3152: Parker Solar Probe lança nova luz sobre o Sol

CIÊNCIA

Impressão de artista da Parker Solar Probe.
Crédito: NASA/Laboratório de Física Aplicada da Universidade Johns Hopkins

Em Agosto de 2018, a Parker Solar Probe da NASA foi lançada para o espaço, tornando-se pouco tempo depois a sonda mais próxima do Sol. Com instrumentos científicos de ponta para medir o ambiente em torno de si própria, a Parker Solar Probe completou três das 24 passagens planeadas por partes nunca antes exploradas da atmosfera do Sol, a coroa. No dia 4 de Dezembro de 2019, quatro novos artigos científicos publicados na Nature descrevem o que os cientistas aprenderam com esta exploração sem precedentes da nossa estrela – e o que esperam aprender a seguir.

Estas descobertas revelam novas informações sobre o comportamento do material e das partículas que se afastam do Sol, aproximando os cientistas de responder a perguntas fundamentais sobre a física da nossa estrela. Na busca para proteger os astronautas e a tecnologia no espaço, as informações que a Parker Solar Probe descobriu sobre como o Sol ejecta constantemente material e energia vão ajudar a reescrever os modelos que usamos para entender e prever o clima espacial em redor do planeta e para entender o processo pelo qual as estrelas se formam e evoluem.

“Estes primeiros dados da Parker revelam a nossa estrela, o Sol, de maneiras novas e surpreendentes,” disse Thomas Zurbuchen, administrador associado para ciência na sede da NASA em Washington. “A observação do Sol de perto, e não a uma distância muito maior, está a dar-nos uma visão sem precedentes de fenómenos solares importantes e de como nos afectam na Terra, além de fornecer novas ideias relevantes para a compreensão das estrelas activas nas galáxias. É apenas o começo de um momento incrivelmente emocionante para a heliofísica com a Parker na vanguarda de novas descobertas.”

Embora possa parecer plácido para nós aqui na Terra, o Sol é tudo menos quieto. A nossa estrela é magneticamente activa, libertando poderosas explosões de luz, dilúvios de partículas que se movem perto da velocidade da luz e nuvens com milhares de milhões de toneladas de material magnetizado. Toda esta actividade afecta o nosso planeta, injectando partículas prejudiciais no espaço onde os nossos satélites e astronautas voam, interrompendo as comunicações e sinais de navegação, e mesmo – quando intensos – levando a falhas na energia eléctrica. Tem vindo a acontecer ao longo da vida útil de 5 mil milhões de anos do Sol e assim continuará a moldar os destinos da Terra e dos outros planetas no nosso Sistema Solar futuro.

“O Sol tem fascinado a humanidade durante toda a nossa existência,” disse Nour E. Raouafi, cientista do projecto Parker Solar Probe do Laboratório de Física Aplicada da Universidade Johns Hopkins em Laurel, no estado norte-americano de Maryland, que construiu e gere a missão da NASA. “Aprendemos muito sobre a nossa estrela ao longo das últimas décadas, mas realmente precisávamos de uma missão como a Parker Solar Probe para entrar na atmosfera do Sol. É só aí que podemos realmente aprender os detalhes destes processos solares complexos. E o que aprendemos apenas nestas três órbitas solares mudou muito do que sabemos sobre o Sol.”

O que acontece no Sol é fundamental para entender como molda o espaço em nosso redor. A maior parte do material que escapa do Sol faz parte do vento solar, um fluxo contínuo de material solar que banha todo o Sistema Solar. Este gás ionizado, chamado plasma, carrega consigo o campo magnético do Sol, estendendo-o através do Sistema Solar numa bolha gigante que abrange mais de 16 mil milhões de quilómetros.

O dinâmico vento solar

Observado perto da Terra, o vento solar é um fluxo relativamente uniforme de plasma, com ocasionais quedas turbulentas. Mas, a essa altura, este já percorreu quase 150 milhões de quilómetros – e as assinaturas dos mecanismos exactos do Sol para aquecer e acelerar o vento solar são apagadas. Mais perto da fonte do vento solar, a Parker Solar Probe viu uma imagem muito diferente: um sistema activo e complicado.

