2526: ALMA mostra o interior das tempestades de Júpiter

CIÊNCIA

Imagem rádio de Júpiter obtida com o ALMA. As bandas brilhantes indicam temperaturas altas e as bandas escuras temperaturas baixas. As bandas escuras correspondem a zonas em Júpiter normalmente brancas no visível. As bandas brilhantes correspondem às cinturas acastanhadas no planeta. Esta imagem contém mais de 10 horas de dados, de modo que os detalhes são difusos devido à rotação do planeta.
Crédito: ALMA (ESO/NAOJ/NRAO), I. de Pater et al.; NRAO/AUI/NSF, S. Dagnello

Nuvens rodopiantes, grandes cinturas coloridas, tempestades gigantes. A atmosfera linda e incrivelmente turbulenta de Júpiter tem sido exibida muitas vezes. Mas o que está a acontecer por baixo das nuvens? O que provoca tantas tempestades e erupções que vemos à “superfície” do planeta? Para estudar isto, a luz visível não é suficiente. Precisamos de estudar Júpiter usando ondas de rádio.

Novas imagens feitas com o ALMA (Atacama Large Millimeter/submillimeter Array) fornecem uma visão única da atmosfera de Júpiter até cinquenta quilómetros abaixo da camada visível de nuvens (de amónia) do planeta.

“O ALMA permitiu-nos fazer um mapa tridimensional da distribuição de amónia abaixo das nuvens. E, pela primeira vez, fomos capazes de estudar a atmosfera por baixo das camadas de nuvens de amónia depois de uma erupção energética em Júpiter,” disse Imke de Pater da Universidade da Califórnia, em Berkeley, EUA.

A atmosfera do planeta gigante Júpiter é composta principalmente de hidrogénio e hélio, juntamente com os gases residuais metano, amónia, hidrossulfeto e água. A camada mais alta de nuvens é composta por amónia gelada. Por baixo, há uma camada de partículas sólidas de hidrossulfeto de amónia e, ainda mais profundamente, a cerca de 80 quilómetros por baixo do topo das nuvens, existe provavelmente uma camada de água líquida. As nuvens superiores formam as distintivas zonas acastanhadas e brancas vistas da Terra.

Muitas das tempestades em Júpiter ocorrem dentro destas cinturas. Podem ser comparadas a tempestades na Terra e são frequentemente associadas com eventos de relâmpagos. As tempestades revelam-se no visível como pequenas nuvens brilhantes, chamadas de plumas. Estas erupções de plumas podem provocar uma grande perturbação na cintura, que pode permanecer visível durante meses ou anos.

As imagens do ALMA foram obtidas alguns dias depois dos astrónomos amadores terem observado uma erupção na Cintura Equatorial Sul de Júpiter em Janeiro de 2017. Ao início foi vista uma pequena pluma brilhante, e depois uma rutura em grande escala na cintura que durou semanas após a erupção.

De Pater e colegas usaram o ALMA para estudar a atmosfera por baixo da pluma e a cintura perturbada no rádio e compararam estas imagens com imagens no UV-visível e no infravermelho, obtidas com outros telescópios aproximadamente ao mesmo tempo.

“As nossas observações do ALMA são as primeiras a mostrar que altas concentrações de amónia sobem pela atmosfera durante uma erupção energética, disse de Pater. “A combinação de observações simultâneas em vários comprimentos de onda diferentes permitiu-nos examinar a erupção em detalhes. O que nos levou a confirmar a teoria actual de que as plumas energéticas são desencadeadas pela convecção húmida na base das nuvens de água, localizadas no fundo da atmosfera. As plumas trazem o gás amónia das profundezas da atmosfera até grandes altitudes, bem acima da camada principal superior de amónia,” acrescentou.

“Estes mapas ALMA, em comprimentos de onda milimétricos, complementam os mapas feitos com o VLA (Very Large Array) da NSF nos comprimentos de onda centimétricos,” disse Bryan Butler, do NRAO (National Radio Astronomy Observatory). “Ambos os mapas sondam abaixo do topo das nuvens vistas em comprimentos de onda visíveis e mostram gases ricos em amónia a subir para e a formar camadas superiores (zonas), e o ar pobre em amónia a descer (cinturas).”

“Os resultados actuais mostram soberbamente o que pode ser alcançado na ciência planetária quando um objecto é estudado com vários observatórios e em vários comprimentos de onda,” explica Eric Villard, astrónomo do ALMA e parte da equipa de investigação. “O ALMA, com a sua sensibilidade sem precedentes e resolução espectral no rádio, trabalhou com sucesso em conjunto com outros observatórios em todo o mundo para fornecer os dados que permitiram uma melhor compreensão da atmosfera de Júpiter.”

Astronomia On-line
27 de Agosto de 2019

 

ALMA identificou antepassados “escuros” de galáxias elípticas gigantes

O ALMA identificou 39 galáxias ténues não identificadas na visão mais profunda do Universo do Telescópio Espacial Hubble, a 10 mil milhões de anos-luz de distância. Este exemplo mostra uma comparação das observações do Hubble e do ALMA. As imagens numeradas de 1 a 4 são as posições das galáxias ténues não observadas na imagem do Hubble.
Crédito: Universidade de Tóquio/CEA/NAOJ

Os astrónomos usaram o ALMA (Atacama Large Millimeter/submillimeter Array) para identificar 39 galáxias ténues que não foram observadas na visão mais profunda do Universo do Telescópio Espacial Hubble, a 10 mil milhões de anos-luz de distância. São dez vezes mais numerosas do que galáxias igualmente massivas, mas visualmente brilhantes, detectadas com o Hubble. A equipa de investigação assume que estas galáxias fracas antecedem as galáxias elípticas massivas no Universo actual. No entanto, nenhuma teoria significativa para a evolução do Universo previu uma população tão abundante de galáxias massivas escuras e formadoras de estrelas. Os novos resultados do ALMA colocam em questão a nossa compreensão do Universo primitivo. Os resultados foram publicados na última edição da revista Nature.

“Estudos anteriores descobriram galáxias com formação estelar extrema no Universo primitivo, mas a população é bastante limitada,” disse Tao Wang, autor principal da investigação da Universidade de Tóquio, da Comissão Francesa de Energias Alternativas e Energia Atómica (CEA) e do NAOJ (National Astronomical Observatory of Japan) do Japão. “A formação estelar nas galáxias ténues que identificámos é menos intensa do que em galáxias extremamente activas, mas estas são 100 vezes mais abundantes. É importante estudar um componente tão importante da história do Universo para compreender a formação das galáxias.”

Wang e a sua equipa observaram três “janelas” ALMA do Universo profundo, abertas pelo Telescópio Espacial Hubble: os campos CANDELS. A equipa descobriu 63 objectos extremamente vermelhos nas imagens infravermelhas obtidas pelo Telescópio Espacial Spitzer da NASA: são demasiado vermelhas para serem detectadas com o Hubble. No entanto, a resolução espacial limitada do Spitzer impediu que os astrónomos identificassem a sua natureza.

O ALMA detectou emissão de ondas sub-milimétricas de 39 dos 63 objectos extremamente vermelhos. Graças à sua alta resolução e sensibilidade, o ALMA confirmou que são galáxias massivas com formação estelar e que estão a produzir estrelas 100 vezes de modo mais eficiente do que a Via Láctea. Estas galáxias são representativas da maioria das galáxias massivas do Universo de há 10 mil milhões de anos, a maioria das quais até agora não tinham sido discernidas por estudos anteriores.

“Ao manter este ritmo de formação estelar, as galáxias detectadas pelo ALMA provavelmente transformar-se-iam na primeira população de galáxias elípticas massivas formadas no início do Universo,” disse David Elbaz, astrónomo da CEA e co-autor do artigo. “Mas há um problema. São inesperadamente abundantes.” Os cientistas estimaram a sua densidade numérica como equivalente a 530 objectos por cada grau quadrado do céu. Esta densidade numérica excede em muito as previsões dos modelos teóricos actuais e das simulações de computador. Além disso, de acordo com o modelo amplamente aceite do Universo com um tipo particular de matéria escura, é um desafio construir um grande número de objectos massivos numa fase tão inicial do Universo. Como um todo, os resultados actuais do ALMA desafiam a nossa actual compreensão da evolução do Universo.

“Tal como a galáxia M87, da qual os astrónomos recentemente obtiveram a primeira imagem de um buraco negro, as galáxias elípticas massivas estão localizadas no coração de aglomerados de galáxias. Os cientistas pensam que estas galáxias formaram a maioria das suas estrelas no início do Universo,” explica Kotaro Kohno, professor da Universidade de Tóquio e membro da equipa de investigação. “No entanto, pesquisas anteriores pelas progenitoras destas galáxias massivas não tiveram sucesso porque foram baseadas apenas em galáxias que são facilmente detectáveis com o Hubble. A descoberta deste grande número de galáxias ténues e massivas, invisíveis ao Hubble, fornece evidências directas da montagem precoce de galáxias massivas durante os primeiros mil milhões de anos do Universo.” Observações de acompanhamento mais detalhadas, com o ALMA e com o futuro Telescópio Espacial James Webb da NASA, serão essenciais para fornecer informações adicionais sobre a natureza destas galáxias. Os novos estudos poderão construir um quadro completo da formação galáctica no Universo inicial.”

Astronomia On-line
13 de Agosto de 2019

 

ALMA mergulha na “esfera de influência” de buraco negro

O ALMA fez as medições mais precisas de gás frio girando em torno de um buraco negro super-massivo – o gigante cósmico no centro da gigantesca galáxia elíptica NGC 3258. A elipse multicolorida reflecte o movimento do gás que orbita o buraco negro, o azul indicando movimento na nossa direcção e o vermelho indicando movimento para longe de nós. A caixa inserida representa como a velocidade orbital muda com a distância ao buraco negro. Descobriu-se que o material gira mais depressa quanto mais perto os astrónomos observavam do buraco negro, permitindo-lhes calcular com precisão a sua massa: uns impressionantes 2,25 mil milhões de vezes a massa do nosso Sol.
Crédito: ALMA (ESO/NAOJ/NRAO), B. Boizelle; NRAO/AUI/NSF, S. Dagnello; Telescópio Espacial Hubble (NASA/ESA); Carnegie-Irvine Galaxy Survey

O que acontece dentro de um buraco negro fica dentro de um buraco negro, mas o que acontece dentro da “esfera de influência” de um buraco negro – a região mais interna de uma galáxia onde a gravidade de um buraco negro é a força dominante – é de grande interesse para os astrónomos e pode ajudar a determinar a massa de um buraco negro bem como o seu impacto na sua vizinhança galáctica.

Novas observações com o ALMA (Atacama Large Millimeter/submillimeter Array) fornecem uma visão sem precedentes de um disco rodopiante de gás interestelar frio em torno de um buraco negro super-massivo. Este disco está no centro de NGC 3258, uma enorme galáxia elíptica a cerca de 100 milhões de anos-luz da Terra. Com base nestas observações, uma equipa liderada por astrónomos da Universidades A&M do Texas e da Universidade da Califórnia, em Irvine, determinou que este buraco negro tem uma massa equivalente a 2,25 mil milhões de sóis, o buraco negro mais massivo medido, até agora, com o ALMA.

Embora os buracos negros super-massivos possam ter massas de milhões a milhares de milhões de vezes a massa do Sol, representam apenas uma pequena fracção da massa de uma galáxia inteira. Isolar a influência da gravidade de um buraco negro das estrelas, do gás interestelar e da matéria escura é um grande desafio e requer observações altamente sensíveis em escala fenomenalmente pequenas.

