3526: Revisitando dados antigos da Voyager 2, os cientistas descobrem mais um segredo

CIÊNCIA/ESTRONOMIA

A Voyager 2 obteve esta imagem à medida que se aproximava de Úrano no dia 14 de Janeiro de 1986. O tom azulado do planeta é devido ao metano na sua atmosfera, que absorve comprimentos de onda vermelhos da luz.
Crédito: NASA/JPL-Caltech

Oito anos e meio depois do início da sua grande “tournée” pelo Sistema Solar, a sonda Voyager 2 encontrava-se pronta para outro encontro. Estávamos no dia 24 de Janeiro de 1986 e ia deparar-se em breve com o misterioso sétimo planeta, Úrano, frio como o gelo.

Nas horas seguintes, a Voyager 2 passou a 81.433 km do topo das nuvens de Úrano, recolhendo dados que revelaram dois novos anéis, 11 novas luas e temperaturas abaixo dos -214º C. Estes dados ainda permanecem como as únicas medições obtidas de perto do planeta.

Três décadas depois, os cientistas que reinspeccionam esses dados encontraram mais um segredo.

Sem o conhecimento de toda a comunidade da física espacial, há 34 anos a Voyager 2 passou através de um plasmoide, uma bolha magnética gigante que pode estar a levar a atmosfera de Úrano para o espaço. A descoberta, relatada na revista Geophysical Research Letters, levanta novas questões sobre o ambiente magnético único do planeta.

Um “estranho” magnético e oscilante

As atmosferas planetárias por todo o Sistema Solar estão a vazar para o espaço. O hidrogénio “brota” de Vénus para se juntar ao vento solar, o fluxo contínuo de partículas que escapam do Sol. Júpiter e Saturno ejectam bolhas do seu “ar” electricamente carregado. Até a atmosfera da Terra escapa para o espaço (não se preocupe, continuará a existir por outros mil milhões de anos ou mais).

Os efeitos são minúsculos nas escalas de tempo humanas, mas, dado tempo suficiente, a fuga atmosférica pode fundamentalmente alterar o destino de um planeta. Para um caso em específico, basta olhar para Marte.

“Marte costumava ser um planeta húmido com uma atmosfera espessa,” disse Gina DiBraccio, física espacial do Centro de Voo Espacial Goddard da NASA e cientista do projecto MAVEN (Mars Atmosphere and Volatile Evolution). “Evoluiu com o tempo” – 4 mil milhões de anos de fuga atmosférica para o espaço – “para se tornar no planeta seco que vemos hoje.”

A fuga atmosférica é impulsionada pelo campo magnético de um planeta, que pode ajudar e dificultar o processo. Os cientistas pensam que os campos magnéticos podem proteger um planeta, afastando as tempestades do vento solar, destruidor de atmosferas. Mas também podem criar oportunidades de escape, como as bolhas gigantes libertadas por Saturno e por Júpiter quando as linhas do campo magnético se emaranham. De qualquer maneira, para entender como as atmosferas mudam, os cientistas têm que prestar muita atenção ao magnetismo.

Esta é mais uma razão pela qual Úrano é um mistério. O “flyby” da Voyager em 1986 revelou o quão magneticamente estranho o planeta é.

“A estrutura, o modo como se move…,” disse Di Braccio, “Úrano é realmente único.”

Ao contrário de qualquer outro planeta no nosso Sistema Solar, Úrano gira quase perfeitamente de lado – como um leitão no espeto – completando uma volta a cada 17 horas. Os pontos do eixo magnético apontam 60º para longe desse eixo de rotação, de modo que à medida o planeta gira, a sua magnetosfera – o espaço esculpido pelo seu campo magnético – oscila como uma bola de râguebi mal atirada. Os cientistas ainda não sabem como o modelar.