“A complexidade era alucinante quando começámos a analisar os dados,” disse Stuart Bale, da Universidade da Califórnia em Berkeley, líder do conjunto de instrumentos FIELDS da Parker Solar Probe, que estuda a escala e a forma dos campos eléctricos e magnéticos. “Agora, já me habituei. Mas quando os mostro a colegas pela primeira vez, ficam impressionados.” Do ponto de vista da Parker, a 24 milhões de quilómetros do Sol, explicou Bale, o vento solar é muito mais impulsivo e instável do que vemos perto da Terra.

Como o próprio Sol, o vento solar é composto por plasma, onde electrões com carga negativa se separam de iões com carga positiva, criando um mar de partículas flutuantes com carga eléctrica individual. Estas partículas flutuantes significam que o plasma carrega campos eléctricos e magnéticos, e as mudanças no plasma geralmente deixam marcas nesses campos. Os instrumentos FIELDS estudaram o estado do vento solar medindo e analisando cuidadosamente como os campos eléctricos e magnéticos em redor da nave mudavam ao longo do tempo, juntamente com a medição de ondas no plasma próximo.

Estas medições mostraram reversões rápidas no campo magnético e jactos velozes e repentinos de material – todas características que tornam o vento solar mais turbulento. Estes detalhes são essenciais para entender como o vento dispersa a energia à medida que flui para longe do Sol e por todo o Sistema Solar.

Um tipo de evento em particular chamou a atenção das equipas científicas: oscilações na direcção do campo magnético, que flui do Sol, embebido no vento solar. Estas reversões duram entre alguns segundos a vários minutos enquanto fluem pela Parker Solar Probe. Durante uma reversão, o campo magnético volta-se sob si próprio até que aponta quase directamente de volta ao Sol. Juntos, o FIELDS e o SWEAP, o conjunto de instrumentos de vento solar liderado pela Universidade de Michigan e gerido pelo Observatório Astrofísico do Smithsonian, mediu grupos de reversões nos dois primeiros “flybys” da Parker Solar Probe.

“As ondas já são vistas no vento solar desde o início da era espacial, e assumimos que eram mais fortes mais perto do Sol, mas não esperávamos vê-las organizando-se nestes picos estruturados e coerentes de velocidade,” disse Justin Kasper, investigador principal do SWEAP (Solar Wind Electrons Alphas and Protons) da Universidade de Michigan em Ann Arbor. “Estamos a detectar remanescentes de estruturas do Sol sendo lançadas para o espaço e a alterar violentamente a organização dos fluxos e o campo magnético. Isto mudará dramaticamente as nossas teorias de como a coroa e o vento solar estão a ser aquecidos.”

A fonte exacta das reversões ainda não é conhecida, mas as medições da Parker Solar Probe permitiram que os cientistas reduzissem as possibilidades.

Entre as muitas partículas que perpetuamente fluem do Sol, há um feixe constante de electrões em movimento rápido, que percorrem as linhas do campo magnético do Sol para o Sistema Solar. Estes electrões fluem sempre estritamente ao longo da forma das linhas de campo que se deslocam do Sol, independentemente do pólo norte do campo magnético nessa região específica estar apontando na direcção do Sol ou na direcção oposta. Mas a Parker Solar Probe mediu este fluxo de electrões indo na direcção contrária, voltando para o Sol – mostrando que o próprio campo magnético deve estar a curvar-se em direcção ao Sol, em vez da Parker Solar Probe encontrar apenas uma linha diferente de campo magnético do Sol que aponta na direcção oposta. Isto sugere que as reversões são dobras no campo magnético – distúrbios localizados viajando para longe do Sol, em vez de uma mudança no campo magnético à medida que emerge do Sol.

As observações das reversões pela Parker Solar Probe sugerem que estes eventos se tornarão ainda mais comuns à medida que a sonda se aproxima do Sol. O próximo encontro solar da missão, no dia 29 de Janeiro de 2020, levará a sonda mais perto do Sol do que nunca, e poderá lançar uma nova luz sobre este processo. Estas informações não só ajudam a mudar a nossa compreensão do que provoca o vento solar e o clima espacial em nosso redor, como também nos ajudam a entender um processo fundamental de como as estrelas funcionam e de como libertam energia para o seu ambiente.

A rotação do vento solar

Algumas das medições da Parker Solar Probe estão a aproximar os cientistas de respostas a perguntas com décadas. Uma dessas perguntas é como, exactamente, o vento solar flui do Sol.