“A observação do movimento orbital o mais próximo possível de um buraco negro é de vital importância quando se determina com precisão a massa do buraco negro,” disse Benjamin Boizelle, investigador pós-doutorado da Universidade A&M do Texas e autor principal do estudo publicado na revista The Astrophysical Journal. “Estas novas observações de NGC 3258 demonstram o incrível poder do ALMA em mapear, com detalhes impressionantes, a rotação de discos gasosos em torno de buracos negros super-massivos.”

Os astrónomos usam uma variedade de métodos para medir as massas dos buracos negros. Em galáxias elípticas gigantes, a maioria das medições vem de observações do movimento orbital de estrelas em redor do buraco negro, captadas no visível ou no infravermelho. Outra técnica, usando masers naturais de água (lasers no rádio) em nuvens de gás que orbitam em torno de buracos negros, fornece uma maior precisão, mas estes masers são muito raros e estão associados quase exclusivamente a galáxias espirais com buracos negros mais pequenos.

Ao longo dos últimos anos, o ALMA desbravou caminho ao utilizar um novo método para estudar buracos negros em galáxias elípticas gigantes. Cerca de 10% das galáxias elípticas contêm discos giratórios de gás frio e denso nos seus centros. Estes discos contêm monóxido de carbono (CO) gasoso, que pode ser observado com radiotelescópios no comprimento de onda milimétrico.

Usando o efeito Doppler da emissão das moléculas de CO, os astrónomos podem medir as velocidades das nuvens de gás em órbita, e o ALMA possibilita a resolução dos próprios centros de galáxias onde as velocidades orbitais são mais altas.

“A nossa equipa investiga galáxias elípticas próximas com o ALMA há já vários anos com o objectivo de encontrar e estudar discos de gás molecular girando em torno de buracos negros gigantes,” acrescentou Aaron Barth da Universidade da Califórnia em Irvine, co-autor do estudo. “NGC 3258 é o melhor alvo que já encontrámos, porque podemos rastrear a rotação do disco para mais perto do buraco negro do que em qualquer outra galáxia.”

Tal como a Terra orbita o Sol mais depressa do que Plutão, pois é-lhe exercida uma maior força gravitacional, as regiões mais internas do disco de NGC 3258 orbitam mais depressa do que as partes mais externas devido à gravidade do buraco negro. Os dados do ALMA mostram que a velocidade de rotação do disco sobe de 1 milhão de quilómetros por hora na sua orla externa, a cerca de 500 anos-luz do buraco negro, para mais de 3 milhões de quilómetros por hora perto do centro do disco, a uma distância de apenas 65 anos-luz do buraco negro.

Os investigadores determinaram a massa do buraco negro modelando a rotação do disco, tendo em conta a massa adicional das estrelas na região central da galáxia e outros detalhes como a forma ligeiramente distorcida do disco gasoso. A detecção clara da rápida rotação permitiu que os cientistas determinassem a massa do buraco negro com uma precisão inferior a 1%, embora tenham estimado uma incerteza sistemática adicional de 12% na medição porque a distância até NGC 3258 não é conhecida com muita precisão. Mesmo considerando a incerteza na distância, esta é uma das medições mais precisas da massa de qualquer buraco negro para lá da nossa Galáxia.

“O próximo desafio é encontrar mais exemplos de discos giratórios quase perfeitos como este, para que possamos aplicar este método de medir massas de buracos negros numa amostra maior de galáxias,” concluiu Boizelle. “Observações adicionais do ALMA, que atingirem este nível de precisão, ajudar-nos-ão a entender melhor o crescimento das galáxias e dos buracos negros por todo o Universo.”

Astronomia On-line
9 de Agosto de 2019

 

2416: Descobertas galáxias que podem dar pistas sobre matéria escura do Universo

ESO
A matéria escura em torno de uma das galáxias do enxame de galáxias Abell 3827 não se move com esta, possivelmente implicando que estão a ocorrer interações de natureza desconhecida entre a matéria escura

Astrónomos identificaram 39 galáxias antigas e ‘super-massivas’, uma descoberta que pode dar novas pistas sobre a evolução dos buracos negros de grande massa e a distribuição da matéria escura no Universo, divulgou hoje a Universidade de Tóquio, no Japão.

Os astrónomos da Universidade de Tóquio, que usaram nas observações o radiotelescópio ALMA e o telescópio VLT, ambos no Chile, defendem que a abundância de tais galáxias desafia os modelos actuais do Universo.

As galáxias ter-se-ão formado nos primeiros dois mil milhões de anos do Universo (que terá 13,7 mil milhões de anos de acordo com a teoria do Big Bang). Os resultados foram publicados esta quarta-feira na revista Nature.

“Esta descoberta contraria os modelos actuais para aquele período da evolução cósmica e vai ajudar a acrescentar alguns detalhes que faltavam até agora“, afirmou o investigador Tao Wang, citado em comunicado pela Universidade de Tóquio.

De acordo com a investigação, a existência e a forma como evoluíram as galáxias ‘super-massivas’ antigas permite saber mais sobre a evolução dos buracos negros ‘super-massivos’ (regiões do Universo de grande massa de onde nem a luz escapa), uma vez que quanto mais massa tem uma galáxia mais massa tem o buraco negro no centro dessa galáxia.

Por outro lado, segundo os autores do estudo, as galáxias com maior massa estão ligadas à distribuição da matéria escura, a que não é visível e que constitui a maior parte do Universo.

“Tal [facto] desempenha um papel na modulação da estrutura e distribuição das galáxias. Os investigadores vão precisar de actualizar as suas teorias”, sustentou o astrónomo Kotaro Kohno.

Dada a distância a que se encontra este tipo de galáxias, a luz por elas emitida chega muito ténue à Terra, não sendo visível com telescópios ópticos.

A equipa de astrónomos japoneses espera aprofundar os seus estudos sobre as 39 galáxias, nomeadamente sobre a sua população de estrelas e a sua composição química, com o potente telescópio espacial James Webb, com lançamento previsto para 2021, após sucessivos adiamentos.

ZAP // Lusa

Por Lusa
7 Agosto, 2019

 

Descoberto um disco circum-planetário, “formador de luas”, em torno de jovem planeta

CIÊNCIA

Imagem ALMA da poeira em PDS 70, um sistema localizado a aproximadamente 370 anos-luz da Terra. Duas manchas ténues na região interior do disco estão associadas com planetas recém-formados. Uma dessas concentrações de poeira é um disco circum-planetário, o primeiro já detectado em torno de uma estrela distante.
Crédito: ALMA (ESO/NAOJ/NRAO); A. Isella

Recorrendo ao ALMA (Atacama Large Millimeter/submillimeter Array), os astrónomos fizeram as primeiras observações de um disco circum-planetário, a cintura planetária de poeira e gás que os astrónomos fortemente teorizam controlar a formação de planetas e que dá origem a todo um sistema de luas, como o encontrado em redor de Júpiter.

Este jovem sistema estelar, PDS 70, está localizado a aproximadamente 370 anos-luz da Terra. Recentemente, os astrónomos confirmaram a presença de dois planetas massivos, semelhantes a Júpiter, em órbita da estrela. Esta descoberta foi feita com o VLT (Very Large Telescope) do ESO, que detectou o brilho quente naturalmente emitido pelo hidrogénio gasoso que se acumula nos planetas.

As novas observações do ALMA, ao invés, mostram as fracas ondas de rádio emitidas pelas partículas minúsculas (com cerca de um-décimo de milímetro) de poeira em redor da estrela.

Os dados do ALMA, combinados com as observações anteriores do VLT no óptico e no infravermelho, fornecem evidências convincentes de que um disco empoeirado capaz de formar múltiplas luas rodeia o planeta mais exterior conhecido do sistema.

“Pela primeira vez, podemos ver conclusivamente os sinais reveladores de um disco circum-planetário, que ajuda a suportar muitas das actuais teorias de formação planetária,” disse Andrea Isella, astrónomo da Universidade Rice em Houston, no estado norte-americano do Texas, autor principal de um artigo publicado na revista The Astrophysical Journal Letters.

“Ao compararmos as nossas observações com imagens infravermelhas e ópticas de alta-resolução, podemos ver que uma concentração de minúsculas partículas de poeira, de outro modo enigmática, é um disco planetário de poeira, o primeiro do seu género já observado conclusivamente,” disse. De acordo com os investigadores, esta é a primeira vez que um planeta é visto nestas três bandas distintas de luz (visível, infravermelho e rádio).

Ao contrário dos gelados anéis de Saturno, que provavelmente se formaram pela colisão de cometas e corpos rochosos há relativamente pouco tempo na história do nosso Sistema Solar, o disco circum-planetário é o remanescente do processo de formação do planeta.

Os dados do ALMA também revelaram duas diferenças distintas entre os dois planetas recém-descobertos. O mais próximo dos dois, PDS 70 b, que está mais ou menos à mesma distância da sua estrela do que Úrano do Sol, tem uma massa de poeira atrás dele, lembrando uma cauda. “O que isto é, e o que significa para este sistema planetário, ainda não é conhecido,” disse Isella. “A única coisa conclusiva que podemos dizer é que está longe o suficiente do planeta para ser uma característica independente.”

O segundo planeta, PDS 70 c, reside no mesmo local que um nó claro de poeira visto nos dados do ALMA. Dado que este planeta brilha tão intensamente nas bandas do infravermelho e do hidrogénio, os astrónomos podem dizer de maneira convincente que um planeta totalmente formado já está em órbita e que o gás próximo continua a ser sugado para a superfície do planeta, terminando o seu surto de crescimento adolescente.

Este planeta exterior está localizado a mais ou menos 5,3 mil milhões de quilómetros da estrela hospedeira, aproximadamente à mesma distância que Neptuno está do Sol. Os astrónomos estimam que este planeta tenha entre 1 e 10 vezes a massa de Júpiter. “Se o planeta estiver do lado mais massivo dessa estimativa, é bem possível que existam luas do tamanho de um planeta formando-se em redor,” observou Isella.

Os dados do ALMA também acrescentam outro elemento importante a estas observações.

Os estudos ópticos de sistemas planetários são notoriamente complexos. Dado que a estrela é muito mais brilhante do que os planetas, é difícil filtrar o brilho, tal como tentar avistar um pirilampo ao lado de um holofote. No entanto, as observações do ALMA não têm essa limitação, já que as estrelas emitem comparativamente pouca luz em comprimentos de onda milimétricos e submilimétricos.

“Isto significa que podemos voltar a este sistema a diferentes períodos e mapear com mais facilidade a órbita dos planetas e a concentração de poeira no sistema,” concluiu Isella. “Isto dar-nos-á uma visão única das propriedades orbitais dos sistemas solares nos seus primeiros estágios de desenvolvimento.”

Astronomia On-line
16 de Julho de 2019

[vasaioqrcode]

 

2211: ALMA descobre exemplo mais antigo de fusão de galáxias

Composição de B14-65666 que mostra as distribuições da poeira (vermelho), do oxigénio (verde) e do carbono (azul), observadas pelo ALMA e estrelas (branco) observadas pelo Telescópio Espacial Hubble.
Crédito: ALMA (ESO/NAOJ/NRAO), Telescópio Espacial Hubble da NASA/ESA, Hashimoto et al.

