galáxia. Ou seja, milhares de milhões de planetas!

Astrónomos descobrem planeta bebé gigante que está a apenas 330 anos-luz da Terra

Sem dúvida que o tamanho de Júpiter e Saturno impressionam pela sua imponência, estes gigantes gasosos “perto” da Terra estabeleceram uma escala para o nosso sistema solar. Conforme os conhecemos, estes dois planetas são … Continue a ler Astrónomos descobrem planeta bebé gigante que está a apenas 330 anos-luz da Terra

pplware
16 Fev 2020

 

spacenews

 

3442: O Ponto Azul-Claro a que chamamos casa

CIÊNCIA/OPINIÃO

A ideia da icónica fotografia partiu de Carl Sagan. A sonda Voyager 1 estava a 14 de Fevereiro de 1990 já para lá de Plutão, a cerca de 6400 milhões de quilómetros de distância da Terra, o Ponto Azul-Claro.

Hoje, 14 de Fevereiro, celebramos o 30º aniversário do Ponto Azul-Claro, uma fotografia do nosso planeta tirada pela sonda espacial Voyager 1. Nesta imagem vemos a Terra como um pequeno ponto na imensidão do espaço, mudando a forma de como vemos a Terra e forçando-nos a vê-la como simples ponto celeste perdido na vastidão do nosso Universo.

Do espaço, a Terra não é delimitada pelas fronteiras artificialmente definidas pelo homem: vemos mares e oceanos, uma massa de terra com diferentes cores, dependendo da sua cobertura (ou não) de vegetação e uma atmosfera dinâmica e em constante mutação. Um planeta único, frágil, complexo e maravilhoso ao qual nos é impossível ficar indiferentes e cuja fotografia nos revela que a nossa identidade como cidadãos deste planeta transcende fronteiras geográficas ou políticas; somos uma única comunidade: humanidade.

A Terra vista pela Voyager 1 para lá de Plutão NASA/JPL/Caltech

Presentemente, enfrentamos alguns dos maiores desafios da nossa sociedade que são globais: pandemias, migrações forçadas de populações e o maior desafio de todos: as alterações climáticas. O filósofo croata, Srećko Horvat, no seu último livro — Poesia do Futuro — avisa que “sem este sentimento de todo, não há escapatória” para os problemas globais que enfrentamos. Trinta anos depois desta imagem histórica, é essencial que, em conjunto, tomemos medidas urgentes e eficazes para salvaguardar o nosso planeta.

Nas salas de aula do ensino básico de todo o mundo continuamos a ensinar com um globo terrestre geopolítico, no qual os alunos desde muito cedo aprendem que o mundo está dividido em fronteiras imaginárias entre eles e nós, os de lá e dos de cá. O projecto que coordeno, “Universe Awareness”, tem vindo a equipar salas de aula com globos terrestres que representam realisticamente o nosso planeta. Em mais de 10 mil salas de aula espalhadas por 60 países, as crianças começam a conhecer a Terra como um planeta tal como o vemos do espaço, a perceber a sua composição física e a também fomentar noções de cidadania global. Movimentos como a “Greve Climática Estudantil/Sextas para o Futuro” também têm reunido milhares de jovens por todo o mundo a exigir (com algum sucesso) acção política global para combater as alterações climáticas.

Relembrarmos o Ponto Azul-Claro é relembrarmos a nossa responsabilidade como humanidade para protegermos o nosso planeta. A ideia da fotografia do Ponto Azul-Claro partiu de Carl Sagan — astrónomo e um dos maiores comunicadores de ciência do século XX — que resumiu a importância social desta fotografia: “Não há melhor demonstração da injustificável presunção humana do que esta imagem distante do nosso minúsculo mundo. Destaca a nossa responsabilidade de sermos mais amáveis uns com os outros, para preservarmos e protegermos o Ponto Azul-Claro, o único lar que conhecemos até hoje.”

Público
Pedro Russo
Professor de Astronomia e Sociedade, Universidade de Leiden (Holanda)
14 de Fevereiro de 2020, 20:40

 

spacenews