2782: O Sol é muito pequeno para acabar como buraco negro

CIÊNCIA

(CC0/PD) Buddy_Nath / Pixabay

O Sol não acabará a sua vida, tal como muitas outras estrelas, convertendo-se num buraco negro ou numa estrela de neutrões, recorda a NASA, dando conta que o seu destino final é outro: uma anã branca.

De acordo com a agência espacial norte-americana, a nossa estrelas precisaria de ser cerca de 20 vezes mais massivo para que terminasse a sua vida como buraco negro.

Segundo explica a NASA, as estrelas que nascem com este tamanho – 20 vezes a massa do Sol – ou com um tamanho maior podem explodir numa super-nova no final das suas vidas antes de desabar num buraco negro, objecto cósmico de grande força gravitacional. Nada, nem mesmo a luz, lhe pode escapar.

Algumas estrelas menores são suficientemente grandes para se tornarem super-novas, mas pequenas demais para se tornarem buracos negros. Por isso, estas entrarão em colapso em estruturas super densas – as chamadas estrelas de neutrões – depois de explodirem como uma super-nova.

O Sol também não é suficientemente grande para esse destino final: tem apenas um décimo da massa necessária para se tornar uma estrela de neutrões.

Então, o que acontecerá com o Sol? Dentro de 6 mil milhões de anos, a nossa estrela terminará como uma anã branca, um pequeno e denso remanescente de uma estrela que brilha com o excesso de calor. O processo, aponta a NASA, começará em cerca de 5.000 milhões de anos, quando o Sol começar a ficar sem combustível.

Tal como a maioria das estrelas, durante a fase principal da sua vida, o Sol cria energia através da fusão de átomos de hidrogénio no seu núcleo.  Daqui a 5.000 milhões de anos, o Sol começará a ficar sem hidrogénio, entrando assim em colapso. Esta situação permitirá ao Sol começar a fundir elementos mais pesados no núcleo, juntamente com a  fusão de hidrogénio numa concha envolvida em torno do núcleo.

Quando isso acontecer, a temperatura do Sol aumentará e as camadas externas da sua atmosfera vão expandir-se muito no Espaço, ao ponto de “engolir” a Terra – situação que tornaria a Terra inabitável para a vida tal como a conhecemos.

Esta será a fase gigante vermelha, que durará cerca de mil milhões de anos até que o Sol entre em colapso total para formar uma anã branca.

ZAP //

Por ZAP
6 Outubro, 2019

 

Encontradas duas estrelas “mortas” que se orbitam em minutos

Impressão de artista de um par de anãs brancas, de nome ZTF J1530+5027. Este par “eclipsante” de anãs brancas orbita-se uma à outra a cada sete minutos: quando a estrela maior e mais fria passa em frente, ou eclipsa, a estrela mais pequena e quente, a luz da estrela mais pequena é bloqueada. Para os astrónomos que observam o sistema, o par parece ter desaparecido durante aproximadamente 30 segundos durante a fase eclipsante da sua órbita.
Crédito: Caltech/IPAC/R. Hurt

Duas estrelas mortas foram vistas a orbitar-se uma à outra a cada sete minutos. A descoberta celeste rara foi feita usando o ZTF (Zwicky Transient Facility) do Caltech, um levantamento do céu topo-de-gama no Observatório Palomar que varre rapidamente o céu nocturno à procura de qualquer coisa que se mova, pisque ou varie de brilho.

O novo duo dinâmico, oficialmente conhecido como ZTF J1539+5027, é o segundo par mais rápido de estrelas mortas que se orbitam, de nome anãs brancas, encontrado até hoje. O par é também o mais rápido “sistema binário eclipsante”, o que significa que uma anã branca cruza repetidamente em frente da outra a partir do nosso ponto de vista. A natureza eclipsante das companheiras estelares é fundamental porque permite que os astrónomos aprendam os tamanhos, as massas e os períodos orbitais das estrelas.