Usando o ALMA (Atacama Large Millimeter/submillimeter Array), investigadores observaram os primeiros sinais combinados de oxigénio, carbono e poeira de uma galáxia no Universo, há 13 mil milhões de anos. Ao comparar os diferentes sinais, a equipa determinou que a galáxia é, de facto, duas galáxias em fusão, tornando-se o exemplo mais antigo, já descoberto, de uma fusão galáctica.

Takuya Hashimoto, da Universidade Waseda, no Japão, e a sua equipa usaram o ALMA para observar B14-656666, um objecto localizado a 13 mil milhões de anos-luz na direcção da constelação de Sextante. Por causa da velocidade finita da luz, os sinais que recebemos hoje de B14-65666 tiveram que viajar durante 13 mil milhões de anos para chegar até nós. Por outras palavras, mostram-nos o aspecto da galáxia há 13 mil milhões de anos atrás, menos de mil milhões de anos após o Big Bang.

O ALMA alcançou a observação mais antiga de emissões de rádio do oxigénio, carbono e poeira em B14-65666. A detecção de múltiplos sinais permite que os astrónomos recuperem informações complementares.

A análise dos dados mostrou que as emissões estão divididas em duas “manchas”. Observações anteriores com o Telescópio Espacial Hubble revelaram dois agrupamentos em B14-65666. Agora, com três sinais de emissão detectados pelo ALMA, a equipa foi capaz de mostrar que as duas manchas perfazem, na verdade, um único sistema, mas com velocidades diferentes; o que indica que as manchas são duas galáxias em fusão. O exemplo mais antigo e conhecido de fusão galáctica. A equipa de investigação estimou que a massa estelar total de B14-65666 é inferior a 10% da massa da Via Láctea, o que significa que está nas suas fases iniciais de formação. Apesar de ser muito jovem, B14-65666 está a produzir 100 vezes mais estrelas do que a Via Láctea. Esta formação estelar activa é outra assinatura de fusões galácticas porque a compressão do gás em galáxias que colidem leva naturalmente à formação estelar explosiva.

“Com os ricos dados do ALMA e do Hubble, combinados com uma avançada análise de dados, pudemos juntar as peças para mostrar que B14-65666 é um par de galáxias em fusão na era mais antiga do Universo,” explica Hashimoto. “A detecção de ondas de rádio de três componentes, num objecto tão distante, demonstra a alta capacidade do ALMA em investigar o Universo longínquo.”

As galáxias actuais como a nossa Via Láctea já passaram por inúmeras fusões, algumas bastante violentas. Por vezes, uma galáxia mais massiva engole uma mais pequena. Em casos raros, galáxias com tamanhos semelhantes fundem-se para formar uma nova e maior galáxia. As fusões são essenciais para a evolução galáctica, atraindo muitos astrónomos ansiosos por rastreá-las.

“O nosso próximo passo é procurar azoto, outro elemento químico importante, e até mesmo a molécula de monóxido de carbono,” comentou Akio Inoue, professor da Universidade de Waseda. “Em última análise, esperamos entender observacionalmente a circulação e a acumulação de elementos e materiais no contexto da formação e evolução das galáxias.”

Astronomia On-line
21 de Junho de 2019

[vasaioqrcode]

2186: ESO Astronomy

ESO Picture of the Week: This stunning photograph shows some of the antennas comprising the ALMA Observatory all observing a panoramic view of the Milky Way’s centre. Some features visible in the sky include Crux (The Southern Cross) just above and to the right of the nearest antenna, and the Carina Nebula slightly further to the right. Image credit: Petr Horálek Photography / ESO Astronomy http://socsi.in/eTeN1
Credit: @ESO
Eso foto da semana: Esta fotografia deslumbrante mostra algumas das antenas que compõem o ALMA Observatory, tudo a observar uma vista panorâmica do centro da Via Láctea. Algumas características visíveis no céu incluem crux (a cruz do Sul) logo acima e à direita da antena mais próxima, e a nebulosa da Carina ligeiramente mais longe para a direita. Crédito da imagem: Petr Horálek Photography / ESO Astronomy http://socsi.in/eTeN1
Crédito: @Eso
[vasaioqrcode]

2179: ESO Astronomy

#ThrowbackThursday One of ALMA Observatory 66 antennas is being worked on here by specialist engineers, who also capture the moment. Image credit: J. C. Rojas / ESO Astronomy View larger image at: http://socsi.in/Fbfuj

#Throwbackthursday uma das antenas do ALMA Observatory 66 está a ser trabalhado aqui por engenheiros especialistas, que também captam o momento. Crédito da imagem: J. C. Rojas / Eso Astronomy vista a imagem maior em: http://socsi.in/Fbfuj

[vasaioqrcode]

2134: Anel nublado e frio em torno do buraco negro super-massivo da Via Láctea

Impressão de artista do anel de gás interestelar frio em redor do buraco negro super-massivo no centro da Via Láctea. Novas observações do ALMA revelaram, pela primeira vez, esta estrutura.
Crédito: NRAO/AUI/NSF; S. Dagnello

Novas observações do ALMA revelam um disco nunca antes visto de gás interestelar frio envolvido em torno do buraco negro super-massivo no centro da Via Láctea. Este disco nublado dá aos astrónomos novas informações sobre o funcionamento da acreção: o desvio de material para a superfície de um buraco negro. Os resultados foram publicados na revista Nature.

Através de décadas de estudo, os astrónomos desenvolveram uma imagem mais clara da vizinhança caótica e povoada em redor do buraco negro super-massivo no centro da Via Láctea. O nosso Centro Galáctico está a aproximadamente 26.000 anos-luz da Terra e o buraco negro super-massivo, conhecido como Sagitário A*, tem 4 milhões de vezes a massa do nosso Sol. Sabemos agora que esta região está repleta de estrelas errantes, nuvens de poeira interestelar e um grande reservatório de gases fenomenalmente quentes e comparativamente mais frios. Pensa-se que estes gases orbitem o buraco negro num vasto disco de acreção que se estende a poucas décimas de um ano-luz do horizonte de eventos do buraco negro.

No entanto, até agora, os astrónomos só tinham conseguido fotografar a porção quente e ténue deste gás em acreção, que forma um fluxo aproximadamente esférico e que não mostra uma rotação óbvia. A sua temperatura está estimada em 10 milhões de graus Celsius, ou cerca de metade da temperatura do núcleo do nosso Sol. A esta temperatura, o gás brilha intensamente em raios-X, permitindo que seja estudado por telescópios de raios-X no espaço, até à escala de um-décimo de um ano-luz do buraco negro.

Além deste gás incandescente e quente, observações anteriores com telescópios de comprimento de onda milimétrico detectaram um grande reservatório de hidrogénio gasoso comparativamente mais frio (cerca de 10 mil graus Celsius) a poucos anos-luz em torno do buraco negro. A contribuição deste gás para o fluxo de acreção do buraco negro era anteriormente desconhecida.

Embora o buraco negro do nosso Centro Galáctico seja relativamente calmo, a radiação em seu redor é forte o suficiente para fazer com que os átomos de hidrogénio continuem a perder e a recombinar-se com os seus electrões. Esta recombinação produz um sinal distintivo de comprimento de onda milimétrico, que é capaz de atingir a Terra com muito poucas perdas no caminho. Com a sua notável sensibilidade e capacidade em ver detalhes, o ALMA (Atacama Large Millimeter/submillimeter Array) foi capaz de detectar este ténue sinal de rádio e de produzir a primeira imagem do disco de gás mais frio que rodeia o buraco negro super-massivo da Via Láctea a apenas um-centésimo de ano-luz de distância, ou cerca de 1000 vezes a distância da Terra ao Sol. Estas observações permitiram que os astrónomos mapeassem a localização e rastreassem o movimento desse gás. Os investigadores estimam que a quantidade de hidrogénio neste disco frio é equivalente a um-décimo da massa de Júpiter, ou a 1/10.000 da massa do Sol.

Através do mapeamento dos desvios nos comprimentos de onda desta radiação de rádio devido ao efeito Doppler (a luz dos objectos que se movem em direcção à Terra é ligeiramente desviada para a porção mais “azul do espectro enquanto a luz dos objectos que se movem para longe da Terra é ligeiramente desviada para a porção mais “vermelha”), os astrónomos puderam ver claramente que o gás está a girar em torno do buraco negro. Esta informação fornecerá novas informações sobre como os buracos negros devoram a matéria e a complexa interacção entre um buraco negro e a sua vizinhança galáctica.

“Fomos os primeiros a fotografar este disco elusivo e a estudar a sua rotação,” comentou Elena Murchikova, membro, em astrofísica, do Instituto de Estudos Avançados em Princeton, Nova Jersey, EUA. “Também estamos a estudar a acreção para o buraco negro. Isto é importante porque é o buraco negro super-massivo mais próximo. Mesmo assim, ainda não temos um bom entendimento de como funciona a acreção. Esperamos que estas novas observações do ALMA ajudem o buraco negro a ceder alguns dos seus segredos.”

Astronomia On-line
7 de Junho de 2019



[vasaioqrcode]

Planetas gigantes e cometas “à luta” no disco circum-estelar em torno de HD 163296

O disco circum-estelar em torno de HD 163296 e o sistema de divisões e anéis criados pelos seus jovens planetas gigantes, observado recentemente pelo ALMA (Projecto DSHARP).
Crédito: ALMA (ESO/NAOJ/NRAO), S. Dagnello

Num estudo publicado na revista The Astrophysical Journal, uma equipa de investigadores do INAF (Istituto Nazionale di Astrofisica), Itália, investigou se as características anómalas nas distribuições de poeira e gás no disco de HD 163296, reveladas pelas observações do ALMA, poderiam surgir das interacções dos planetas gigantes com um componente do disco anteriormente não encontrado: planetesimais.

Os discos circum-estelares compostos de gás e poeira que rodeiam as jovens estrelas em formação são o ambiente no qual os planetas nascem. A sua poeira fornece o material de construção a partir do qual os planetas começam o seu crescimento e, como resultado da sua incorporação nos corpos planetários, a sua abundância deve diminuir com o tempo. Desde as suas primeiras imagens de anéis concêntricos brilhantes do disco circum-estelar em torno de HL Tau, o ALMA tem revolucionado a nossa visão dos discos circum-estelares revelando a presença generalizada de um número de estruturas de pequena escala (divisões, anéis e braços espirais) no seu gás e poeira, a maioria das quais pensa-se estar ligada à presença de planetas jovens e surgir da interacção da sua gravidade com o ambiente circundante.

Entre os discos mais bem estudados, observados pelo ALMA, está o que rodeia HD 163296, uma estrela com cinco milhões de anos e com cerca de duas vezes a massa do Sol. O disco de HD 163296 é tanto massivo (pouco menos de um-décimo da massa do Sol) quanto largo (cerca de 500 UA, duas vezes o tamanho do limite externo da Cintura de Kuiper no Sistema Solar) e foi proposto abrigar pelo menos três planetas com massas compreendidas entre duas vezes a de Úrano e uma vez a de Júpiter. As observações mais recentes do ALMA permitiram caracterizar espacialmente e composicionalmente a estrutura do disco de HD 163296 para um nível anteriormente nem sonhado e mostrou como a poeira ainda é bastante abundante (mais de 300 vezes a massa da Terra) neste disco apesar da sua idade e de ter produzido pelo menos três planetas gigantes. As mesmas observações também relevaram alguns comportamentos estranhos da distribuição espacial da poeira que não podiam ser facilmente explicados apenas como resultado da sua interacção com o gás e os planetas gigantes recém-formados.