Esta excentricidade atraiu DiBraccio e o seu co-autor Dan Gershman, físico espacial de Goddard, ao projecto. Ambos faziam parte de uma equipa que elaborava planos para uma nova missão aos “gigantes gasosos” Úrano e Neptuno, e estavam à procura de mistérios para resolver. O estranho campo magnético de Úrano, medido pela última vez há mais de 30 anos, parecia um bom lugar para começar.

Assim sendo, fizeram download das leituras do magnetómetro da Voyager 2, que monitorizou a força e a direcção dos campos magnéticos perto de Úrano à medida que a nave espacial por lá passava. Sem ideia do que podiam encontrar, debruçaram-se com mais atenção do que estudos anteriores, traçando um novo ponto de dados a cada 1,92 segundos. As linhas suaves deram lugar a picos e quedas irregulares. E foi aí que o viram: um pequeno ziguezague com uma grande história.

“Achas que isto pode ser… um plasmoide?” perguntou Gershman a DiBraccio, vendo o rabisco.

Pouco conhecidos na altura da passagem da Voyager 2, os plasmoides foram desde então reconhecidos como uma maneira importante dos planetas perderem massa. Estas bolhas gigantes de plasma, ou gás electrificado, desprendem-se do final da magneto-cauda de um planeta – a parte do seu campo magnético soprada pelo Sol como uma manga de vento. Com tempo suficiente, os plasmoides que escapam podem drenar iões da atmosfera de um planeta, alterando fundamentalmente a sua composição. Já haviam sido observados na Terra e noutros planetas, mas ninguém tinha detectado plasmoides em Úrano – ainda.

DiBraccio executou os dados através do seu “pipeline” de processamento e os resultados voltaram limpos. “Eu acho que é mesmo,” disse ela.

A bolha escapa

O plasmoide que DiBraccio e Gershman encontraram ocupava uns meros 60 segundos do voo de 45 horas da Voyager 2 por Úrano. Aparecia como um rápido movimento de cima para baixo nos dados do magnetómetro. “Mas, se o víssemos em 3D, pareceria um cilindro,” disse Gershman.

Comparando os seus resultados com plasmoides observados em Júpiter, Saturno e em Mercúrio, estimaram uma forma cilíndrica com pelo menos 204.000 quilómetros de comprimento, e até 400.000 quilómetros de largura. Tal como todos os plasmoides planetários, estava repleto de partículas carregadas – principalmente hidrogénio ionizado, pensam os autores.

As leituras de dentro do plasmoide – enquanto a Voyager 2 voava através dele – sugeriram as suas origens. Ao passo que alguns plasmoides têm um campo magnético interno torcido, DiBraccio e Gershman observaram “loops” magnéticos suaves e fechados. Tais plasmoides são tipicamente formados quando um planeta lança pedaços da sua atmosfera para o espaço. “As forças centrífugas assumem o controlo e o plasmoide aperta,” explicou Gershman. De acordo com as suas estimativas, este tipo de plasmoide pode representar entre 15 e 55% da perda de massa atmosférica em Úrano, uma proporção maior do que em Júpiter ou Saturno. Pode muito bem ser a maneira dominante de Úrano lançar a sua atmosfera para o espaço.

Como é que o escape de plasmoides mudou Úrano ao longo do tempo? Com apenas um conjunto de observações, é difícil dizer.

“Imagine se uma nave espacial tivesse passado por esta sala e tentasse caracterizar toda a Terra,” disse DiBraccio. “Obviamente, não vai mostrar nada sobre o Saara ou sobre a Antárctica.”

Mas as descobertas ajudam a focar novas questões sobre o planeta. O mistério remanescente é parte do que os atrai. “É por isso que adoro a ciência planetária,” comentou DiBraccio. “Estamos sempre a ir a algum lugar que não conhecemos.”

Astronomia On-line
31 de Março de 2020

 

spacenews

 

Deixe uma resposta

O seu endereço de email não será publicado. Campos obrigatórios marcados com *

Este site utiliza o Akismet para reduzir spam. Fica a saber como são processados os dados dos comentários.