Perto da Terra, vemos o vento solar fluir quase radialmente – o que significa que está a sair directamente do Sol em todas as direcções. Mas o Sol gira enquanto liberta o vento solar; antes de se libertar, o vento solar gira com ele. É um pouco como uma criança num carrossel – a atmosfera gira com o Sol da mesma forma que a parte externa do carrossel gira, mas quanto mais longe estamos do centro, mais depressa nos movemos no espaço. Uma criança na extremidade do carrossel pode saltar e, nesse ponto mover-se em linha recta para fora, em vez de continuar a girar. De maneira semelhante, há um determinado ponto entre o Sol e a Terra em que o vento solar transita de girar juntamente com o Sol para fluir directamente para fora, ou radialmente, como vemos na Terra.

Exactamente onde o vento solar transita de um fluxo giratório para um fluxo perfeitamente radial tem implicações na maneira como o Sol liberta energia. Encontrar esse ponto pode ajudar-nos a entender melhor o ciclo de vida de outras estrelas ou a formação de discos proto-planetários, os discos densos de gás e poeira em torno de estrelas jovens que eventualmente coalescem em planetas.

Agora, pela primeira vez – ao invés de apenas ver o fluxo directo que observamos perto da Terra – a Parker Solar Probe foi capaz de observar o vento solar enquanto ainda estava em rotação. É como se a Parker Solar Probe visse o carrossel rodopiante directamente pela primeira vez, não apenas as crianças que saltam dele. O instrumento de vento solar da Parker Solar Probe detectou a rotação a começar a mais de 32 milhões de quilómetros do Sol e, à medida que a Parker se aproximava do seu ponto de periélio, a velocidade da rotação aumentava. A força da circulação era mais forte do que muitos cientistas previram, mas também transitou para um fluxo externo mais rapidamente do que o previsto, que é o que ajuda a mascarar estes efeitos onde geralmente estamos, a cerca de 150 milhões de quilómetros do Sol.

“O grande fluxo rotacional do vento solar visto durante os primeiros encontros foi uma verdadeira surpresa,” disse Kasper. “Enquanto esperávamos ver o movimento giratório mais perto do Sol, as altas velocidades que estamos a ver nestes primeiros encontros são quase dez vezes maiores do que o previsto pelos modelos padrão.”

Poeira perto do Sol

Outra questão que estamos perto de obter resposta é a elusiva zona livre de poeira. O nosso Sistema Solar está inundado de poeira – as migalhas cósmicas de colisões que formaram planetas, asteróides, cometas e outros corpos celestes há milhares de milhões de anos atrás. Os cientistas suspeitam há muito que, perto do Sol, esta poeira seria aquecida a altas temperaturas pela poderosa luz solar, transformando-se em gás e criando uma região livre de poeira em torno do Sol. Mas nunca ninguém a tinha observado.

Pela primeira vez, a Parker Solar Probe viu a poeira cósmica a começar a diminuir. Dado que o WISPR – o instrumento de imagem da Parker Solar Probe, liderado pelo Laboratório Naval de Investigação dos EUA – olha para o lado da sonda, pode ver grandes faixas da coroa e do vento solar, incluindo regiões mais próximas do Sol. Estas imagens mostram que a poeira começa a diminuir a pouco mais de 11 milhões de quilómetros do Sol, e esta diminuição na poeira continua de modo constante até aos limites actuais das medições do WISPR, a pouco mais de 6 milhões de quilómetros do Sol.

“Esta zona livre de poeira foi prevista há décadas atrás, mas nunca tinha sido vista antes,” disse Russ Howard, investigador principal do conjunto de instrumentos WISPR (Wide-field Imager for Solar Probe) no Laboratório Naval de Investigação em Washington, DC. “Estamos agora a ver o que está a acontecer com a poeira perto do Sol.”

Ao ritmo desta diminuição, os cientistas esperam ver uma zona verdadeiramente livre de poeira a pouco mais de 3,2-4,8 milhões de quilómetros do Sol – o que significa que a Parker Solar Probe poderá observar a zona livre de poeira já no início do próximo ano, quando o seu sexto “flyby” pelo Sol a levar mais perto do Sol do que nunca.