Espera-se que a poeira migre para dentro a partir das regiões externas do disco devido ao seu agrupamento e fricção com o gás, mas também se espera que a migração seja interrompida por planetas massivos. Como resultado desse fluxo para o interior, a poeira deveria desaparecer, com o tempo, da região imediatamente para dentro do planeta mais interior de HD 163296. Ao mesmo tempo, a poeira proveniente das regiões externas do disco deve acumular-se fora das órbitas do segundo e do terceiro planeta. As observações do ALMA revelaram, em vez disso, que as regiões para dentro do primeiro planeta e entre o primeiro e o segundo planeta têm algumas das maiores concentrações de poeira de todo o disco. Num estudo publicado na revista The Astrophysical Journal, uma equipa de investigadores explorou se estas características anómalas podem surgir da interacção dos planetas gigantes com um componente do disco anteriormente não contabilizado: planetesimais.

“A partir do estudo do Sistema Solar, sabemos que os discos circum-estelares maduros como o de HD 163296 não são compostos apenas por gás e poeira, mas também contêm uma população invisível de pequenos objectos planetários semelhantes aos nossos asteróides e cometas,” explica Diego Turrini, autor principal do estudo e investigador do IAPS (Istituto di Astrofisica e Planetologia Spaziali) do INAF (Istituto Nazionale di Astrofisica). “Sabemos também que o aparecimento de planetas gigantes afecta estes planetesimais causando, na sua evolução, um breve, mas intenso pico de excitação dinâmica que, embora curto do ponto de vista da longa vida de um sistema planetário, pode ter uma duração comparável à vida dos discos circum-estelares,” continua Turrini.

A equipa quis saber se estas interacções entre os planetas gigantes jovens de HD 163296 e os planetesimais invisíveis podiam produzir as anomalias observadas na distribuição da poeira. As simulações que realizaram mostraram como, durante o crescimento dos três planetas gigantes, uma fracção cada vez maior da população de planetesimais na vizinhança é injectada em órbitas muito excêntricas e muito inclinadas, semelhantes às dos cometas no Sistema Solar. “O principal resultado dessa excitação dinâmica é uma taxa mais alta de colisões violentas entre os planetesimais”, explica Francesco Marzari, professor da Universidade de Pádua e co-autor do estudo.

Quando analisaram o resultado das simulações dinâmicas através de um modelo colisional, a equipa descobriu que as colisões entre os planetesimais permanecem bastante gentis até que os planetas gigantes se aproximam das suas massas finais, mas que depois crescem drasticamente em violência e começam a “moer” os planetesimais. “Estas colisões violentas reabastecem a população de poeira no disco,” salienta Marzari. “A nova poeira produzida por este processo, no entanto, tem uma distribuição orbital diferente da original e concentra-se principalmente em dois lugares: a região orbital dentro do primeiro planeta gigante e no anel entre o primeiro e o segundo planeta.” As mesmas duas regiões onde as observações do ALMA revelaram as maiores discrepâncias com o que era teoricamente esperado.

A equipa descobriu que a excitação dinâmica provocada pela formação dos três planetas gigantes ainda deveria estar a agir até ao momento sobre os planetesimais incorporados no disco de HD 163296. Os autores também descobriram que a produção colisional resultante e sustentada de poeira é capaz de injectar dezenas de vezes a massa da Terra, em poeira, nessas duas regiões orbitais, explicando as observações do ALMA também de um ponto de vista quantitativo. “Até agora, o estudo deste tipo de processo enquanto ocorria nos discos circum-estelares só era possível por meio de simulações,” comenta Turrini. “Graças ao ALMA, podemos agora estudá-lo e aprender muito sobre a interacção entre a formação planetária e o ambiente circundante.”

“A rapidez com que o ALMA está a fornecer dados novos e mais detalhados sobre HD 163296 permitiu-nos expandir o nosso estudo para lá do seu objectivo original,” explica Danai Polychroni, co-autor do estudo e na altura professor na Universidade do Atacama e investigador adjunto do INAF-IAPS. “Percebemos que muitos planetesimais são excitados a velocidades supersónicas em relação ao gás circundante do disco e que podem criar ondas de choque que podem aquecer tanto os próprios planetesimais quanto o gás. Embora ainda não pudéssemos modelar esse processo em detalhe, observações recentes relataram a presença inesperada do gás CO (monóxido de carbono) em regiões caracterizadas por temperaturas onde deveria encontrar-se no estado sólido e por possíveis anomalias na estrutura térmica do disco. Ambos os achados podem, em princípio, ser explicados graças à presença destes planetesimais supersónicos e às ondas de choque que produzem.”

“Este estudo começou como um projecto para explorar se a excitação dinâmica provocada por planetas gigantes recém-formados podia realmente produzir efeitos observáveis. Como tal, nós apenas ‘arranhámos a superfície’ deste processo e das suas implicações,” observa Leonardo Testi, também co-autor do estudo e chefe do Centro de Apoio ALMA do ESA e investigador do INAF em licença. “No entanto, a sua ‘receita’ física é bastante simples: planetas massivos que se formam num disco de planetesimais. Dadas as assinaturas generalizadas de possíveis planetas gigantes jovens que estamos a descobrir com o ALMA e dada a longa duração dos efeitos dinâmicos provocados pelo seu aparecimento, podemos estar à procura de um processo que é bastante comum entre os discos circum-estelares.”

“O contexto do trabalho liderado por Diego Turrini é um dos pilares da sinergia GENESIS,” explica Claudio Codella do INAF (Osservatorio Astrofisico di Arcetri), investigador principal do projecto GENESIS-SKA, financiado pelo INAF. “O GENESIS-SKA é um projecto nacional onde participam mais de 60 investigadores de 8 institutos do INAF e onde trabalham em íntima colaboração com o objectivo geral de investigar as condições favoráveis à formação de sistemas planetários parecidos com o nosso Sistema Solar”. “Os resultados do presente projecto,” acrescenta Codella, “serão de extrema importância também para o estudo das composições químicas do gás localizado nas regiões onde os planetas se formarão e, possivelmente, das suas atmosferas.”

Astronomia On-line
31 de Maio de 2019


[vasaioqrcode]

1835: Foto do buraco negro: é como ler em Paris um jornal exposto em Nova Iorque

Veja o vídeo que demonstra bem a dimensão do feito.

https://www.dn.pt/vida-e-futuro/interior/observar-um-buraco-negro-e-como-ler-em-paris-um-jornal-exposto-em-nova-iorque-10782782.html?jwsource=cl

A capacidade de observação da rede de radiotelescópios com a qual foi obtida a primeira ‘fotografia’ de um buraco negro, hoje divulgada, equivale a ler um jornal exposto em Nova Iorque a partir de um café em Paris.

A analogia é feita em comunicado pelo Observatório Europeu do Sul (OES) e pelo Event Horizon Telescope (EHT), uma rede à escala planetária de oito radiotelescópios em solo que foi formada sob colaboração internacional para capturar as primeiras imagens de um buraco negro, objecto no universo completamente escuro do qual nada pode escapar, nem mesmo a luz.

Um dos radiotelescópios usados foi o ALMA, do OES, composto por 66 antenas e que está localizado no planalto de Chajnantor, nos Andes Chilenos, a 5.000 metros de altitude, no norte do Chile.

Da equipa de mais de 200 investigadores que participaram na observação do buraco negro super-maciço e da sua sombra, que se situa no centro da galáxia M87, faz parte o astrofísico português Hugo Messias, do observatório ALMA. O Observatório Europeu do Sul é uma organização astronómica da qual Portugal faz parte.

As observações do EHT foram feitas a partir de uma técnica conhecida como “interferometria de linha de base muito longa”, que sincroniza os diversos telescópios colocados em diferentes pontos do mundo e “explora a rotação” da Terra para formar “um enorme telescópio do tamanho da Terra”.

A técnica permitiu à rede de oito radiotelescópios ter “a maior resolução angular alguma vez atingida”, ou seja, “o suficiente para se ler um jornal colocado em Nova Iorque”, nos Estados Unidos, “a partir de um café em Paris”, em França.

A resolução angular, que determina o desempenho de instrumentos de observação como os telescópios, é a capacidade de se distinguir dois objectos cujas imagens estão muito próximas.

Ao contrário de um telescópio óptico, que produz imagens a partir da luz visível, um radiotelescópio, como os oito utilizados para registar o buraco negro da M87, capta as ondas de rádio emitidas por corpos celestes através de uma ou várias antenas de grandes dimensões.

As observações feitas a alta altitude pelos oito radiotelescópios – um deles localizado na Serra Nevada, em Espanha, e outro na Antárctida – decorreram numa campanha em 2017.

A foto histórica
© Event Horizon Telescope (EHT)/National Science Foundation/via REUTERS

Apesar de os instrumentos não estarem fisicamente ligados, os seus dados foram sincronizados através de relógios atómicos, que deram o tempo exacto das observações.

Cada telescópio gerou “enormes quantidades de dados”, cerca de 350 ‘terabytes’ por dia, que foram guardados em discos rígidos com hélio, que pesam menos e têm maior capacidade de armazenamento.

Os dados foram migrados para supercomputadores do Instituto Max Planck, na Alemanha, e do Instituto de Tecnologia de Massachusetts, nos Estados Unidos, e convertidos numa imagem através de “ferramentas computacionais inovadoras”.

“Calibrações múltiplas e métodos de obtenção de imagens” revelaram, no final, “uma estrutura semelhante a um disco com uma região central escura – a sombra do buraco negro – que se manteve em várias observações independentes do EHT”. A sombra de um buraco negro “é o mais próximo” da imagem do buraco negro propriamente dito, uma vez que este é totalmente escuro.

Dada a sua enorme massa (6,5 mil milhões de vezes superior à do Sol) e a relativa proximidade (55 milhões de anos-luz da Terra), os cientistas vaticinaram que o buraco negro da galáxia M87 fosse um dos maiores que pudesse ser visto da Terra, “o que o tornou um excelente alvo” para o Event Horizon Telescope.

A presença de buracos negros, os objectos cósmicos mais extremos que foram previstos em 1915 pelo físico Albert Einstein na Teoria da Relatividade Geral, deforma o espaço-tempo e sobreaquece o material em seu redor.

Até à ‘fotografia’ hoje divulgada, as imagens de um buraco negro eram meramente concepções artísticas.

Os resultados do trabalho do Event Horizon Telescope são descritos em seis artigos publicados hoje num número especial da revista da especialidade The Astrophysical Journal Letters.

A mesma rede de radiotelescópios também se propõe obter a primeira imagem do buraco negro super-maciço Sagitário A, localizado no centro da Via Láctea.

Diário de Notícias
DN/Lusa
10 Abril 2019 — 18:19

[vasaioqrcode]

 

O português que ajudou a “fotografar” o buraco negro: “Este resultado é espectacular”

Hugo Messias é investigador do telescópio ALMA, um dos oito do projecto Event Horizon Telescope, que obteve a primeira imagem de um buraco negro. Ao DN, o astrofísico português fala da nova descoberta e do que aí vem.

O astrofísico Hugo Messias.
© DR

Em 2014, um ano depois de o telescópio ALMA ter começado a funcionar no deserto de Atacama, no norte do Chile, Hugo Messias já estava a usar as suas observações, e assim fez uma descoberta. Não só conseguiu, nessa altura, obter a melhor imagem de sempre de uma colisão entre duas galáxias, como isso permitiu à equipa que então liderava caracterizar a “fábrica” de estrelas que a observação revelou. Agora, aos 34 anos, enquanto investigador do ALMA – “termino o contrato de três anos em Agosto, depois ainda não sei”, diz -, volta a estar no centro de uma grande descoberta: a da primeira imagem de um buraco negro, lá longe, a 55 milhões de anos-luz da Terra.