Cada uma das recém-descobertas anãs brancas tem aproximadamente o tamanho da Terra, uma sendo um pouco menor e mais brilhante que a outra, e juntas têm uma massa equivalente à do nosso Sol. Os dois objectos orbitam muito próximos um do outro, a um-quinto da distância entre a Terra e a Lua; na verdade, as estrelas em órbita cabiam dentro do planeta Saturno. E completam uma volta em torno da outra a cada sete minutos a velocidades de centenas de quilómetros por segundo.

“À medida que a estrela mais fraca passa em frente da mais brilhante, bloqueia a maior parte da luz, resultando no padrão cintilante de sete minutos que vemos nos dado do ZTF,” disse o estudante Kevin Burdge do Caltech, autor principal de um novo estudo sobre as estrelas publicado na edição de 25 de Julho da revista Nature. “A matéria está a preparar-se para sair da anã branca, maior e mais leve, para a anã mais pequena e mais pesada, que acabará por absorver completamente a sua companheira mais leve. Já vimos muitos exemplos de um tipo de sistema em que uma anã branca foi canibalizada pela sua companheira, mas raramente avistamos sistemas onde ainda se estão a fundir, como neste.”

O par também é único por ser uma das poucas fontes conhecidas de ondas gravitacionais – ondulações no espaço e no tempo – que serão captadas pela futura missão espacial europeia LISA (Laser Interferometer Space Antenna), que deverá ser lançada em 2034. LISA será semelhante ao LIGO (Laser Interferometer Gravitational-wave Observatory) do NSF, que fez história em 2015 ao fazer a primeira detecção directa de ondas gravitacionais de um par de buracos negros em colisão. Mas o LISA detectará as ondas, no espaço, em frequências mais baixas.

“Estas duas anãs brancas estão a fundir-se porque estão a emitir ondas gravitacionais. Uma semana depois do LISA ficar activo, deverá detectar as ondas gravitacionais deste sistema,” diz o co-autor Tom Prince, professor de física no Caltech e investigador sénior do JPL. “O LISA encontrará dezenas de milhares de sistemas binários como este na nossa Galáxia, mas até agora só conhecemos alguns. E este sistema binário de anãs brancas é um dos mais bem caracterizados devido à sua natureza eclipsante.”

Um rápido piscar no céu nocturno

O objecto raro foi detectado pela grande câmara de 576 megapixéis do ZTF, que varre rapidamente todo o céu a cada três noites e a maior parte do plano da Via Láctea todas as noites. Burdge encontrou ZTF J1539+5027 executando um programa de computador que rastreou 10 milhões de objectos cósmicos, procurando mudanças durante um período de três meses. Assim que encontrou objectos candidatos com o ZTF, Burdge usou o NOAO (National Optical Astronomy Observatory) em Kitt Peak para acompanhar e encontrar os candidatos mais promissores.

“Este par destacou-se porque o sinal repete-se com muita frequência e de maneira tão previsível,” disse Burdge, membro da equipa do ZTF no Caltech. “Antes, não conseguíamos procurar objectos que mudam sistematicamente em escalas de tempo de minutos. O ZTF permite-nos fazer isso porque a sua câmara é enorme e porque pode facilmente tirar fotos do céu e depois voltar e repetir.” Observações posteriores com o Telescópio Hale de 200 polegadas, no Observatório Palomar, ajudaram a refinar as medições do novo sistema.

“Apenas alguns meses depois de ficar activo, os astrónomos do ZTF detectaram anãs brancas que se orbitam umas às outras num ritmo recorde,” disse Anne Kinney, directora assistente de ciências matemáticas e físicas do NSF. “É uma descoberta que melhorará em muito a nossa compreensão desses sistemas e é uma amostra das surpresas que ainda estão por vir.”

Um par emaranhado

As anãs brancas começam as suas vidas como estrelas como o nosso Sol, excepto que estavam unidas como um par íntimo. À medida que as estrelas envelheceram, transformaram-se em gigantes vermelhas, embora não ao mesmo tempo. Com o tempo, as estrelas inchadas soltaram as suas camadas externas, deixando para trás duas estrelas mortas – as anãs brancas.