Colocando o clima espacial sob um microscópio

As medições da Parker Solar Probe deram-nos uma nova perspectiva sobre dois tipos de eventos climáticos espaciais: tempestades de partículas energéticas e ejecções de massa coronal.

Pequenas partículas – electrões e iões – são aceleradas pela atividade solar, criando tempestades de partículas energéticas. Os eventos no Sol podem ejetar estas partículas quase à velocidade da luz, o que significa que atingem a Terra em menos de meia-hora e podem afectar outros mundos em escalas de tempo igualmente curtas. Estas partículas carregam muita energia, de modo que podem danificar componentes electrónicos nas naves espaciais e até mesmo colocar em risco os astronautas, especialmente aqueles no espaço profundo, fora da protecção do campo magnético da Terra – e o curto tempo de aviso para tais partículas dificulta a sua prevenção.

É crucial entender exactamente como estas partículas são aceleradas a velocidades tão altas. Mas mesmo que alcancem a Terra em apenas alguns minutos, ainda é tempo suficiente para que as partículas percam as assinaturas dos processos que as aceleram em primeiro lugar. Ao orbitar o Sol a apenas alguns milhões de quilómetros, a Parker Solar Probe pode medir essas partículas logo após deixarem o Sol, lançando nova luz sobre como são libertadas.

Os instrumentos ISʘIS da Parker Solar Probe, liderados pela Universidade de Princeton, já mediram vários eventos de partículas energéticas nunca antes vistos – eventos tão pequenos que todos os seus vestígios são perdidos antes de chegarem à Terra ou a qualquer um dos satélites próximos da Terra. Estes instrumentos também mediram um tipo raro de explosão de partículas com um número particularmente elevado de elementos mais pesados – sugerindo que ambos os tipos de eventos podem ser mais comuns do que os cientistas pensavam anteriormente.

“É incrível – mesmo em condições do mínimo solar, o Sol produz muitos mais eventos minúsculos de partículas energéticas do que jamais imaginámos,” disse David McComas, investigador principal do ISʘIS (Integrated Science Investigation of the Sun), da Universidade de Princeton em Nova Jersey. “Estas medições vão ajudar-nos a desvendar as fontes, a aceleração e o transporte de partículas energéticas solares e, finalmente, protegerão melhor os satélites e os astronautas no futuro.”

Os dados dos instrumentos WISPR também forneceram detalhes sem precedentes sobre as estruturas da coroa e do vento solar – incluindo ejecções de massa coronal, nuvens com milhares de milhões de toneladas de material solar que o Sol envia para o Sistema Solar. As EMCs podem desencadear uma série de efeitos na Terra e noutros mundos, desde o aparecimento de auroras até à indução de correntes eléctricas que podem danificar redes de energia e oleodutos. A perspectiva única do WISPR, olhando os eventos que se afastam do Sol de lado, já recolheu novas informações sobre a variedade de eventos que a nossa estrela pode despoletar.

“Dado que a Parker Solar Probe estava a igualar a rotação do Sol, pudemos observar o fluxo de material durante dias e ver a evolução das estruturas,” disse Howard. “As observações perto da Terra fizeram-nos pensar que estruturas finas na coroa se transformam num fluxo suave e estamos a descobrir que isso não é verdade. Isto vai ajudar-nos a melhor modelar como os eventos viajam entre o Sol e a Terra.”

À medida que a Parker Solar Probe continua a sua viagem, fará mais 21 grandes aproximações ao Sol a distâncias cada vez menores, culminando em três órbitas a uns meros 6,16 milhões de quilómetros da superfície solar.

“O Sol é a única estrela que podemos examinar tão de perto,” disse Nicola Fox, director da Divisão de Heliofísica na sede da NASA. “Obter dados na fonte já está a revolucionar o nosso entendimento da nossa própria estrela e das estrelas por todo o Universo. A nossa pequena nave espacial está a enfrentar condições brutais para transmitir para casa revelações surpreendentes e emocionantes.”

Os dados dos dois primeiros encontros solares da Parker Solar Probe estão disponíveis ao público via online.

Astronomia On-line
6 de Dezembro de 2019

spacenews

 

Deixe uma resposta

O seu endereço de email não será publicado. Campos obrigatórios marcados com *

Este site utiliza o Akismet para reduzir spam. Fica a saber como são processados os dados dos comentários.