Um marco do qual já se disse que haverá um antes e um depois desta imagem. Para Hugo Messias, este é um resultado “espectacular”, que além disso levanta muitas perguntas a que vai ser preciso responder no futuro. Por exemplo: será que aquele buraco negro está a rodar? Neste momento, ninguém sabe.

(continua na versão paga PREMIUM do DN)

Diário de Notícias
Filomena Naves
11 Abril 2019 — 06:29

Pode continuar a ler esta notícia se pagar ao DN para o fazer. É um de muitos artigos deste online classificados de PREMIUM… Apenas inseri aqui o que esta “à mostra” por ser um português envolvido nesta matéria.

[vasaioqrcode]

 

1763: Formação estelar e poeira de estrelas antigas

Imagem do ALMA e do Telescópio Espacial Hubble da galáxia distante MACS0416_Y1. A distribuição da poeira e do oxigénio gasoso traçada pelo ALMA tem tons avermelhados e esverdeados, respectivamente, enquanto a distribuição das estrelas captada pelo Hubble está a azul.
Crédito: ALMA (ESO/NAOJ/NRAO), Telescópio Espacial Hubble da NASA/ESA, Tamura et al.

Investigadores detectaram um sinal de rádio de poeira interestelar abundante em MACS0416_Y1, uma galáxia a 13,2 mil milhões de anos-luz de distância na direcção da constelação de Erídano. Os modelos-padrão não conseguem explicar tanta poeira numa galáxia tão jovem, forçando-nos a reconsiderar a história da formação estelar. Os cientistas agora pensam que MACS0416_Y1 sofreu uma formação estelar escalonada, com dois períodos intensos 300 milhões e 600 milhões de anos após o Big Bang, e com uma fase calma entre eles.

As estrelas são os principais intervenientes no Universo, mas são apoiadas pelas mãos invisíveis dos bastidores: a poeira estelar e o gás. As nuvens cósmicas de poeira e gás são os locais de formação estelar e magistrais contadores da história cósmica.

“A poeira e os elementos relativamente pesados, como oxigénio, são disseminados pela morte das estrelas,” disse Yoichi Tamura, professor associado da Universidade de Nagoya e autor principal do artigo científico. “Portanto, uma detecção de poeira em determinado momento indica que um número de estrelas já se formou e morreu bem antes desse ponto.”

Usando o ALMA (Atacama Large Millimeter/submillimeter Array), Tamura e a sua equipa observaram a galáxia distante MACS0416_Y1. Dada a velocidade finita da luz, as ondas de rádio que observamos hoje nesta galáxia tiveram que viajar durante 13,2 mil milhões de anos para chegar até nós. Por outras palavras, fornecem uma imagem do aspecto da galáxia há 13,2 mil milhões de anos, apenas 600 milhões de anos após o Big Bang.

Os astrónomos detectaram um sinal fraco, mas revelador, de emissões de rádio de partículas de poeira em MACS0416_Y1. O Telescópio Espacial Hubble, o Telescópio Espacial Spitzer e o VLT (Very Large Telescope) do ESO observaram a luz das estrelas da galáxia; e da sua cor estimam que a idade estelar seja de 4 milhões de anos.

“Não é fácil,” realça Tamura. “A poeira é demasiado abundante para ter sido formada em 4 milhões de anos. É surpreendente, mas precisamos de ter os pés assentes na terra. As estrelas mais antigas podem estar escondidas na galáxia, ou podem já ter morrido e desaparecido.”

“Já foram propostas várias ideias para superar esta crise orçamentária de poeira,” disse Ken Mawatari, investigador da Universidade de Tóquio. “No entanto, nenhuma é conclusiva. Fizemos um novo modelo que não precisa de suposições extremas divergentes do conhecimento da vida das estrelas no Universo de hoje. O modelo explica bem tanto a cor da galáxia como a quantidade de poeira.” Neste modelo, o primeiro surto de formação estelar começou aos 300 milhões de anos e durou 100 milhões de anos. Depois, a formação estelar acalmou durante algum tempo e recomeçou aos 600 milhões de anos. Os investigadores pensam que o ALMA observou esta galáxia no início da sua segunda geração de formação estelar.

“A poeira é um material crucial para planetas como a Terra,” explica Tamura. “O nosso resultado é um passo importante para entender o início da história do Universo e a origem da poeira.”

Astronomia On-line
26 de Março de 2019

[vasaioqrcode]

 

1749: Testemunhando o nascimento de um sistema binário massivo

Imagem ALMA da região de formação estelar IRAS07299 e do sistema binário massivo no seu centro. A imagem de fundo mostra correntes densas de gás e poeira (verde) que parecem fluir para o centro. Os movimentos do gás, traçados pela molécula metanol, na nossa direcção, estão a azul; os movimentos na direcção oposta estão a vermelho. A inserção mostra uma ampliação do massivo binário em formação, com a protoestrela primária e mais brilhante movendo-se na nossa direcção mostrada a azul e a protoestrela secundária, mais ténue, movendo-se para longe de nós, mostrada a vermelho. As linhas pontilhadas mostram um exemplo das órbitas da primária e secundária espiralando em torno do seu centro de massa (assinalado pela cruz).
Crédito: ALMA (ESO/NAOJ/NRAO); RIKEN, Zhang et al.

Cientistas do Grupo RIKEN para Investigação Pioneira no Japão, da Universidade Chalmers de Tecnologia na Suécia, da Universidade da Virgínia nos EUA e colaboradores usaram o ALMA (Atacama Large Millimeter/submillimeter Array) para observar uma nuvem molecular que está em colapso para formar duas protoestrelas massivas que acabarão por se tornar num sistema estelar binário.

Embora se saiba que a maioria das estrelas massivas possuem companheiras estelares em órbita, não se tem a certeza de como isso acontece – por exemplo, se as estrelas nascem juntas num disco espiral comum no centro de uma nuvem em colapso, ou se se agrupam mais tarde graças a encontros aleatórios num enxame estelar lotado.

Tem sido difícil compreender a dinâmica da formação de binários porque as protoestrelas nestes sistemas ainda estão envolvidas numa nuvem espessa de gás e poeira que impede a maior parte da luz de escapar. Felizmente, é possível vê-las usando ondas de rádio, desde que possam ser visualizadas com resolução espacial suficientemente alta.

Na investigação actual, publicada na revista Nature Astronomy, os cientistas liderados por Yichen Zhang do Grupo RIKEN para Investigação Pioneira e Jonathan C. Tan da Universidade Chalmers e da Universidade da Virgínia, usaram o ALMA para observar, em alta resolução espacial, uma região de formação estelar conhecida como IRAS07299-1651, localizada a 1,68 kiloparsecs, cerca de 5500 anos-luz.

As observações mostraram que já neste estágio inicial, a nuvem contém dois objectos, uma estrela central massiva e “primária” e outra estrela “secundária” em formação, também com massa elevada. Pela primeira vez, a equipa de investigação foi capaz de usar estas observações para deduzir a dinâmica do sistema. As observações mostraram que as duas estrelas em formação estão separadas por uma distância de aproximadamente 180 UA (1 UA, ou unidade astronómica, é a distância entre a Terra e o Sol). Portanto, estão bem distantes. Actualmente orbitam-se uma à outra com um período de no máximo de 600 anos e têm uma massa total de pelo menos 18 vezes a do Sol.

De acordo com Zhang, “esta é uma descoberta empolgante porque há muito que estamos perplexos com a questão de se as estrelas se transformam em binários durante o colapso inicial da nuvem de formação estelar ou se são criados durante os estágios posteriores. As nossas observações mostram claramente que a divisão em estrelas duplas ocorre no início, enquanto ainda estão na sua infância.”

Outra descoberta do estudo foi que as estrelas binárias estão sendo estimuladas a partir de um disco comum alimentado pela nuvem em colapso e isto favorece um cenário no qual a estrela secundária do binário se formou como resultado da fragmentação do disco originalmente em redor da primária. Isto permite que a protoestrela secundária, inicialmente mais pequena, “roube” matéria da sua irmã e eventualmente emergem como “gémeas” bastante semelhantes.

Tan acrescenta: “Este é um resultado importante para entender o nascimento das estrelas massivas. Estas são importantes em todo o Universo pois produzem, no final das suas vidas, os elementos pesados que compõem a nossa Terra e que estão nos nossos corpos.”

Zhang conclui: “O que é importante agora é observar outros exemplos para ver se esta é uma situação única ou algo que é comum no nascimento de todas as estrelas massivas.”

Astronomia On-line
22 de Março de 2019

[vasaioqrcode]

 

1664: Há milhões de buracos negros mortais em torno do Universo

(dr) The SXS (Simulating eXtreme Spacetimes) Project

O Universo possui mais de 100 milhões de buracos negros “silenciosos”. Recentemente, uma equipa de astrónomos alertou para a descoberta de um gigante negro “escondido” atrás de uma nuvem de gás.

Buracos negros são objectos muito densos com atracção gravitacional tão forte que nem mesmo a luz consegue escapar. Como não emitem luz, os astrónomos inferem a existência de buracos negros a partir dos efeitos que a sua gravidade produz em outros objectos.

Os astrónomos suspeitam que pequenos buracos negros se fundem e vão crescendo gradualmente, mas nunca nenhum cientista encontrou um buraco negro de massa intermediária. Recentemente, uma equipa de japoneses encontrou um desses “monstros” escondido tranquilamente próximo de um buraco negro super-massivo no centro da nossa galáxia.

Esse buraco negro, encontrado pela equipa do Observatório Astronómico Nacional do Japão, possui uma “massa intermediária“, apesar de furtivo, e foi descoberto ao analisar o comportamento de uma nuvem de gás que está, actualmente, a ser “comida”. Segundo os cientistas, o “monstro” terá um fim parecido, uma vez que será engolido por um buraco negro super-massivo no centro da Via Láctea.

Os cientistas utilizaram o ALMA (Atacama Large Millimeter / submillimeter Array) para realizar observações de alta resolução da nuvem de gás, e descobriram que a nuvem HCN-0.009-0.044 gira em torno de um objeto massivo e invisível.

“Detalhes das análises revelaram que uma grande massa, 30 mil vezes maior do que a do Sol, se concentrou numa região menor do que a do Sistema Solar”, afirmou Shunya Takekawa, do Observatório Nacional Astronómico do Japão.

Isto e o facto de nenhum objeto ter sido observado naquele local sugere a existência de um buraco negro de massa intermediária. Analisando outras nuvens anómalas, os cientistas esperam expor outros buracos negros “calmos” ou silenciosos.

Já o professor da Universidade de Keio, Tomoharu Oka, acrescentou que é “significante que este buraco negro de massa intermediária tenha sido encontrado a apenas 20 anos-luz do buraco negro super-massivo no centro da galáxia”.

No futuro, este buraco irá cair dentro do buraco negro super-massivo, assim como o gás que está a cair agora, suportando o modelo de fusão do crescimento dos buracos negros, concluiu o professor.

ZAP // SputnikNews

Por ZAP
5 Março, 2019

[vasaioqrcode]

 

ALMA diferencia dois “gritos” de nascimento de uma única protoestrela

Imagem ALMA da protoestrela MMS5/OMC-3. A protoestrela está localizada no centro e as correntes de gás são expelidas para este e oeste (esquerda e direita). O fluxo lento é visto em tons laranja e o jato veloz em tons de azul. É óbvio que os eixos do fluxo e do jato estão desalinhados.
Crédito: ALMA (ESO/NAOJ/NRAO), Matsushita et al.