“Às vezes estas anãs brancas binárias fundem-se numa única estrela, e outras vezes a órbita aumenta à medida que a anã branca mais leve é gradualmente destruída pela mais massiva,” explicou o co-autor James (Jim) Fuller, professor assistente de astrofísica teórica no Caltech. “Não temos certeza do que acontecerá neste caso, mas a descoberta de mais sistemas deste tipo dir-nos-á com que frequência estas estrelas sobrevivem aos seus encontros imediatos.”

Outro mistério que os investigadores esperam responder no futuro envolve a temperatura da anã branca mais quente, estimada em 50.000º C, ou nove vezes mais quente do que o Sol. Pensa-se que esta anã branca seja tão quente porque está a começar a “alimentar-se” da sua companheira e a puxar material, um processo que aquece este material a temperaturas escaldantes. Mas esta alimentação, ou processo de “acreção”, é geralmente associado a raios-X, e os investigadores não estão a detectá-los.

“É estranho que não estejamos a ver raios-X neste sistema. Uma possibilidade é que os pontos de acreção na anã branca – as áreas para onde o material está a cair – sejam maiores do que o normal, e isso poderá resultar na emissão de luz ultravioleta e visível em vez de raios-X,” acrescentou Burdge.

A equipa diz que a anã branca dupla, localizada a quase 8000 anos-luz de distância na direcção da constelação de Boieiro, deverá continuar a piscar no céu nocturno por aproximadamente cem mil anos. Os astrónomos amadores até poderão observar o par como um único ponto no céu, piscando a cada sete minutos, com a ajuda de um telescópio com pelo menos um metro de tamanho.

Astronomia On-line
30 de Julho de 2019

[vasaioqrcode]

 

2058: Estrela zombie nasce após rara colisão entre anãs brancas

(dr) Gvaramadze et al / Nature 2019

Cientistas da Universidade de Bonn, na Alemanha, e da Academia de Ciências da Rússia encontraram uma rara estrela entre as nuvens de gás a 10.000 anos-luz da Terra.

A estrela incomum, conhecida como J005311, surgiu muito provavelmente a partir do seu cataclismo cósmico depois da colisão de duas estrelas mortas na constelação de Cassiopeia. A descoberta, publicada recentemente na revista Nature, revela a natureza da exótica estrela zombie e as suas propriedades incomuns.

Para fazer a observação, a equipa utilizou o telescópio espacial Wide-field Survey Explorer, da NASA, e um telescópio terrestre do Observatório Astrofísico Especial da Rússia.

Quando uma estrela pequena esgota o seu combustível, transforma-se numa “anã branca”, ou seja, uma pequena e densa estrela morta. No entanto, os cientistas analisaram a radiação emitida pela estranha estrela e descobriram que não possuía hidrogénio nem hélio, elementos geralmente presentes numa anã branca.

Graças a um sinal emitido pela J005311, os astrónomos suspeitam ter detectado o resultado daquilo que pensam ter sido uma fusão cósmica entre duas anãs brancas que circulavam entre si há milhares de milhões de anos.

“Este é um evento extremamente raro”, explicou Gotz Grafener, co-autor do artigo científico, num relatório divulgado recentemente, no qual adianta ainda que há menos de meia dúzia de objectos como este na Via Láctea.

Habitualmente, colisões entre anãs brancas terminam em grandes explosões estelares, chamadas de super-novas. O curioso é que a J005311 não explodiu – pelo contrário, foi reanimada e começou a queimar novamente.

Este evento, que deixou os cientistas muito surpreendidos, atrasou apenas a morte da estrela alguns milhares de anos, já que o seu destino não pode ser outro: ela irá, eventualmente, morrer. Assim como da primeira vez, a sua vida chegará ao fim no exacto momento em que esgotar todo o seu combustível.