Os astrónomos revelaram as origens enigmáticas de duas correntes diferentes de gás numa estrela bebé. Usando o ALMA, descobriram que o fluxo lento e o jacto veloz de uma protoestrela apresentam eixos desalinhados e que o primeiro começou a ser expelido antes do segundo. As origens destes dois fluxos têm sido um mistério, mas estas observações fornecem sinais reveladores de que estas duas correntes foram lançadas de diferentes partes do disco em redor da protoestrela.

As estrelas do Universo têm uma ampla gama de massas, variando de centenas de vezes a massa do Sol a menos de um-décimo da massa do Sol. Para entender a origem desta variedade, os astrónomos estudam o processo de formação estelar, isto é, a agregação de gases e poeira cósmica.

As estrelas bebés recolhem o gás com a sua atracção gravitacional, mas, no entanto, parte do material é ejectado pelas protoestrelas. Este material expelido forma um “grito” de nascimento estelar que fornece pistas para entender o processo de acumulação de massa.

Yuko Matsushita, aluna de pós-graduação da Universidade de Kyushu e a sua equipa usaram o ALMA para observar a estrutura detalhada do grito de nascimento da estrela bebé MMS5/OMC-3 e descobriram dois fluxos gasosos diferentes: um fluxo lento e um jacto rápido. Existem alguns exemplos com dois fluxos vistos no rádio, mas MMS5/OMC-3 é excepcional.

“Medindo o desvio Doppler das ondas de rádio, podemos estimar a velocidade e a idade dos fluxos gasosos,” disse Matsushita, autora principal do artigo científico publicado na revista The Astrophysical Journal. “Descobrimos que o jacto e o fluxo foram lançados há 500 e há 1300 anos, respectivamente. Estes fluxos de gás são bem jovens.”

Mais interessante, a equipa descobriu que os eixos dos dois fluxos estão desalinhados em 17 graus. O eixo dos fluxos pode ser alterado ao longo de grandes períodos de tempo devido à precessão da estrela central. Mas neste caso, tendo em conta a juventude extrema das correntes gasosas, os investigadores concluíram que o desalinhamento não é devido à precessão, mas está relacionado com o processo de lançamento.

Existem dois modelos concorrentes para o mecanismo de formação de fluxos e jactos proto-estelares. Alguns investigadores assumem que as duas correntes são formadas independentemente em partes diferentes do disco de gás que rodeia a estrela bebé central, enquanto outros propõem que o jacto é formado primeiro e que depois arrasta o material circundante para formar os fluxos mais lentos. Apesar de uma extensa pesquisa, os astrónomos ainda não chegaram a uma resposta conclusiva.

Um desalinhamento nos dois fluxos pode ocorrer no “modelo independente,” mas é difícil no “modelo de arrasto”. Além disso, a equipa descobriu que o fluxo foi ejectado consideravelmente mais cedo do que o jacto. Isto apoia claramente o “modelo independente.”

“A observação combina bem com o resultado da minha simulação,” disse Masahiro Machida, professor na Universidade de Kyushu. Há uma década atrás, realizou estudos pioneiros de simulação usando um supercomputador operado pelo NAOJ (National Astronomical Observatory of Japan). Na simulação, o fluxo de grande angular é expelido da área externa do disco gasoso em torno de uma protoestrela, enquanto o jacto colimado é lançado independentemente a partir da área interna do disco. Machida continua: “Um desalinhamento observado entre os dois fluxos de gás pode indicar que o disco em torno da protoestrela é deformado.”

“A alta sensibilidade e resolução angular do ALMA vai permitir encontrar mais sistemas jovens e com fluxos e jactos como o de MMS5/OMC-3,” acrescentou Satoko Takahashi, astrónoma do NAOJ e do Observatório ALMA, co-autora do artigo. “Estes vão fornecer pistas para entender os mecanismos de condução de fluxos e jactos. Além disso, o estudo destes objectos também nos vai dizer como os processos de acreção e ejecção de massa trabalham no estágio inicial de formação estelar.”

Astronomia On-line
1 de Março de 2019

[vasaioqrcode]

 

1592: Descoberta jovem estrela massiva “polvilhada com sal”

NRAO/AUI/NSF; S. Dagnello
Impressão de artista de Orion Source I, uma jovem estrela massiva a cerca de 1500 anos-luz. Novas observações do ALMA detectaram um anel de sal – cloreto de sódio, o comum sal de mesa – em redor de estrela. Esta é a primeira detecção de sais de qualquer tipo associada a uma estrela jovem

Uma equipa de astrónomos e químicos, com recurso ao ALMA (Atacama Large Millimeter/submillimeter Array), detectou as “impressões digitais” químicas de cloreto de sódio (NaCl) e outros elementos salgados semelhantes emanados do disco empoeirado que rodeia Orion Source I, uma jovem estrela massiva situada numa nuvem de poeira por trás da Nebulosa de Orionte.

“É incrível termos conseguido ver estas moléculas”, comenta Adam Ginsburg, membro do NRAO (National Radio Astronomy Observatory) em Socorro, no estado norte-americano do Novo México, autor principal de um artigo aceite para publicação na revista The Astrophysical Journal.

“Como só tínhamos visto estes elementos nas camadas externas de estrelas moribundas, não sabemos totalmente o que significa a nossa nova descoberta. A natureza da detecção, no entanto, mostra que o ambiente em torno desta estrela é muito invulgar“.

Para detectar moléculas no espaço, os astrónomos usam radiotelescópios para procurar as suas assinaturas químicas – picos reveladores nos espectros de rádio e em comprimentos de onda milimétricos. Os átomos e as moléculas emitem estes sinais de várias maneiras, dependendo da temperatura dos seus ambientes.

As novas observações do ALMA contêm uma série de assinaturas espectrais – ou transições, como os astrónomos chamam – das mesmas moléculas. Para criar “impressões digitais” tão fortes e variadas, as diferenças de temperatura onde as moléculas residem devem ser extremas, variando de mais ou menos -175º C para 3700º C. Um estudo aprofundado destes picos espectrais pode fornecer informações detalhadas sobre o modo como a estrela está a aquecer o disco, o que também seria uma medida útil da luminosidade da estrela.

“Quando olhamos para as informações fornecidas pelo ALMA, vemos cerca de 60 transições diferentes – ou impressões digitais únicas – de moléculas como o cloreto de sódio e cloreto de potássio vindas do disco. Isso é impressionante e empolgante,” disse Brett McGuire, químico do NRAO em Charlottesville, Virginia, EUA, co-autor do artigo.

Os cientistas especulam que estes sais vêm de grãos de poeira que colidiram e derramaram os seus conteúdos no disco circundante. As suas observações confirmam que as regiões salgadas traçam a localização do disco circunstelar.

“Normalmente, quando estudamos as protoestrelas desta maneira, os sinais do disco e o fluxo da estrela confundem-se, dificultando a distinção entre um e o outro”, comentou Ginsburg. “Como agora podemos isolar apenas o disco, podemos aprender como se está a mover e quanta massa contém. Também nos pode dizer coisas novas sobre a estrela”.

A detecção de sinais em torno de uma estrela jovem também é de interesse para os astrónomos e astro-químicos porque alguns dos átomos constituintes dos sais são metais – sódio e potássio. Isto sugere que podem existir outras moléculas contendo metais neste ambiente. Se assim for, pode ser possível usar observações semelhantes para medir a quantidade de metais em regiões de formação estelar. “Este tipo de estudo não está disponível para nós actualmente. Os elementos metálicos flutuantes são geralmente invisíveis para a radioastronomia”, realçou McGuire.

As assinaturas salgadas foram encontradas a 30-60 UA (UA significa Unidade Astronómica, a distância média entre a Terra e o Sol) das estrelas hospedeiras. Com base nas suas observações, os astrónomos inferem que podem haver até mil triliões (10^21) de quilogramas de sal nessa região, o equivalente à massa total dos oceanos da Terra.

“O nosso próximo passo nesta investigação é procurar sais e moléculas metálicas noutras regiões. Isto ajudar-nos-á a compreender se estas ‘impressões digitais’ químicas são uma ferramenta poderosa no estudo de uma ampla gama de discos protoplanetários, ou se esta detecção é exclusiva desta fonte”, disse Ginsburg.

“Olhando para o futuro, o ngVLA (Next Generation Very Large Array) terá a combinação certa de sensibilidade e cobertura de comprimento de onda para estudar estas moléculas e talvez usá-las como rastreadores para discos de formação planetária.”

Orion Source I está a ser formada na Nuvem Molecular I de Orionte, uma região de nascimento estelar explosivo previamente observada com o ALMA. “Esta estrela foi expelida da sua nuvem natal a uma velocidade de mais ou menos 10 km/s há cerca de 550 anos,” disse John Bally, astrónomo da Universidade do Colorado e co-autor do artigo.

“É possível que grãos sólidos de sal tenham sido vaporizados por ondas de choque à medida que a estrela e o seu disco foram abruptamente acelerados por um encontro próximo ou por uma colisão com outra estrela. Resta saber se o vapor de sal está presente em todos os discos que rodeiam as protoestrelas massivas, ou se esse vapor assinala eventos violentos como o que observámos com o ALMA.”

ZAP // CCVAlg

Por CCVAlg
14 Fevereiro, 2019

[vasaioqrcode]

 

“Linha de neve” revela moléculas orgânicas em torno de estrela jovem

Imagem, a cores falsas, de V883 Ori obtida com o ALMA. A distribuição da poeira pode ser vista em tons laranja e a distribuição do metanol, uma molécula orgânica, tem tons azuis.
Crédito: ALMA (ESO/NAOJ/NRAO), Lee et al.

Recorrendo ao ALMA, os astrónomos detectaram várias moléculas orgânicas complexas em redor da jovem estrela V883 Ori. Uma explosão repentina da estrela está a libertar moléculas dos compostos gelados situados no disco de formação planetária. A composição química do disco é semelhante à dos cometas no Sistema Solar moderno. As observações sensíveis do ALMA permitiram com que os cientistas reconstruissem a evolução de moléculas orgânicas desde o nascimento do Sistema Solar até aos objectos que vemos hoje.

A equipa de investigação, liderada por Jeong-Eun Lee (Universidade de Kyung Hee, Coreia), usou o ALMA (Atacama Large Millimeter/submillimeter Array) para detectar moléculas orgânicas complexas, incluindo metanol (CH3OH), acetona (CH3COCH3), acetaldeído (CH3CHO), formiato de metila (CH3OCHO) e acetonitrilo (CH3CN). Esta é a primeira vez que a acetona foi detectada sem ambiguidade numa região de formação planetária ou disco protoplanetário.

Várias moléculas estão congeladas no gelo em torno de partículas de poeira de tamanho microscópico nos discos protoplanetários. O surto repentino de V883 Ori está a aquecer o disco e a sublimar o gelo, que liberta as moléculas sob a forma de gás. A região, num disco, onde a temperatura atinge o ponto de sublimação das moléculas, tem o nome “linha de neve”. Os raios das linhas de neve têm algumas Unidades Astronómicas em torno de estrelas jovens normais, mas são ampliadas quase 10 vezes em torno de estrelas explosivas.

“É difícil fotografar um disco à escala de algumas UAs com os telescópios actuais,” comentou Lee. “No entanto, em torno de uma estrela com comportamentos explosivos, o gelo derrete numa área mais ampla do disco e é mais fácil ver a distribuição das moléculas. Estamos interessados na distribuição das moléculas orgânicas complexas como blocos de construção da vida.”

O gelo, incluindo moléculas orgânicas congeladas, pode estar intimamente relacionado com a origem da vida nos planetas. No nosso Sistema Solar, os cometas são o foco da atenção por causa dos seus ricos elementos gelados. Por exemplo, a lendária exploradora cometária, a sonda Rosetta da ESA, descobriu uma valiosa química orgânica em torno do Cometa Churyumov-Gerasimenko. Pensa-se que os cometas se tenham formado nas regiões mais frias e exteriores do proto-Sistema Solar, onde as moléculas estavam contidas no gelo. O estudo da composição química do gelo nos discos protoplanetários está directamente relacionado com o estudo das moléculas orgânicas nos cometas e com a origem dos elementos básicos da vida.

Graças à visão detalhada do ALMA e à mais larga linha de neve provocada pelo surto estelar, os astrónomos obtiveram a distribuição espacial do metanol e do acetaldeído. A distribuição dessas moléculas tem uma estrutura semelhante a um anel com um raio de 60 UA, o equivalente ao dobro do tamanho da órbita de Neptuno. Os investigadores supõem que dentro deste anel as moléculas são invisíveis porque são obscurecidas por material espesso e empoeirado, e são invisíveis fora deste raio porque estão incorporadas no gelo.

“Dado que os planetas rochosos e gelados são feitos de material sólido, a composição química dos sólidos nos discos é de especial importância. Estes surtos explosivos são oportunidades únicas de investigar sublimados frescos e, portanto, a composição dos sólidos,” explicou Yuri Aikawa da Universidade de Tóquio, membro da equipa de investigação.

V883 Ori é uma estrela jovem localizada a 1300 anos-luz da Terra. Esta estrela está a passar por uma fase explosiva do tipo FU Orionis, um aumento súbito de luminosidade devido a uma corrente de material que flui do disco para a estrela. Estes surtos duram apenas um século, de modo que as oportunidades para observação são bastante raras. No entanto, dado que estrelas jovens com uma ampla gama de idades sofrem surtos do tipo FU Orionis, os astrónomos esperam poder traçar a composição química do gelo ao longo da evolução de estrelas jovens.

Astronomia On-line
8 de Fevereiro de 2019

[vasaioqrcode]

 

1518: Levantando o véu do buraco negro no coração da nossa Galáxia

Esquerda, topo: simulação de Sgr A* a 86 GHz. Direita, topo: simulação, com efeitos adicionados de dispersão. Direita, baixo: imagem dispersada das observações, é assim que vemos Sgr A* no céu. Esquerda, baixo: a imagem não dispersada, depois de removidos os efeitos de dispersão, ao longo da nossa linha de visão, o aspecto “real” de Sgr A*.
Crédito: S. Issaoun, M. Mościbrodzka, Universidade Radboud/M. D. Johnson, CfA

Juntando pela primeira vez o poderoso ALMA a uma série de telescópios, os astrónomos descobriram que a emissão do buraco negro super-massivo Sagitário A* (Sgr A*), no centro da nossa Galáxia, vem de uma região mais pequena do que se pensava anteriormente. Isto pode indicar que um jacto de rádio oriundo de Sgr A* está apontado quase directamente para a Terra.

Até agora, uma nuvem de gás quente tem impedido os astrónomos de obter imagens detalhadas do buraco negro super-massivo Sgr A* e instigado dúvidas na sua verdadeira natureza. Incluíram agora, e pela primeira vez, o poderoso telescópio ALMA no norte do Chile numa rede global de radiotelescópios para penetrar através desta neblina, mas a fonte continua a surpreender: a sua região de emissão é tão pequena que a fonte pode estar apontada directamente na direcção da Terra.

Observando a uma frequência de 86 GHz com a técnica de interferometria de linha de base muito longa (VLBI, inglês para “Very Long Baseline Interferometry”), que combina muitos telescópios para formar um telescópio virtual com o tamanho da Terra, a equipa conseguiu mapear as propriedades exactas da dispersão de luz que bloqueia a nossa visão de Sgr A*. A remoção da maioria dos efeitos de dispersão produziu uma primeira imagem da vizinhança do buraco negro.

A alta qualidade da imagem permitiu que a equipa restringisse modelos teóricos para o gás em torno de Sgr A*. A maior parte da emissão de rádio vem de apenas 300 milionésimos de grau e a fonte tem uma morfologia simétrica. “Isso pode indicar que a emissão de rádio é produzida num disco de gás em queda em vez de um jato de rádio,” explica Sara Issaoun, estudante da Universidade Radboud em Nijmegen, Países Baixos, que liderou o trabalho e testou vários modelos de computador contra os dados. “No entanto, isso tornaria Sgr A* uma excepção em comparação com outros buracos negros emissores de rádio. A alternativa pode ser que o jacto de rádio está apontado quase na nossa direcção”.

O astrónomo alemão Heino Falcke, professor de Radioastronomia da mesma Universidade e orientador de doutoramento de Issaoun, acha esta ideia muito invulgar, mas também não a descarta. No ano passado, Falcke teria considerado este modelo um tanto ou quanto “fabricado”, mas recentemente a equipa GRAVITY chegou a uma conclusão semelhante usando o interferómetro do VLT do ESO e uma técnica independente. “Talvez seja realmente verdade,” conclui Falcke, “e estamos a olhar para este monstro a partir de um ponto de vista muito especial.”

Os buracos negros supermassivos são comuns nos centros das galáxias e podem gerar os fenómenos mais energéticos do Universo conhecido. Pensa-se que, em redor destes buracos negros, a matéria cai num disco giratório e parte dessa matéria é expelida em direcções opostas ao longo de dois feixes estreitos, chamados jactos, a velocidades próximas da da luz, o que normalmente produz muito rádio. “Saber se a emissão de rádio oriunda de Sgr A* tem origem numa estrutura assimétrica subjacente, ou se é intrinsecamente assimétrica, é uma questão de intensa discussão,” explica Thomas Krichbaum, membro da equipa.

Sgr A* é o buraco negro super-massivo mais próximo e tem cerca de 4 milhões de vezes a massa do Sol. O seu tamanho aparente no céu corresponde a menos de 100 milionésimos de grau, o que equivale ao tamanho de uma bola de ténis à distância da Lua. Para medir isto, é necessária a técnica de VLBI. A resolução alcançada com a VLBI é ainda aumentada pela frequência de observação. A frequência mais alta, até à data, para a técnica VLBI, é de 230 GHz. “As primeiras observações de Sgr A*, a 86 GHz, datam de há 26 anos atrás, lideradas por Thomas Kirchbaum no nosso Instituto, apenas com um punhado de telescópios. Ao longo dos anos, a qualidade dos dados e das capacidades de imagem melhorou constantemente à medida que se juntavam mais telescópios,” diz J. Anton Zensus, director do Instituto Max Planck para Radioastronomia e líder da sua divisão de Radioastronomia/VLBI.

As descobertas de Issaoun e da sua equipa internacional descrevem as primeiras observações a 86 GHz nas quais o ALMA também participou, de longe o telescópio mais sensível nessa frequência. O ALMA passou a fazer parte do GMVA (Global Millimeter VLBI Array), operado pelo Instituto Max Planck para Radioastronomia, em Abril de 2017.

A participação do ALMA é importante devido à sua sensibilidade e à sua localização no hemisfério sul. Além do ALMA, também pertencem à rede global outros doze radiotelescópios na América do Norte e na Europa. A resolução alcançada foi duas vezes maior do que em observações anteriores nesta frequência e produziu a primeira imagem de Sgr A* que é consideravelmente reduzida em termos de dispersão interestelar (um efeito provocado por irregularidades na densidade do material ionizado ao longo da linha de visão entre Sgr A* e a Terra).

Para remover a dispersão e obter a imagem, a equipa usou uma técnica desenvolvida por Michael Johnson do Centro Harvard-Smithsonian para Astrofísica. “Embora a dispersão desfoque e distorça a imagem de Sgr A*, a incrível resolução destas observações permitiu-nos determinar as propriedades exactas da dispersão,” diz Johnson. “Pudemos então remover a maioria dos efeitos da dispersão e começar a ver o aspecto das ‘coisas’ perto do buraco negro. A grande novidade é que essas observações mostram que a dispersão não vai impedir com que o EHT (Event Horizon Telescope) observe uma sombra do buraco negro a 230 GHz, caso haja uma sombra para ver.”

Os estudos futuros, a diferentes comprimentos de onda, vão fornecer informações complementares e restrições adicionais para esta fonte, que detém a chave para uma melhor compreensão dos buracos negros, os objectos mais exóticos do Universo conhecido.

Astronomia On-line
25 de Janeiro de 2019

[vasaioqrcode]

 

1515: Raro buraco negro com o tamanho de Júpiter pode estar a vaguear a Via Láctea

(cv) Youtube

Uma equipa de astrónomos do Observatório Astronómico Nacional do Japão (OANJ) descobriu evidências de um buraco negro do tamanho de Júpiter à deriva a cerca de 20 anos-luz do centro da Via Láctea.

Recorrendo ao radiotelescópio ALMA (Atacama Large Millimeter/Submillimeter Array), os investigadores encontraram correntes de gás molecular a orbitar o que parece ser um objeto massivo invisível. Esse movimento peculiar de gás no centro galáctico poderá ser um sinal do tipo mais elusivo de buraco negro – o de tamanho intermediário.

Uma vez que não emitem nenhuma radiação electromagnética, os buracos negros são muito difíceis de encontrar, a menos que estejam a alimentar-se activamente ou a colidir. Ou seja, isto significa que os buracos negros são invisíveis aos nosso métodos de detecção a menos que estejam a fazer algo monstruosamente perceptível.

Ainda assim, sabemos que existem buracos negros de massa estelar, formados a partir do colapso do núcleo de uma estrela massiva, com até cerca de 100 vezes a massa do Sol, bem como buracos negros supermassivos, que possuem tamanhos a partir de 100.000 vezes a massa do nosso Sol.

Entre estes dois extremos, resta uma dúvida. Embora existam boas evidências indirectas da existência de buracos negros entre 100 e 100.000 massas solares, os buracos negros de massa intermédia, ainda é necessário confirmar a existência destes objectos.

O buraco negro candidato

“Quando verifiquei os dados do ALMA pela primeira vez, fiquei muito animada porque o gás observado mostrou movimentos orbitais óbvios, que sugerem fortemente um objeto massivo invisível à espreita”, disse a astrofísica Shunya Takekawa, do OANJ, em declarações ao portal New Scientist.

Dados similares foram observados como resultado de colisões entre nuvens de super-novas, mas o objeto – chamado HCN – 0,009–0,044 – não mostra nem a forma nem o padrão de expansão associado a uma colisão desse tipo. Além disso, pesquisas anteriores, também levadas a cabo pelo OANJ, identificaram o HCN como um possível buraco negro.

Com base na forma e no movimento dos fluxos de gás, a equipa de investigação foi capaz de inferir que o objeto tem uma massa equivalente a cerca de 32.000 sóis. Esta massa torna-o um forte candidato para o tal elo perdido no rol dos buracos negros, reunindo toda esta massa num objeto do tamanho de Júpiter.

Procura buraco negros inactivos

Além de potencialmente apontar para a descoberta de um buraco negro intermediário, a investigação revela para aquele que poderia ser um novo método de descoberta de buracos negros inactivos.