ZAP //

Por ZAP
27 Maio, 2019


{vasaioqrcode[

1469: O Sol vai transformar-se numa bola de cristal antes de morrer

Mark Garlick / Universidade de Warwick

Num processo curiosamente semelhante ao envelhecimento humano, a maior parte das estrelas no seu capítulo final da vida tendem a encolher, murchar e ficar lentamente brancas.

Os astrónomos chamam a estas estrelas de “anãs brancas” e, ao contrário dos seres humanos, podem durar milhões de anos.

Nesse tempo, estrelas com massas entre cerca de um décimo e oito vezes a massa do nosso Sol queimam a sua último energia nuclear, perdem camadas externas de fogo e transformam-se em núcleos ultra-compactos. Embora isso possa soar como um final sem glamour para uma estrela, um novo estudo publicado este mês na revista Nature sustenta que o estado de anã branca pode ser apenas o começo de uma nova metamorfose.

Num estudo com mais de 15 mil anãs brancas conhecidas em redor da Via Láctea, uma equipa de astrónomos da Universidade de Warwick, no Reino Unido, concluiu que as estrelas não desaparecem – primeiro transformam-se em esferas de cristal luminosas.

“Todas as anãs brancas se cristalizarão em algum ponto da sua evolução”, disse o principal autor do estudo, Pier-Emmanuel Tremblay, um astrofísico da Universidade de Warwick, em comunicado. “Isso significa que milhões de anãs brancas na nossa galáxia já completaram o processo e são essencialmente esferas de cristal no céu.”

Se isto for verdade, então o próprio sol da Terra – assim como 97% das estrelas na Via Láctea – também estão destinados a terminar os seus dias como bolas de cristal a brilhar no cosmos.

Para o novo estudo, Tremblay e os seus colegas usaram observações do satélite Gaia da Agência Espacial Europeia para analisar a luminosidade e as cores de cerca de 15 mil anãs brancas conhecidas, localizadas a 300 anos-luz da Terra. Os investigadores viram que um excesso de estrelas parecia partilhar as mesmas luminosidades e cores, independentemente do tamanho e da idade das estrelas.

A aparência uniforme destas estrelas sugeria que as anãs tinham atingido algum tipo de fase de desenvolvimento. Usando modelos de evolução de estrelas, os astrónomos determinaram que todos estes astros chegaram a uma fase em que o calor latente estava a ser libertado dos seus núcleos em grandes quantidades, diminuindo significativamente o arrefecimento.

Quando uma anã branca arrefece bastante, o líquido fundido no seu núcleo começa a solidificar-se – noutras palavras, a estrela começa a transformar-se em cristal.

ESA
Evolução estelar

De acordo com Tremblay, este estudo fornece “a primeira evidência directa de que as anãs brancas se cristalizam”, finalmente apoiando uma hipótese levantada há 50 anos.

De acordo com o novo estudo, porém, o calor libertado durante a fase de cristalização da anã branca poderia retardar o arrefecimento da estrela em até dois mil milhões de anos. Se for este o caso, anãs brancas conhecidas podem ter muitos mais milhões de anos do que se pensava, o que complica uma cronologia já misteriosa.

Não se sabe exactamente quanto tempo uma estrela pode permanecer como uma anã branca antes de deixar de emitir luz e calor, tornando-se o que alguns investigadores chamam de “anã negra”. Este ponto final teórico da evolução estelar nunca foi observado.

Mais estudos são necessários para que os cientistas entendam melhor a vida e a morte das estrelas e aprimorem os seus métodos de datação cósmica.

ZAP // Live Science

Por ZAP
12 Janeiro, 2019

[vasaioqrcode]

 

1070: ANALISADA A ÚNICA ANÃ BRANCA ORBITADA POR FRAGMENTOS PLANETÁRIOS

Impressão de artista que mostra um disco de poeira e fragmentos planetários em torno de uma estrela.
Crédito: NASA/JPL-Caltech

O estudo, liderado por Paula Izquierdo, aluna de doutoramento do Instituto de Astrofísica das Canárias (IAC) e da Universidade de La Laguna (ULL), aprofundou a análise desta excepcional anã branca, que mostra trânsitos periódicos produzidos por fragmentos de um planetesimal dizimado. As observações usadas para esta investigação foram obtidas com o GTC (Gran Telescopio Canarias) e com o Telescópio Liverpool.