Assim como o movimento do gás, a sua ionização na parte interna da órbita sugere que, em algum momento, ocorreu fotoionização, choque dissociativo ou ambos no objeto. Estes processos são normalmente observados em buracos negros activos. Portanto, se um buraco negro estiver intermitentemente activo, pode produzir ionização capaz de ser detectada depois de já ter diminuído a sua actividade novamente.

“Os resultados fornecem evidências circunstanciais de um buraco negro de massa intermediária no centro galáctico, sugerindo também que as nuvens compactas de alta velocidade podem ser sinais de buracos negros adormecidos em abundância na nossa galáxia”, escreveram os investigadores no artigo esta semana disponibilizado para pré-visualização no arXiv.org.

De acordo com o estudo, as observações têm o potencial de aumentar o número de candidatos a buracos negros não luminosos, fornecendo uma nova perspectiva para a pesquisa destes objectos massivos.

ZAP // HypeScience

Por HS
24 Janeiro, 2019

[vasaioqrcode]

 

1478: O que 100.000 fábricas estelares em 74 galáxias nos contam sobre a formação estelar em todo o Universo

Seis imagens obtidas pelo ALMA de uma colecção de 74. Fazem parte do levantamento PHANGS-ALMA, que tem o objectivo de estudar as propriedades das nuvens de formação estelar em galáxias de disco.
Crédito: ALMA (ESO/NAOJ/NRAO); NRAO/AUI/NSF, B. Saxton

As galáxias têm uma ampla variedade de formas e tamanhos. No entanto, algumas das diferenças mais significativas entre as galáxias dizem respeito a onde e como formam novas estrelas. As investigações convincentes para explicar essas diferenças têm sido elusivas, mas isso está prestes a mudar. O ALMA (Atacama Large Millimeter/submillimeter Array) está a levar a cabo um levantamento sem precedentes de galáxias de disco próximas com o objectivo de estudar os seus berçários estelares. Com ele, os astrónomos estão a começar a desvendar a relação complexa e ainda pouco entendida entre as nuvens de formação estelar e as suas galáxias hospedeiras.

Um novo e vasto projecto de investigação com o ALMA, conhecido como PHANGS-ALMA (Physics at High Angular Resolution in Nearby GalaxieS), debruça-se sobre esta questão com muito mais poder e precisão do que nunca, medindo a demografia e as características de uns impressionantes 100.000 berçários estelares individuais espalhados por 74 galáxias.

A campanha de pesquisa PHANGS-ALMA, sem precedentes, já acumulou um total de 750 horas de observações e deu aos astrónomos uma compreensão muito mais clara de como o ciclo de formação estelar muda, dependendo do tamanho, idade e dinâmica interna de cada galáxia individual. Esta campanha é dez a cem vezes mais poderosa (dependendo dos parâmetros) do que qualquer outro levantamento anterior do género.

“Algumas galáxias produzem furiosamente novas estrelas, enquanto outras já consumiram a maior parte do seu combustível para a formação estelar. A origem desta diversidade pode muito provavelmente estar nas propriedades dos próprios berçários estelares,” comenta Erik Rosolowsky, astrónomo da Universidade de Alberta no Canadá e um dos principais investigadores da equipa de investigação do levantamento PHANGS-ALMA.

Rosolowsky apresentou os achados iniciais da investigação na 233.ª reunião da Sociedade Astronómica Americana, que teve lugar a semana passada em Seattle, Washington, EUA. Vários artigos baseados nesta campanha também foram publicados nas revistas The Astrophysical Journal e The Astrophysical Journal Letters.

“As observações anteriores com as gerações anteriores de radiotelescópios fornecem algumas informações cruciais sobre a natureza dos berçários estelares densos e frios,” disse Rosolowsky. “No entanto, estas observações carecem de sensibilidade, de resolução e de poder para estudar a grande diversidade dos berçários estelares em toda a população de galáxias locais. Isto limitou seriamente a nossa capacidade para relacionar o comportamento ou propriedades dos berçários estelares individuais com as propriedades das galáxias em que residem.”

Durante décadas, os astrónomos especularam que existem diferenças fundamentais na forma como as galáxias de disco com vários tamanhos convertem o hidrogénio em novas estrelas. Alguns astrónomos teorizam que galáxias maiores e geralmente mais velhas não são tão eficientes na produção estelar quanto as suas primas mais pequenas. A explicação mais lógica seria que essas grandes galáxias têm berçários estelares menos eficientes. Mas tem sido difícil testar esta ideia com observações.

Pela primeira vez, o ALMA está a permitir com que os astrónomos realizem o censo abrangente necessário para determinar como as propriedades de grande escala (tamanho, movimento, etc.) de uma galáxia influenciam o ciclo de formação estelar à escala de nuvens moleculares individuais. Estas nuvens têm apenas algumas dezenas a centenas de anos-luz de tamanho, o que é fenomenalmente pequeno à escala de uma galáxia inteira, especialmente quando vista a milhões de anos-luz de distância.

“As estrelas formam-se de modo mais eficiente em algumas galáxias do que noutras, mas a falta de observações em alta resolução e à escala das nuvens fez com que as nossas teorias não fossem bem testadas, razão pela qual estas observações do ALMA são tão críticas,” explica Adam Leroy, astrónomo da Universidade Estatal do Ohio e co-investigador principal da equipa PHANGS-ALMA.

Parte do mistério da formação estelar, realçam os astrónomos, tem a ver com o meio interestelar – toda a matéria e energia que preenche o espaço entre as estrelas.

Os astrónomos entendem que existe um ciclo de feedback contínuo no interior e em redor dos berçários estelares. Dentro destas nuvens, regiões de gás denso colapsam e formam estrelas, o que perturba o meio interestelar.

“De facto, a comparação entre as observações iniciais do PHANGS e as posições das estrelas recém-formadas mostra que estas destroem rapidamente as suas nuvens natais,” acrescenta Rosolowsky. “A equipa PHANGS está a estudar como esta perturbação tem lugar em diferentes tipos de galáxias, o que pode ser um factor-chave na formação estelar.”

Para esta investigação, o ALMA está a observar moléculas de monóxido de carbono (CO) em todas as galáxias espirais relativamente massivas, vistas geralmente de face, visíveis do hemisfério sul. As moléculas de CO emitem naturalmente luz em comprimentos de onda milimétricos que o ALMA pode detectar. São particularmente eficazes em destacar a localização de nuvens de formação estelar.

“O ALMA é uma máquina incrivelmente eficiente a mapear monóxido de carbono em grandes áreas de galáxias próximas,” salienta Leroy. “Foi capaz de realizar este levantamento graças ao poder combinado das antenas de 12 metros, que estudam características de escala fina, e às antenas mais pequenas de 7 metros, no centro do complexo, sensíveis a características de grande escala, essencialmente preenchendo as lacunas.”

Um estudo complementar, PHANGS-MUSE (Multi-Unit Spectroscopic Explorer), está a usar o VLT (Very Large Telescope) para obter imagens ópticas das primeiras 19 galáxias observadas pelo ALMA. Ainda outro levantamento, PHANGS-HST, usa o Telescópio Espacial Hubble para estudar 38 destas galáxias e para encontrar os seus mais jovens enxames estelares. Juntos, estes três levantamentos fornecem uma imagem surpreendentemente completa de quão eficazmente as galáxias produzem estrelas ao estudar o gás molecular frio, o seu movimento, a localização de gás ionizado (regiões onde as estrelas já estão a ser formadas) e as populações estelares completas das galáxias.

“Em astronomia, não temos capacidade para observar o cosmos a mudar ao longo do tempo; as escalas de tempo simplesmente superam avassaladoramente a existência humana,” diz Rosolowsky. “Não podemos observar um objecto para todo o sempre, mas podemos observar centenas de milhares de nuvens de formação estelar em galáxias de diferentes tamanhos e idades para inferir como a evolução galáctica funciona. Esse é o valor real da campanha PHANGS-ALMA.”

“Também analisamos milhares a dezenas de milhares de regiões de formação estelar dentro de cada galáxia, capturando-as ao longo do seu ciclo de vida. Isto permite-nos construir uma imagem do nascimento e da morte dos berçários estelares nas galáxias, algo quase impossível antes do ALMA,” acrescenta Leroy.

Até agora, o PHANGS-ALMA estudou aproximadamente 100.000 objectos semelhantes à Nebulosa de Orionte no Universo próximo. Espera-se que a campanha acabe eventualmente por observar cerca de 300.000 regiões de formação estelar.

Astronomia On-line
15 de Janeiro de 2019

[vasaioqrcode]

 

1458: ALMA descobre proto-estrela com disco deformado

Impressão de artista de um disco deformado em torno de uma protoestrela. O ALMA observou a protoestrela IRAS04368+2557 na nuvem escura L1527 e descobriu que a protoestrela tem um disco com duas partes desalinhadas.
Crédito: RIKEN

Usando o ALMA (Atacama Large Millimeter/submillimeter Array) no Chile, investigadores observaram, pela primeira vez, um disco deformado em torno de uma jovem protoestrela formada há apenas algumas dezenas de milhares de anos. Isto implica que o desalinhamento das órbitas planetárias em muitos sistemas planetários, incluindo o nosso, pode ser provocado por distorções no disco de formação planetária no início da sua existência.

Os planetas do Sistema Solar orbitam o Sol em planos que estão, no máximo, desviados do equador do próprio Sol até cerca de sete graus. Sabe-se há algum tempo que muitos sistemas exoplanetários têm planetas que não estão alinhados com um único plano ou com o equador da estrela. Uma explicação para isto é que alguns dos planetas podem ter sido afectados por colisões com outros objectos no sistema ou por estrelas que passaram pelo sistema, ejectando-os do plano inicial.

No entanto, sempre permaneceu a possibilidade de que a formação planetária fora do plano normal era na realidade provocada por uma deformação no disco de acreção a partir da qual os planetas nascem. Recentemente, imagens de discos protoplanetários, discos giratórios onde se formam planetas em torno de uma estrela, mostraram de facto uma tal deformação. Mas ainda não se sabia quão cedo isto acontecia.

As descobertas mais recentes, publicadas na revista Nature, pelo grupo do RIKEN CPR (Cluster for Pioneering Research) e da Universidade Chiba, no Japão, descobriram que L1527, uma jovem protoestrela ainda incorporada dentro de uma nuvem, tem um disco com duas partes, uma mais interna que gira num plano e outra externa situada num plano diferente. O disco é muito jovem e ainda está a crescer. L1527, situada a aproximadamente 450 anos-luz de distância na Nuvem Molecular de Touro, é um bom objecto de estudo, pois tem um disco que está quase de lado a partir do nosso ponto de vista da Terra.

De acordo com Nami Sakai, que liderou o grupo de investigação, “esta observação mostra que é concebível que o desalinhamento das órbitas planetárias possa ser provocado por uma estrutura deformada produzida nos primeiros estágios da formação planetária. Teremos que investigar mais sistemas para descobrir se isto é um fenómeno comum ou não.”

A questão que ainda permanece é saber a razão da deformação do disco. Sakai sugere duas explicações razoáveis. “Uma possibilidade, diz, “é que as irregularidades no fluxo de gás e poeira na nuvem proto-estelar ainda estão preservadas e manifestam-se como um disco distorcido. Uma segunda possibilidade é que o campo magnético da protoestrela está num plano diferente do plano rotacional do disco e que o disco interno está a ser puxado para um plano diferente do resto do disco pelo campo magnético.” Ela diz que a equipa planeia determinar o responsável pela deformação do disco.

Astronomia On-line
8 de Janeiro de 2019

[vasaioqrcode]