O artigo, publicado recentemente na revista Monthly Notices of the Royal Astronomical Society, confirma a evolução contínua dos trânsitos produzidos pelos remanescentes de um planetesimal em órbita da anã branca WD 1145+017. Estes “detritos” passam em frente da estrela a cada 4,5 horas, bloqueando uma fracção da luz da estrela. A interacção contínua e a fragmentação destes detritos provocam grandes mudanças na profundidade e na forma dos trânsitos observados.

WD 1145+017 é uma anã branca, o núcleo remanescente de uma estrela que esgotou o seu combustível nuclear. A maioria das anãs brancas têm massas menores que a do Sol e tamanhos semelhantes à Terra. Muitos estudos indicam que 95% de todas as estrelas no Universo terminarão as suas vidas como anãs brancas, entre elas o nosso próprio Sol.

“O estudo deste sistema dar-nos-á informações sobre o futuro do nosso Sistema Solar,” explica Paula Izquierdo, autora principal do artigo. Por esse motivo, WD 1145+017 é especial. É a primeira anã branca para a qual as mudanças no brilho devido a ocultações (parte da luz da estrela é bloqueada pelos fragmentos de um corpo rochoso numa órbita de 4,5 horas) foram detectadas, sofrendo colisões contínuas que vão resultar na sua desintegração.

Embora este sistema tenha sido apenas descoberto em 2015, já atraiu a atenção de um grande número de grupos de investigação. Este estudo mais recente apresenta os primeiros dados espectroscópicos simultâneos, obtidos com o GTC (10,4 metros) e dados fotométricos do Telescópio Liverpool (2 metros), ambos no Observatório Roque de los Muchachos (Garafía, La Palma).

“Quando o sistema está fora de trânsito, assumimos que detectamos 100% do fluxo, porque nada atrapalha a luz emitida pela anã branca,” explica a investigadora do IAC/ULL. “Mas quando os detritos planetários em órbita da estrela cruzam a nossa linha de visão,” realça, “o que acontece durante um trânsito, a quantidade de luz que recebemos é reduzida. Essa redução é tão grande quanto 50% no trânsito mais profundo que observámos: grandes nuvens de poeira que sopram os fragmentos planetesimais são capazes de ocultar metade da luz da anã branca.”

O estudo também confirma que os trânsitos na faixa visível da luz são “cinza”. Ou seja, não há relação entre a profundidade dos trânsitos e as suas cores, o que faz com que os trânsitos sejam igualmente profundos nas cinco bandas de onda estudadas. Os autores discutem uma nova hipótese na qual a queda observada na quantidade de luz é devida a uma estrutura opticamente espessa, não a uma estrutura opticamente fina como proposto anteriormente.

“O trânsito mais profundo mostra uma estrutura complexa que pudemos modelar usando a super-posição de diferentes nuvens de poeira, como se fosse produzido por seis fragmentos igualmente espaçados vindos dos planetesimais,” explica Pablo Rodríguez-Gil, co-autor do artigo, investigador do IAC e professor associado da ULL.

Entre os diferentes achados, a equipa observou uma redução na quantidade de absorção produzida pelo ferro durante o trânsito mais profundo detectado: “Parte dessa absorção,” afirma o co-autor Boris Gänsicke, astrónomo da Universidade de Warwick (Reino Unido), “não tem origem na atmosfera da anã branca, mas num disco de gás que também orbita em seu redor, de modo que demonstrámos que o disco de fragmentos e de gás devem estar espacialmente relacionados.”

Finalmente, usaram a distância de WD 1145+017, obtida pela missão Gaia da ESA, para derivar a massa, raio, temperatura e idade do sistema.

Astronomia On-line
25 de Setembro de 2018

[vasaioqrcode]

See also Blogs Eclypse and Lab Fotográfico